Электронная библиотека
Форум - Здоровый образ жизни
Акупунктура, Аюрведа Ароматерапия и эфирные масла,
Консультации специалистов:
Рэйки; Гомеопатия; Народная медицина; Йога; Лекарственные травы; Нетрадиционная медицина; В гостях у астролога; Дыхательные практики; Гороскоп; Цигун и Йога Эзотерика


Роберт Хейзен
История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет

Переводчик Тамара Казакова

Редактор Антон Никольский

Научный консультант Владимир Сурдин, к. ф.-м. н.

Научный консультант Николай Короновский, д. г.-м. н.

Руководитель проекта И. Серёгина

Корректоры Е. Аксенова, М. Миловидова

Компьютерная верстка А. Фоминов

Дизайнер обложки О. Сидоренко

Фото на обложке Shutterstock


© Robert M. Hazen, 2012

© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2015

* * *

Посвящается Грегори: грядут перемены – пусть тебе хватит мудрости и мужества приспособиться к ним

Фонд некоммерческих программ

«Династия»

основан в 2002 г.

Дмитрием Борисовичем Зиминым, почетным президентом компании «Вымпелком».

Приоритетные направления деятельности Фонда – поддержка фундаментальной науки и образования в России, популяризация науки и просвещение.

В рамках программы по популяризации науки Фондом запущено несколько проектов.

В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект «Библиотека «Династии» – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными.

Книга, которую вы держите в руках, выпущена в рамках этого проекта.

Более подробную информацию о Фонде «Династия» вы найдете по адресу

www.dynastyfdn.ru.




Введение

Одно из самых захватывающих изображений, сделанных в XX в., – фотография восхода Земли, снятая космонавтом с лунной орбиты в 1968 г. Мы всегда знали, как уникален и прекрасен наш мир: Земля – единственная известная планета с океанами, насыщенной кислородом атмосферой и жизнью. Тем не менее многие оказались не готовы к столь потрясающему контрасту между крайне враждебным человеку ландшафтом Луны, безжизненным мраком космической бездны и привлекательностью нашей бело-голубой планеты. С той удаленной точки, дающей хороший обзор, Земля выглядит маленькой, одинокой и уязвимой – и вместе с тем более прекрасной, чем все остальные небесные тела.

Мы с полным основанием можем восхищаться нашей родной планетой. Более чем за два столетия до Рождества Христова греческий ученый-энциклопедист Эратосфен Киренский провел первое в мире документально подтвержденное исследование планеты Земля. Чтобы измерить окружность Земли, он применил простой и остроумный способ, основанный на наблюдении за тенями. В египетском городе Сиене (ныне Асуан) во время летнего солнцестояния он в полдень наблюдал за cолнцем, которое располагалось в зените. Вертикальный столбик не отбрасывал никакой тени. В другом конце Египта, в тот же самый день и тот же час, в приморском городе Александрия, примерно в 840 км севернее, точно такой же столбик отбрасывал короткую тень, указывая на то, что в этой местности cолнце находилось не прямо над головой. Применив теоремы своего великого предшественника Эвклида, Эратосфен пришел к выводу, что Земля должна иметь форму шара, и вычислил, что окружность этого шара составляет примерно 40 225 км – результат, поразительно близкий к современным данным, согласно которым в районе экватора Земля имеет в окружности 40 075 км.

На протяжении тысячелетий великое множество других ученых, от большинства из которых не сохранилось даже имен, исследовали и познавали нашу родную планету. Они выясняли, как образовалась Земля, как она движется в пространстве, из чего она состоит и как устроена. При этом самый главный вопрос, волновавший всех людей науки, заключался в том, как Земля развивалась и как на ней возникла жизнь. В наши дни благодаря накопленному поколениями опыту и возможностям современных технологий нам известно о Земле гораздо больше, чем могли даже вообразить ученые прошлого. Разумеется, и мы не знаем всего, но все же наши познания о Земле значительно обогатились.

По мере расширения и углубления знаний о Земле, превратившихся за тысячелетия в устойчивые представления, становилось все очевиднее, что история Земли – это история изменений.

Многие данные указывают на то, что Земля меняется год за годом, век за веком. Ритмические осадочные толщи, или варвиты, найденные в некоторых ледниковых озерах Скандинавии, запечатлели более чем тринадцатитысячелетнюю историю непрерывного накопления сезонных слойков, отличающихся друг от друга размерами слагающих их зерен – тонкозернистый осадок сменялся грубозернистым вследствие ежегодной активизации эрозии во время весеннего таяния. В результате бурения ледников в Антарктиде и Гренландии получены данные о сезонных отложениях льда за более чем восемьсот тысячелетий. В Вайоминге, в сланцах Грин-Ривер, обнаружены тончайшие, толщиной с бумажный лист, слои осадочных отложений, запечатлевшие геологические события, происходившие в течение более миллиона лет. Все эти отложения покоятся на гораздо более древних породах, которые в свою очередь несут следы грандиозных циклов преобразований.

Исследование длительных геологических процессов указывает на еще более масштабные события в истории Земли. Образование Гавайских островов произошло в результате нечастой, но регулярной вулканической активности, когда слои лавы последовательно накладывались друг на друга в течение десятков миллионов лет. Сглаженные очертания Аппалачей и других древних горных массивов объясняются постепенной эрозией, происходившей в течение сотен миллионов лет, прерываемой время от времени грандиозными оползнями. Внезапные сдвиги тектонических плит смещали целые континенты, воздвигали горы и создавали океаны на протяжении всей геологической истории.

Земля всегда была беспокойной, постоянно развивающейся планетой. Все в ней, от ядра до коры, непрерывно меняется. Даже в наше время и атмосфера, и океаны, и суша подвержены изменениям, хотя, возможно, и не таким интенсивным по сравнению с относительно недавним прошлым. Нелепо было бы не обращать внимания на тревожные признаки таких изменений, и вряд ли мы совершим такую глупость – ведь наш интерес к родной планете так же естествен, как в свое время для Эратосфена. Однако не меньшей глупостью было бы сосредоточиться на текущем состоянии Земли, не используя в полной мере возможность узнать как можно больше об ее удивительном прошлом, изменчивом и непредсказуемом настоящем, а также о нашей собственной роли и месте в ее будущем.

Большая часть моей жизни ушла на изучение нашей живой, сложной, изменчивой планеты. В детстве я собирал камни и минералы, загромождая комнату образцами кристаллов и окаменелостей вперемешку с букашками и костями. Вся моя профессиональная деятельность также отмечена этой одержимостью Землей. Я начал с исследований таких объектов, которые невозможно разглядеть даже в микроскоп, размером с атом, – пытался выявлять молекулярное строение породообразующих минералов, нагревая и сдавливая малюсенькие зерна минералов, чтобы воспроизвести условия «скороварки» в недрах Земли.

Со временем мой интерес сместился в сторону более масштабных геологических событий в пространстве и времени. В десятках разных мест: от пустынь Северной Африки до ледяных просторов Гренландии, от Гавайских островов до высочайших вершин Скалистых гор, от Большого Барьерного рифа у берегов Австралии до древних окаменелых коралловых рифов – природные библиотеки Земли раскрывали передо мной многие миллиарды лет эволюции земных стихий, полезных ископаемых, горных пород и самой жизни. По мере того как мои исследования распространялись на изучение роли минералов в геохимической предыстории происхождения жизни, мне стала открываться взаимосвязь эволюции жизни и минералов на протяжении всей истории Земли – даже более поразительная, чем можно было ожидать; выяснилось, что не только некоторые горные породы возникли в результате жизнедеятельности организмов (что хорошо видно в известняковых пещерах на всех континентах), но и сама жизнь, по всей вероятности, возникла на основе горных пород. За более чем четыре миллиарда лет истории Земли эволюционное развитие минералов и жизни на планете (геология и биология) удивительно переплелись, но только в последнее время эта взаимосвязь привлекла пристальное внимание науки. В 2008 г. эти мысли нашли выражение в провокационной статье в «Эволюция минералов» (Mineral Evolution). У некоторых ученых новые неоднозначные аргументы вызвали одобрение: они расценили, что это открытие способно впервые за последние два столетия поколебать всю систему знаний о минералах, тогда как остальные отнеслись к публикации весьма настороженно, как к еретическому пересмотру основ нашей науки в контексте геологического времени.

Древняя наука минералогия, играющая первостепенную роль во всем, что касается Земли и ее прошлого, отличается, как это ни странно, удивительной статикой и отчужденностью от колебаний научной мысли в целом. Вот уже более двухсот лет минералоги занимаются исключительно исследованием химического состава, плотности, твердости, оптических свойств и кристаллической структуры. Посетите любой естественно-исторический музей – и вы поймете, о чем я говорю: в стеклянных шкафах покоятся великолепные образцы кристаллов, снабженные этикетками, на которых указано название, химическая формула, кристаллическое строение и местонахождение. У этих ценнейших фрагментов Земли богатое историческое прошлое, но вряд ли вы сможете найти какие-либо указания на возраст их образования и последующие геологические преобразования. Традиционный подход разлучает сами минералы с увлекательной историей их бытия.

Эта традиция нуждается в пересмотре. Чем больше мы узнаем о богатейшем прошлом горных пород Земли, тем очевиднее становится тот факт, что вся природа, живая и неживая, претерпевала все новые и новые изменения. Растущее понимание двух реальных категорий, присущих нашей планете, – времени и эволюционных изменений позволяет предположить не только то, как именно появились первые минералы, но и когда это произошло. А недавнее открытие живых организмов в среде, которая традиционно считалась непригодной для жизни, в раскаленных жерлах вулканов, кислотных озерах, арктических льдах и стратосферной пыли – превращает минералогию в ключевую науку среди всех других, которые ищут разгадку происхождения и сохранения жизни на планете. В ноябрьском 2008 г. выпуске ведущего минералогического журнала American Mineralogist мы с коллегами опубликовали статью, в которой сформулировали новый подход к минералогическим исследованиям – с учетом невероятных преобразований минералов на неизученном отрезке времени. Мы подчеркнули, что много миллиардов лет назад минералов нигде в космосе вообще не существовало. Никакие кристаллические соединения не могли образоваться и тем более сохраниться в беспредельно раскаленном вихре Большого взрыва. Понадобилось около полумиллиона лет, чтобы в гигантском котле творения мира образовались первые атомы – водорода, гелия и мизерное количество лития. Еще много миллионов лет спустя под воздействием сил гравитации эти первичные газообразные образования сгустились в туманности, которые затем распались на раскаленные плотные ослепительные звезды. И только когда эти первые звезды, взорвавшись, образовали сверхновые звезды, остывающие сгустки газа, содержащего множество элементов, распались на мелкие кристаллики алмазов – и началась космическая сага минералов.

Вот так я превратился в исследователя, одержимого свидетельскими показаниями горных пород, ибо, сколь бы ни были эти свидетельства отрывочными и неопределенными, только они способны поведать историю своего рождения и смерти, остановки и движения, происхождения и развития. Эта никем еще не рассказанная, длинная и многогранная история органических и неорганических образований на Земле, взаимосвязанной эволюции живой и неживой природы поражает воображение. И мы должны услышать ее, поскольку мы сами – это тоже Земля. Все, что обеспечивает нам укрытие и средства к существованию, все то, чем мы владеем, поистине каждый атом и молекула нашей телесной оболочки – все это приходит от Земли и возвращается в Землю. Познать нашу планету означает познать частицу самих себя.

Исследовать историю Земли необходимо еще и потому, что сегодня ее водные ресурсы и атмосфера меняются со скоростью, невиданной за все предыдущие периоды ее существования. Уровень океанов повышается, они сильнее нагреваются и быстрее окисляются. В планетарном масштабе меняется характер осадков, атмосфера становится все более неспокойной. Тают полярные льды, оттаивает тундра, во многих местах изменяется среда обитания. Как нам предстоит узнать, история Земли – это история эволюции, причем в тех редких случаях, когда скорость изменений становилась опасно высокой, живая природа на Земле расплачивалась тяжкими последствиями. Для того чтобы принять обдуманные и своевременные меры во имя собственного будущего, необходимо как можно точнее представлять себе историю нашей планеты. Ибо, как подсказывает нам удивительный снимок Земли, сделанный с расстояния 384 400 км от нее, другого дома в ближнем космосе у нас нет.

Вслед за Эратосфеном и тысячами других пытливых умов я намерен в этой книге поведать историю Земли как длительный процесс изменений. Какой бы понятной и знакомой ни казалась нам наша планета, ее бурное прошлое изобилует такими невероятными событиями, что их даже трудно вообразить. Чтобы лучше узнать свой планетарный дом и постичь бесконечные эпохи, сформировавшие его, нам необходимо прежде всего осознать семь фундаментальных истин.

1. Земля состоит из циклического круговорота атомов.

2. Земля несравнимо древнее истории человека.

3. Земля трехмерна, и большинство процессов скрыто от глаз.

4. Горные породы – это летопись истории Земли.

5. Земные структуры: горные породы, океаны, атмосфера, живая природа – тесно взаимосвязаны.

6. История Земли включает длительные периоды застоя, прерываемые внезапными и необратимыми событиями.

7. Жизнь изменила и продолжает изменять поверхность Земли.


Эти представления о существовании Земли позволяют воспроизвести сложный, причудливый и многослойный узор взаимодействия атомов, минералов, горных пород и жизни на протяжении громадных отрезков времени и пространства; мы будем обращаться к ним на последующих страницах, повествуя о фазах развития планеты от первоначального огненного вихря Вселенной до длительной эволюции планеты Земля. Взаимосвязанная эволюция Земли и жизни – новое направление, лежащее в основе этой книги, – часть необратимой последовательности ступеней эволюции, восходящей к Большому взрыву. Для каждой стадии характерны свои процессы и феномены, которые постоянно преобразуют поверхность нашей планеты, неуклонно прокладывая путь к тому удивительному миру, в котором мы живем. Такова история Земли.



Глава 1
Рождение

Образование Земли

Миллиарды лет до рождения Земли

Первоначально не существовало ни Земли, ни Солнца, которое согревает ее. Наша Солнечная система, в центре которой располагается сияющая звезда и в которую входят различные планеты со своими спутниками, в космосе появилась сравнительно недавно – всего каких-нибудь 4,567 млрд лет назад. До того как наш мир возник из небытия, произошло многое.

Место для рождения нашей планеты было подготовлено гораздо раньше, в начале начал – в момент Большого взрыва – около 13,7 млрд лет назад, согласно новейшим данным. Этот миг творения мира остается самым смутным, непостижимым и самым решающим событием в истории Вселенной. Он представляется как сингулярность – превращение из ничего в нечто и не поддается объяснению с помощью законов современной физики или логики математики. Если вы склонны искать признаки существования Бога-Творца в космосе, стоит начать поиски с Большого взрыва.

В самом начале пространство, энергия и материя возникли из непостижимой пустоты. Из ничего. Затем появилось нечто. Мы не способны подобрать метафору к этому событию. Наша Вселенная появилась даже не из вакуума, поскольку до Большого взрыва не было ни пространства, ни времени. Понятие «ничто» подразумевает пустоту – но до Большого взрыва не существовало ничего, в чем могла бы существовать пустота.

Затем в мгновение ока появилось не просто нечто, а все, чему предстояло существовать, и все сразу. В этот момент объем Вселенной был меньше ядра атома. Сверхплотный космос появился в виде чистой однородной энергии, и никакие частицы не нарушали его абсолютное единообразие. Вселенная начала стремительно расширяться, однако не во внешнее пространство (у нашей Вселенной не существует внешнего пространства). Ее объем, все еще состоящий из раскаленной энергии, ширился и увеличивался. По мере расширения Вселенная-энергия остывала. Первые субатомные частицы появились в считаные доли секунды после Большого взрыва – это были электроны и кварки, невидимая субстанция всех твердых, жидких и газообразных элементов, составивших наш мир и порожденных чистой энергией. Вскоре после этого, в течение все тех же долей космической секунды, кварки объединились в пары и триплеты, формируя более крупные частицы, включая протоны и нейтроны, входящие в ядро атома. Все эти структуры оставались предельно раскаленными около полумиллиона лет, пока продолжающееся расширение Вселенной не остудило космос до нескольких тысяч градусов – достаточно низкая температура, чтобы прицепить электроны к ядрам и сформировать таким образом первые атомы. В числе этих атомов подавляющее большинство составлял водород (более 90 % всех атомов), входил небольшой процент гелия и вкрапления лития. Из смеси этих элементов образовались первые звезды.


Первоначальный свет

Гравитация – великий механизм формирования космических объектов. Атом водорода весьма мелок, но стоит числу атомов увеличиться в 1060 раз (это составит триллион триллионов триллионов триллионов триллионов атомов водорода) – и сила их коллективного тяготения неизмеримо возрастет. Гравитация стянет их в центр, формируя звезду – гигантский газовый шар, предельно сжатый в центре. Когда огромный сгусток водорода сжимается, его потенциальная гравитационная энергия преобразуется в кинетическую энергию движущихся атомов, которая в свою очередь преобразуется в тепловую энергию – процесс, аналогичный тому, что происходит при столкновении Земли с астероидом, но сопровождаемый неизмеримо большим высвобождением энергии. Температура в ядре водородного шара повышается до миллионов градусов, а давление – до миллионов атмосфер.

Такая температура и давление инициируют новый феномен, называемый ядерным синтезом. В этих экстремальных условиях ядра двух атомов водорода (каждое из них содержит по одному протону) сталкиваются с такой силой, что ядра сливаются и один из протонов превращается в нейтрон – образуется тяжелый атом водорода. После ряда таких столкновений образуются ядра гелия с двумя протонами. Поразительно, что получившийся в результате атом гелия примерно на 1 % легче исходных четырех атомов водорода, из которых он образовался. По мере обогащения звезды гелием за счет водорода она «воспламеняется», излучая энергию в окружающее пространство.

Крупные звезды, многие из которых гораздо больше нашего Солнца, с течением времени исчерпывают громадные запасы водорода, содержащегося в их ядрах. Однако чрезвычайно высокое внутреннее давление и тепловая энергия продолжают поддерживать ядерный синтез. Атомы гелия в звездном ядре превращаются в углерод – необходимый элемент для возникновения жизни, состоящий из шести протонов, и одновременно продолжаются всплески ядерной энергии, вызывающие водородный синтез в сферическом слое, окружающем ядро звезды. Затем из углерода синтезируется неон, из которого рождается кислород, затем формируется магний, потом кремний, сера и т. д. Постепенно звезда приобретает структуру луковицы, в которой ядерный синтез образует один за другим слои из различных элементов. Ядерный синтез все ускоряется до тех пор, пока не наступает фаза образования железа, которая длится не более одного дня. К этому времени, много миллионов лет спустя после Большого взрыва, во многих звездах в процессе ядерного синтеза завершается цикл формирования первых 26 элементов периодической системы.

Железо является предельным элементом ядерного синтеза. Когда водород превращается в гелий, гелий в углерод и происходят все дальнейшие преобразования, высвобождается огромное количество ядерной энергии. Но ядро атома железа содержит наименьшее количество энергии по сравнению c ядрами других элементов. Когда огонь пожирает все топливо, превращая его в золу, тепловая энергия иссякает. Железо представляет собой своего рода ядерную золу; при столкновении атома железа с атомами других элементов ядерная энергия не возникает. Таким образом, когда в массивной звезде неизбежно формируется железное ядро, ее жизненный цикл заканчивается и происходит катастрофа. До этого момента в звезде поддерживается устойчивое равновесие между двумя мощными силами: гравитацией, притягивающей массу звездного вещества к центру, и давлением газа, выталкивающим эту массу из ядра. Когда ядро заполняется железом, процесс выталкивания массы из ядра останавливается, и победившая сила гравитации в один миг порождает катастрофу. Вся масса звезды настолько стремительно обрушивается к центру ядра, что отскок вызывает взрыв, который называют вспышкой сверхновой звезды. Звезда распадается, выбрасывая большую часть своего вещества в космическое пространство.


Рождение химии

Для тех читателей, которые пытаются представить себе устройство космоса, рождение сверхновой звезды ничуть не хуже Большого взрыва. Разумеется, Большой взрыв ведет к образованию атомов водорода, которые, в свою очередь, неизбежно приводят к образованию первых звезд. Однако путь от звезды до знакомого нам мира далеко не так очевиден. Огромный шар, состоящий из атомов водорода, даже если в его ядре скапливаются более тяжелые элементы вплоть до железа, еще не указывает верного направления пути.

Но когда взрываются большие звезды, в космосе появляется нечто новое. Распавшиеся небесные тела усеивают космическое пространство всеми элементами, из которых они состояли. Углерод, кислород, азот, фосфор и сера – основные ингредиенты живой материи – появляются в изобилии. Магний, кремний, железо, алюминий и кальций, входящие в состав горных пород, из которых преимущественно и состоят планеты типа Земли, тоже имеются в достаточном количестве. Но в невообразимом поле энергии, порождаемом взрывающимися звездами, все эти элементы в процессе ядерного синтеза создают самые невероятные комбинации – в результате формируется вся Периодическая таблица, т. е. первичные 26 элементов образуют множество других. Именно тогда рождаются такие редкие элементы, как драгоценные металлы – серебро и золото, утилитарные вещества медь и цинк, ядовитые мышьяк и ртуть, радиоактивные уран и плутоний. Более того, эти элементы в космическом пространстве соединяются и взаимодействуют друг с другом во все новых и новых химических реакциях.

Химическая реакция происходит, когда один обычный атом сталкивается с другим таким же. У каждого атома имеется крохотное, но тяжелое ядро, обладающее положительным электрическим зарядом, окруженное облаком из одного или нескольких отрицательно заряженных электронов. Изолированные атомные ядра практически никогда не взаимодействуют, за исключением внутризвездной «скороварки», для которой характерны сверхвысокие температура и давление. Однако электроны разных атомов постоянно сталкиваются друг с другом. Химические реакции происходят в те моменты, когда встречаются два или более атомов и их электроны вступают во взаимодействие и перегруппировываются. Такое перемешивание и связывание электронов случается по той причине, что их определенные комбинации оказываются наиболее устойчивыми, особенно совокупность двух, десяти или 18 электронов.

Первые химические реакции после Большого взрыва порождают молекулы – небольшие группы атомов, тесно связанных между собой. Еще до того, как атомы водорода в результате ядерного синтеза внутри звезд образуют гелий, в вакуумном пространстве глубокого космоса возникают молекулы водорода (H2), каждая из которых состоит из двух атомов, тесно связанных между собой. У каждого атома водорода только один электрон, т. е. этот атом находится в нестабильном состоянии в условиях космоса, где действует магическое правило двух электронов. Так что встреча двух атомов водорода объединяет их электроны в общую молекулу, обеспечивающую стабильность. Принимая во внимание огромное количество водорода, возникшего в результате Большого взрыва, нетрудно прийти к выводу, что молекулы водорода предшествовали образованию звезд и составляли основную часть космоса с самого начала появления атомов.

Вслед за рождением сверхновых звезд, по мере того как в космосе рассеивались другие элементы, возникало множество интересных молекул. Среди них одним из самых ранних соединений стала вода (H2O), в молекуле которой два атома водорода соединились с одним атомом кислорода. По всей видимости, именно в пространстве вокруг сверхновых звезд образовались молекулы азота (N2), аммиака (NH3), метана (CH4), монооксида углерода (СО) и диоксида углерода (СО2). Всем этим видам молекул предстояло сыграть важнейшую роль в формировании планет и появлении живой материи.

Затем образовались минералы – микроскопические твердые образцы химического совершенства и кристаллической структуры. Первые минералы могли появиться только в условиях высокой плотности скоплений минералообразующих элементов и сравнительно низких температур, чтобы атомы смогли образовать кристаллы. Всего несколько миллионов лет спустя после Большого взрыва благоприятные условия для таких реакций возникли в разреженном и остывающем пространстве вокруг первых взорвавшихся звезд. Крошечные кристаллиты чистого углерода в форме алмаза и графита стали, вероятно, первыми минералами во Вселенной. Эти первые кристаллы представляли собой нечто вроде пыли, отдельные частицы были очень мелкие, но, возможно, достаточные по величине, чтобы сверкнуть в космосе бриллиантовым блеском. К первым углеродистым образованиям вскоре добавились другие высокотемпературные твердые вещества, образованные из таких элементов, как магний, кальций, азот и кислород. Среди них были знакомые нам минералы вроде корунда, химического соединения алюминия с кислородом, которое особенно ценится в своих ярких цветных разновидностях – рубинах и сапфирах. Тогда же появились в небольшом количестве хризолиты (силикат магния с другими составляющими), ныне полудрагоценные камни, астрологические знаки рожденных в августе, и муассаниты (карбид кремния), известные в наше время как дешевый искусственный суррогат бриллиантов. Всего в межпланетной пыли содержалось около дюжины известных нам «полезных ископаемых». Таким образом, после взрыва первых звезд Вселенная начинала становиться разнообразнее.

Ничто в космосе не случается единожды (за исключением, пожалуй, Большого взрыва). Рассеянные в космическом пространстве осколки взорвавшихся звезд постоянно подвергались воздействию сил гравитации. Таким путем остатки первого поколения звезд неизбежно порождали новые звездные скопления, формируя туманности, состоявшие из громадных облаков межзвездного газа и пыли, оставшихся после взрыва предыдущих поколений звезд. Каждая новая туманность содержала больше железа и немного меньше водорода, чем предыдущая. Этот цикл продолжался 13,7 млрд лет: старые звезды порождали новые, изменяя структуру космоса. Неисчислимые миллиарды звезд возникли в неисчислимом количестве галактик.


Космические ключи к разгадке

В давние-предавние космические времена, пять миллиардов лет тому назад, наше будущее «место жительства» располагалось на обочине Галактики, на полпути от центра Млечного Пути, в необитаемом спиралевидном рукаве, среди миллионов звезд. В этом скромном уголке мало что можно было обнаружить, кроме гигантского облака, состоявшего из межзвездного газа и ледяной пыли, простиравшегося на много световых лет в космическом мраке. Девять десятых этого облака составляли атомы водорода; из оставшейся доли девять десятых приходилось на атомы гелия. Один оставшийся процент состоял из мелких органических молекул и микроскопических частиц минерального вещества.

Такое газово-пылевое облако может существовать в космическом пространстве много миллионов лет, пока какой-нибудь импульс – например, ударная волна от взрыва ближайшей звезды – не запустит процесс образования в нем новой звездной системы. Именно такой пусковой механизм 4,6 млрд лет назад послужил началом формирования нашей Солнечной системы. Очень медленно, на протяжении миллиона лет, вихрь, состоявший из газа и пыли, втягивался внутрь к центру. Подобно вращающемуся фигуристу, гигантское облако крутилось все быстрее и быстрее, по мере того как гравитация притягивала его легкие края к центру. Сжимаясь и ускоряя вращение, облако постепенно уплотнялось и расплющивалось в форме диска, в центре которого росло новое небесное тело, – так рождалось Солнце. Этот центральный шар, вобравший в себя почти весь водород, становился все больше и больше, пока не поглотил 99,9 % всей массы облака. В процессе его роста давление и температура внутри шара поднялись до точки ядерного синтеза, и Солнце зажглось.

Ключи к раскрытию последующих событий содержатся в летописи Солнечной системы, записанной в ее планетах и спутниках, кометах и астероидах, а также в бесчисленных и разнообразных метеоритах. Одним из таких ключей является то, что все планеты и спутники обращаются вокруг Солнца в одной и той же плоскости и в одном и том же направлении. Более того, ближайшие к Солнцу планеты вращаются вокруг собственной оси примерно в той же плоскости и направлении. Ничто в законах движения не обусловливает эту общность вращения; планеты и спутники могли бы вращаться вокруг оси и по орбитам любым способом – с севера на юг, с востока на запад, сверху вниз или снизу вверх – и при этом не нарушать закона тяготения. Такое разнообразие наверняка имело бы место, если бы планеты и спутники были втянуты в Солнечную систему извне. Наблюдаемое орбитальное единообразие в нашей Солнечной системе, напротив, свидетельствует о том, что все ее планеты и спутники образовались в одном и том же плоском, крутящемся газово-пылевом диске и примерно в одно и то же время. Все эти гигантские космические тела сохраняют тот же принцип вращения – общий вращательный момент всей Солнечной системы – со времени начала закручивания облака.

Второй ключ к происхождению Солнечной системы кроется в характерном расположении восьми основных ее планет. Ближайшие к Солнцу планеты – Меркурий, Венера, Земля и Марс – представляют собой сравнительно небольшие твердотельные образования, состоящие преимущественно из кремния, кислорода, магния и железа. Плотные горные породы, вроде черного вулканического базальта, встречаются в основном на поверхности этих планет. В отличие от них четыре внешних планеты: Юпитер, Сатурн, Уран и Нептун – являются газовыми гигантами, главным образом состоящими из водорода и гелия. Эти громадные шары не имеют твердой поверхности и уплотняются по мере углубления в нижние слои атмосферы. Такое деление планет позволяет предположить, что в начальный период существования Солнечной системы, в течение нескольких тысяч лет после образования Солнца солнечный ветер – интенсивный поток заряженных частиц – выталкивал оставшийся водород и гелий во внешние, более холодные области. На достаточном удалении от излучения Солнца эти летучие газы, остывая, уплотнялись, образуя независимые сгущения. Напротив, более крупные, богатые минералами частицы звездной пыли, оставшиеся поблизости от раскаленной звезды, быстро уплотнялись, образуя твердотельные внутренние планеты.

Подробности бурных процессов, сформировавших Землю и остальные внутренние планеты, запечатлены в поразительном многообразии метеоритов. Страшно представить, что на нашу Землю постоянно сыпятся камни с неба. Однако научное сообщество, надо признать, начало проявлять к ним интерес всего лет двести назад, хотя издавна существовал фольклор с красочными историями о метеоритах (например, история с неудачливыми французскими крестьянами). Даже более строгий научный подход к описанию метеоритных дождей страдал от недостатка научно обоснованных данных, а потому и от невозможности объяснения происхождения метеоритов. Американский государственный деятель и ученый-натуралист Томас Джефферсон, читая отчет Йельского университета о наблюдении за падением метеоритов в Вестоне, штат Коннектикут, скептически заметил: «Я скорее поверю в то, что ученые-янки лгут, чем в то, что камни падают с неба».

Позднее, спустя два века, в течение которых были обнаружены десятки тысяч метеоритов, наука наконец убедилась в достоверности их существования. По мере того как исследователи метеоритов охватывали все более обширные территории, а заядлые коллекционеры хвалились редчайшими образцами, музейные и частные коллекции становились все полнее и разнообразнее. Какое-то время в этих хранилищах наблюдался перекос в сторону железных метеоритов, чья черная кора, причудливые формы и чрезвычайная плотность отличали их от обычных камней. Но в 1969 г. на поверхности девственно чистых льдов Антарктиды были обнаружены тысячи метеоритов, и это кардинально изменило ситуацию.

Метеориты содержат важнейшую информацию о происхождении других планет. Самые распространенные из них хондриты, возрастом 4,656 млрд лет, относятся ко времени, предшествовавшему образованию планет и спутников Солнечной системы, когда ядерный реактор Солнца пришел в действие и колоссальный выброс энергии воспламенил окружающее облако. В результате образовалась своего рода доменная печь, в которой межзвездная пыль, составлявшая облако, спеклась в крохотные вязкие капли, так называемые хондры (от греческого слова, означающего «зерно, гранула»). Размером от дробинки до небольшой горошины, эти продукты воздействия солнечного пламени переплавлялись множество раз, вслед за пульсацией излучения, которое преображало околосолнечное пространство. Скопления этих древнейших хондр сплавлялись в единое целое за счет более мелкой звездной пыли и фрагментов минерального вещества, образуя примитивные хондриты, миллионы которых оседали на поверхности Земли. Хондриты свидетельствуют о коротком промежутке времени между рождением Солнца и формированием планет.

Другой, более молодой вид метеоритов, именуемых ахондритами, относится ко времени, когда вещества Солнечной системы проходили первичную трансформацию: плавились, дробились и т. д. Среди ахондритов наблюдается удивительное разнообразие – кусочки блестящих металлов и обломки оплавленных камней, фрагменты гладкие, как стекло, и экземпляры, состоящие из глянцевитых кристаллов более 2 см в диаметре. До сих пор в самых отдаленных уголках Земли попадаются все новые разновидности ахондритов.

Антарктида – континент, который покрывают тысячи километров древнего голубого льда и где редко выпадает снег. Камни, прилетевшие из космоса, темными, инородными объектами выделяются на этом льду, ожидая, пока их найдут. Благодаря международным соглашениям, запрещающим коммерческое использование этого континента, а также труднодоступности его ледяных просторов, обеспечивается сохранность этих внеземных ресурсов для научных исследований. Группы хорошо экипированных ученых на вертолетах и снегоходах систематически обследуют ледяные пустыни, один квадратный километр за другим. Они тщательно регистрируют и упаковывают каждую находку, стараясь не повредить ее поверхность ни руками, ни даже дыханием. Возвращаясь в цивилизованный мир после каждого антарктического сезона, эти охотники за метеоритами доставляют найденные сокровища в государственные хранилища, чаще всего на склады Смитсоновского института, расположенные в Сьютланде, штат Мэриленд, где тысячи и тысячи образцов хранятся в стерильно чистых, герметичных боксах, занимающих площадь размером с футбольное поле.

Не менее богаты метеоритами, хотя и не настолько доступны организованному собирательству и обеспечению стерильности, крупнейшие пустыни Австралии, юго-запада Америки, Аравийского полуострова и особенно Северной Африки – громадная пустыня Сахара. До обитателей Сахары, кочевых племен туарегов, берберов, тубу и других, дошли слухи, что метеориты могут дорого стоить. В начале XXI в. среди барханов Северной Африки был найден уникальный образец лунного метеорита, который, как считается, был продан в частной сделке за миллион долларов. Пустынному наезднику ничего не стоит сойти с верблюда, поднять какой-нибудь необычный булыжник и привезти его в ближайшую деревню, где представитель неофициальной гильдии охотников за метеоритами, обладающий спутниковым телефоном и хорошо подвешенным языком, перекупит у него камень за жалкие гроши. Через ряд посредников мешки с метеоритами, по пути все более дорожающие, переправляются в Марракеш, Рабат или Каир, а оттуда поступают к торговцам на eBay или на крупные международные выставки-ярмарки камней и минералов.

Во время геологических экспедиций в отдаленные части Марокко мне не раз предлагали мешки из дерюги, набитые камнями, предположительно метеоритами: «никаких посредников, прямо из пустыни, нашли только на прошлой неделе». Такие «сделки», исключительно за наличные, как правило, совершаются в грязных, темных комнатках в задней части хижин из сырцового кирпича, где нет окон, что спасает от палящего солнца пустыни, но не дает возможности толком рассмотреть, что именно тебе предлагают. После официальной части, состоящей из обмена традиционными любезностями и нескольких чашек травяного чая, продавец высыпает содержимое мешка на ковер. Часть товара – это простые камни. Щебень. Нечто вроде проверки: разбираешься ли ты в метеоритах. Там обнаружится также несколько образцов заурядной разновидности хондритов размером от маслины до яйца, частично покрытые оплавленной коркой в результате стремительного прохождения через атмосферу. Стартовая цена обычно во много раз превышает разумную. Если покупатель заявляет, что это слишком обычные, распространенные метеориты, ему могут предложить другой мешок, поменьше, в котором, возможно, окажется железный метеорит или еще более экзотический образец.

Мне вспоминается одна такая сделка, совершенная нашим проводником Абдуллой на обочине пыльной дороги в нескольких километрах к востоку от Скуры. Продавец, не очень близкий его знакомый, к тому же сомнительной честности, позвонил по мобильному телефону и потребовал обеспечить секретность сделки. «Может, это марсианский метеорит, – сообщил он Абдулле. – Девятьсот граммов. Всего за двадцать тысяч дирхамов». Это около 2400 долларов – если метеорит действительно марсианский и может быть включен в пару дюжин известных образцов, имеющих марсианское происхождение, то сделка довольно выгодная. Они договорились о времени и месте встречи. Два неописуемо странных, неухоженных автомобиля затормозили друг возле друга, мы стали втроем в тесно сомкнутый кружок. Вышеупомянутый образец был аккуратно вынут из бархатного мешочка. Выглядел он самым что ни на есть обычным камнем (впрочем, так выглядят практически все марсианские метеориты). Цена снизилась до 15 000 дирхамов. Затем до 12 000. Но убедиться в его подлинности было невозможно, поэтому мы расстались. Позднее Абдулла признался мне, что его так и одолевало искушение купить, но хорошо, что метеориты попадаются достаточно часто. Лучше не жадничать и не бросаться на первое попавшееся предложение; правды там не добьешься, а сделки расторжению не подлежат.

Подобно льдам Антарктиды, экваториальные пустыни позволяют обнаружить все типы метеоритов, открывая тем самым перспективу раскрыть характер начального этапа формирования Солнечной системы, а следовательно, и происхождения нашей родной планеты. К сожалению, в отличие от Антарктиды, большинство метеоритов, обнаруженных в пустынях, не достигает музейных собраний, по меньшей мере по двум причинам. Главным образом из-за возрастающего числа коллекционеров-любителей (раззадоренных богатыми собирателями и доступностью сахарских находок), составляющих серьезную конкуренцию специалистам. Любой редкий образец немедленно продается, к тому же за большие деньги. Некоторые из таких находок впоследствии наверняка будут переданы в качестве пожертвований в фонды музеев, но большая часть из них подвергается всем опасностям непрофессионального обращения, теряя научную ценность, поскольку к ним прикасаются голыми руками, складывают в непригодные для этой цели мешки многоразового использования и даже роняют в повсеместно распространенный верблюжий помет. Не меньший урон наносится и отсутствием надежной документации, в которой указывалось бы, где и когда данные метеориты были найдены. Большинство перекупщиков сообщат вам, что это «найдено в Марокко», и, разумеется, солгут, поскольку основная территория Сахары расположена восточнее, в Алжире и Ливии – странах, где вывоз метеоритов запрещен законом. А без точной документации большинство музеев откажутся принимать «марокканские» или «североафриканские» образцы.

В неприветливых, засушливых просторах Сахары или голубых льдах Антарктиды любой камень выглядит как чужеродное тело, упавшее с неба. Такие чистейшие образцы метеоритов дают ученым представление о начальных стадиях формирования Солнечной планетной системы, в которой возникла и Земля. Девять десятых всех находок составляют хондриты; оставшаяся часть состоит из разнообразных ахондритов, возникших в начальную эпоху формирования Солнечной системы из вращающегося газово-пылевого облака, продолжавшуюся несколько миллионов лет, в течение которых хондриты склеивались во все более и более крупные тела – планетезимали[1]. Вначале они были размером с кулак, затем – с автомобиль, а впоследствии достигли размеров небольшого города. Миллиарды таких тел диаметром несколько километров и больше отвоевывали для себя пространство в пределах узкого кольца вокруг новорожденного Солнца.

Они становились все больше и больше и достигали размеров целых штатов – сначала Род-Айленда, потом Огайо, Техаса, Аляски. Когда появились тысячи таких хаотически увеличивающихся планетезималей, наступила следующая стадия. Достигая более 80 км в диаметре, два одинаково раскаленных тела соединялись. Гравитационная энергия от столкновения малых тел по интенсивности не уступала ядерной энергии при быстром распаде таких радиоактивных элементов, как гафний или плутоний. Возникшие при этом температуры приводили к трансформации минералов в таких планетезималях, их внутренние области плавились, образуя зоны различных минералов, напоминающие структуру яйца: плотное металлическое ядро (аналогичное желтку в яйце), мантия, состоящая из силиката магния (белок яйца), и тонкая, ломкая кора (яичная скорлупа). Самые крупные из таких планетезималей формировались под влиянием внутренней тепловой энергии, взаимодействия с водой и постоянных столкновений в перенаселенном околосолнечном пространстве. В результате динамических процессов формирования планет, по-видимому, и образовались три сотни различных минеральных веществ. Эти три сотни минералов и послужили сырьем для формирования твердотельных планет, все эти вещества до сих пор обнаруживаются в падающих на Землю метеоритах.

Время от времени две достаточно крупные планетезимали сталкивались с такой силой, что разлетались на осколки. (Этот бурный процесс до сих пор продолжается в поясе астероидов за Марсом, вследствие гравитационного воздействия гигантской планеты Юпитер.) Соответственно большая часть разнообразных ахондритов, которые мы находим теперь, является осколками таких разрушенных планетезималей. Исследование ахондритов напоминает, таким образом, урок анатомии на примере разъятого на части трупа. Требуется много времени, терпения и множество образцов, чтобы представить ясную картину целого тела.

Легче всего анализировать плотные металлические ядра таких планетезималей, представленных в виде железных метеоритов. Когда-то считалось, что это самый распространенный тип метеоритов, однако большая выборка антарктических образцов позволила выяснить, что железные метеориты составляют весьма скромную долю – 5 % всех выпадений. Соответственно ядра планетезималей должны были отличаться небольшими размерами.

Мантии планетезималей, богатые кремниевыми солями, напротив, представлены в большом разнообразии: говардиты, эвкриты, диогениты, урейлиты, акапулькоиты, лодраниты и т. д. – все они отличаются характерной структурой, текстурой и минералогическим составом и названы по местности, в которой найден первый соответствующий образец. Некоторые из этих метеоритов аналогичны горным породам, существующим на Земле в наше время. Эвкриты представляют собой одну из типичных разновидностей базальта – горной породы, которая обязана своим происхождением вулканической деятельности Срединно-Атлантического хребта и выстилает океаническое дно. Диогениты, состоящие преимущественно из силиката магния, по-видимому, являются результатом оседания кристаллов в крупных подземных резервуарах магмы. По мере охлаждения магмы кристаллы становились плотнее окружающей расплавленной среды, росли и опускались на дно, образуя концентрированную массу, аналогичную той, которая образуется в наше время глубоко под землей в магматических камерах Земли.

Иногда, во время особенно разрушительных столкновений метеорит мог захватить частицы силикатных соединений из пограничной зоны между ядром и мантией планетезимали, где силикаты соединены с металлами. В результате появлялся прекрасный палласит – потрясающее сочетание блестящего металла и золотистых кристаллов оливина. Шлифованный срез палласита, где блики сверкающего металла на фоне оливина выглядят словно витражи, выделяют его среди самых красивых образцов в мировом собрании метеоритов.

Под воздействием гравитации ранние хондриты соединялись в группы, и сокрушительное давление, высокие температуры, агрессивная вода и жесткие столкновения преобразовывали планетезимали, создавая все новые виды минеральных веществ. В целом во всех образцах метеоритов обнаружено более 250 различных минералов – в 20 раз больше досолнечных протоминералов. Эти разнообразные твердые вещества, включающие раннюю мелкую пыль, пластины слюды и полудрагоценный цирконий, послужили основным строительным материалом для формирования Земли и других планет. Планетезимали разрастались по мере того, как самые крупные из них поглощали более мелкие. В результате этого поглощения несколько дюжин крупных каменных шаров, каждый величиной с небольшую планету, подобно гигантским пылесосам, подчищая на своем пути внутри Солнечной системы значительную часть пыли и газа, срастались между собой и выравнивали свои орбиты до почти идеальных окружностей. Расположение орбит в значительной мере зависело от массы планет.


Сборка Солнечной системы

Солнце, составляя львиную долю общей массы Солнечной системы, занимает в ней господствующее положение. Сама по себе наша система не принадлежит к числу особо массивных, т. е. Солнце является звездой скромных размеров, что весьма благоприятно для планеты, на которой есть жизнь. Удивительно, но чем больше масса звезды, тем короче ее жизнь. Сверхвысокие температуры и давление внутри больших звезд ускоряют процесс ядерного синтеза. Таким образом, звезда, в десять раз превышающая по массе Солнце, завершает свой цикл в сотни раз быстрее – ее существование длится не более нескольких десятков миллионов лет, что едва ли достаточно для возникновения жизни на одной из ее планет до того, как звезда взорвется, превращаясь в смертоносную сверхновую. И наоборот, какой-нибудь красный карлик, массой в десять раз меньше Солнца, существует в сотни раз дольше, но при этом его слабое излучение может оказаться недостаточным для поддержания жизни на планете, в отличие от нашего желтого благодетеля – Солнца.

Наша промежуточная по массе звезда относится к золотой середине: не слишком большая, с коротким сроком существования, но и не слишком мелкая с недостаточной энергией теплового излучения. Предполагаемый срок ее существования, 9–10 млрд лет безотказного выгорания водорода, предоставляет достаточно времени для развития и поддержания жизни. Конечно, через каких-нибудь 4–5 млрд лет водород в ядре Солнца закончится и звезда перейдет к стадии выгорания гелия. В ходе этого процесса она разбухнет в недружелюбный красный гигант, диаметром в 100 раз больше нынешнего, для начала уничтожит несчастный маленький Меркурий, сожжет и поглотит Венеру и причинит большие неудобства Земле. Тем не менее даже по прошествии 4,5 млрд лет, у нас еще есть время, пока Солнце не войдет в последнюю стадию, когда само существование жизни на Земле станет весьма проблематичным.

Солнечная система обладает еще одной особенностью, благоприятной для существования жизни на планете. В отличие от множества других планетных систем, наша образована вокруг одной звезды. С помощью мощных телескопов астрономы обнаружили, что примерно две трети видимых звезд являются двойными, т. е. такими системами, в которых две звезды «танцуют» вокруг друг друга и имеют общий гравитационный центр. Во время формирования таких звезд водород скапливался в двух отдельных точках пространства, образуя два гигантских газовых шара.

Если бы наше газово-пылевое облако закручивалось сильнее, имея больший момент импульса и, как следствие, большую массу в районе Юпитера, Солнечная система тоже сформировалась бы с двойной звездой. Солнце было бы меньше, а Юпитер, вместо того чтобы стать гигантской, насыщенной водородом планетой, вырос бы до размеров небольшой, богатой водородом звезды. Возможно, жизнь процветала бы между двумя звездами. Или вторая звезда послужила бы дополнительным источником энергии, необходимым для поддержания жизни. Однако гравитационная динамика в двухзвездной системе непредсказуема, и могло бы случиться так, что Земля, активно перемещаясь между двумя мощными источниками притяжения, оказалась бы непригодной для жизни планетой с вытянутой орбитой, неустойчивым вращением и бурными колебаниями климата.

Ныне же наши гигантские газовые планеты, с их скромными размерами и почти круговыми орбитами, ведут себя вполне прилично. Масса самой большой из них, Юпитера, в тысячу раз меньше Солнца. Этого достаточно, чтобы оказывать весомое воздействие на соседние планеты; благодаря сильному гравитационному полю Юпитера планетезимали в области пояса астероидов так и не срослись в единую планету. При этом массы Юпитера недостаточно для того, чтобы запустить в собственном ядре процесс ядерного синтеза – факт решающего различия между звездами и планетами. Дальняя, окруженная кольцами, планета Сатурн и еще более удаленные холодные Уран и Нептун обладают гораздо меньшими размерами.

Тем не менее все эти газовые планеты-гиганты оказались достаточно крупными, чтобы притянуть на свои орбиты мелкие осколочные небесные тела, образовав нечто вроде собственных маленьких солнечных систем внутри Солнечной системы. В результате вокруг всех четырех внешних планет образовалась свита чрезвычайно интересных спутников, включая сравнительно небольшие астероиды, удерживаемые на орбите воздействием гравитационного притяжения планет-гигантов.

Другие спутники, в том числе и сопоставимые по размерам с внутренними планетами и подверженные динамичным геологическим процессам, образовались не столько из остатков пыли и газа, сколько из осколков, появившихся в процессе формирования других планет. Наиболее активным небесным телом во всей Солнечной системе является спутник Юпитера Ио, чья орбита настолько близка к газовому гиганту, что полный его оборот вокруг Юпитера занимает всего 41 час. Мощные приливные силы постоянно воздействуют на этот спутник диаметром 3643 км, пробуждая примерно полдюжины вулканов, которые выбрасывают гигантские плюмы высотой в сотни километров – уникальное явление в Солнечной системе. Не меньший интерес представляют Европа и Ганимед, крупные спутники размером примерно с Меркурий, состоящие из воды и горных пород – примерно в равных пропорциях. Оба эти спутника разогреты изнутри под влиянием постоянно действующих приливных сил Юпитера. Почти всю их поверхность составляют покрытые льдом океаны, что зафиксировано исследователями НАСА в процессе поиска возможного существования жизни на других планетах.

Сатурн, следующий в ряду внешних планет, обладает более чем пятью дюжинами спутников, не говоря уже о знаменитых кольцах, большую часть которых составляют сверкающие куски льда. Большинство спутников Сатурна имеет сравнительно небольшие размеры и является либо захваченными астероидами, либо осколками самого Сатурна; однако крупнейший из его спутников – Титан – превышает размерами планету Меркурий и окутан толстым слоем атмосферы оранжевого цвета. Благодаря запущенному ЕКА (Европейское космическое агентство) посадочному модулю «Гюйгенс», который опустился на Титан 14 января 2005 г., мы получили с поверхности спутника снимки крупным планом. Разветвленная сеть рек и потоков питает холодные озера, состоящие из жидких углеводородов; в густой, красочной, турбулентной атмосфере содержится большое количество органических молекул. В общем, на Титане стоит поискать признаки жизни.

Самые удаленные газовые планеты-гиганты Уран и Нептун удерживают большое число не менее интересных спутников. На большинстве из них наблюдаются признаки водяного льда, органических молекул и явные динамические процессы. Атмосфера Тритона, крупного спутника Нептуна, богата азотом. Оба гиганта окружены сложно устроенными системами колец, хотя эти кольца состоят, очевидно, по большей части из комков темного углеродистого вещества, размерами примерно с автомобиль, совсем непохожего на блестящие ледяные кольца Сатурна.


Каменные миры

Ближе к нашей планете гравитационное поле сохраняет свое влияние. Большая часть водорода и гелия после того, как Солнце зажглось, была вытеснена в район внешних планет-гигантов, и на внутренние области Солнечной системы пришлась малая доля массы вещества, в основном состоящего из твердых горных пород, наблюдаемых в составе хондритов и ахондритов. Ближе всего к Солнцу сформировался Меркурий – самая маленькая и безводная из каменных планет. Неприветливый, выжженный мир этой самой внутренней из внутренних планет кажется пустым и безжизненным: миллиарды лет его изрезанная кратерами поверхность под лишенным атмосферы небом сохраняется в одном и том же виде. Если поспорить, на какой из планет Солнечной системы наверняка нет жизни, можно смело ставить на Меркурий.

Венера – следующая по порядку планета, близнец Земли по размеру, но в корне отличная от нее по пригодности для жизни – в основном из-за расположения ее орбиты, примерно на 50 млн километров ближе к Солнцу. В начале ее существования на ней, возможно, имелась вода, даже неглубокий океан, но под воздействием теплового излучения и солнечного ветра вода на Венере почти выкипела, лишив планету влаги. Углекислый газ, преобладающий в атмосфере Венеры, закупорил энергию солнечного излучения и таким образом обеспечил парниковый эффект. Ныне средняя температура на поверхности Венеры достигает почти 500 °C – достаточно, чтобы расплавить свинец.

Марс, ближайший сосед Земли и следующий за ней в ряду внутренних планет, гораздо меньше ее (всего одна десятая от массы Земли), но во многих отношениях похож на нашу планету. Как все твердотельные планеты, Марс имеет металлическое ядро и силикатную мантию. Подобно Земле, у него есть атмосфера и значительный запас воды. Относительно слабая гравитация не позволяет Марсу удерживать молекулы газа в верхних слоях атмосферы, так что за миллиарды лет он потерял большую часть воды и воздуха, но все же сохранил теплые и влажные пространства под поверхностью, где могла в какой-то мере поддерживаться жизнь. Неудивительно, что все планетные изыскания нацелены главным образом на эту красную планету.

Земля, «третий камень от Солнца»[2], находится посредине зоны жизни[3] Солнечной системы. Земля расположена довольно близко к Солнцу и нагрета настолько, что смогла вытолкнуть значительные объемы водорода и гелия во внешние области Солнечной системы, но при этом достаточно удалена от него и настолько охлаждена, что смогла удержать большую часть воды в жидком виде. Как и остальные планеты Солнечной системы, она возникла около 4,5 млрд лет назад, в основном за счет столкновения хондритов и их последующего группирования во все более и более крупные планетезимали – и так на протяжении нескольких миллионов лет.


Глубины времени

Все, что нам известно о том, как возникли Солнце, Земля и вся Солнечная система, укладывается в представление о колоссальном периоде – чуть больше 4,5 млрд лет. Мы, американцы, любим отмечать известные даты в истории человечества. Мы отмечаем даты знаменитых изобретений и открытий, например, испытание моторного летательного аппарата братьями Райт 17 декабря 1903 г. или первый полет человека на Луну 20 июля 1969 г. Мы чтим даты общенародных трагедий и испытаний, например, 7 декабря 1941 г. или 11 сентября 2001 г. Конечно же, не забываем дни рождения: 4 июля 1776 г. и, разумеется, 12 февраля 1809 г. (общий день рождения Чарльза Дарвина и Авраама Линкольна). Мы убеждены в достоверности этих памятных дат, поскольку они зафиксированы как в устной, так и в письменной традиции, связывающей нас с не столь отдаленным собственным прошлым.

У геологов тоже принято вести счет времени: около 12 500 лет назад кончилось последнее великое оледенение и люди начали заселять Северную Америку; 65 млн лет назад вымерли динозавры и многие другие существа; в самом начале кембрийского периода, 530 млн лет назад, внезапно появились разнообразные животные с твердым скелетом; более 4,5 млрд лет назад планета Земля начала обращаться вокруг Солнца. Но откуда мы знаем, что эти датировки достоверны? Не существует ни устных, ни письменных источников старше нескольких тысячелетий, где отмечались бы хронологические данные о развитии Земли.

Четыре с половиной миллиарда лет почти невозможно себе представить. Согласно Гиннессу, мировой рекорд долголетия принадлежит француженке, отметившей 122-й день рождения, так что человек не проживает и 4,5 млрд секунд (примерно 144 года). Вся зафиксированная история человечества насчитывает менее 4,5 млрд минут. И все же геологи утверждают, что Земля кружится вокруг Солнца более 4,5 млрд лет.

Такую седую древность нелегко вообразить, но я все же иногда пытаюсь это сделать в процессе длительных прогулок. Южнее Аннаполиса, штат Мэриленд, на 35 км тянутся внушительные, причудливые каменные утесы, окаймляющие с запада Чесапикский залив. Идя вдоль узкой песчаной полосы между сушей и морем, можно найти большое количество ископаемых остатков двустворчатых моллюсков, спиральных улиток, кораллов и морских ежей. Изредка, если очень-очень повезет, можно наткнуться на 15-сантиметровый зазубренный акулий зуб или вдруг покажется полутораметровый череп кита, имеющий обтекаемую форму. Эти драгоценные реликты повествуют о времени 15 млн лет назад, когда климат здесь был гораздо теплее и ближе к тропическому, как на острове Мауи, и сюда приплывали рожать величественные киты, а чудовищные 20-метровые акулы охотились на их беззащитных детенышей. Их окаменелые остатки встречаются в толще осадочных пород мощностью 300 м, в которой запечатлено более трех миллионов лет истории Земли. Слои песка и мергеля очень плавно погружаются к югу, так что прогулка по взморью подобна путешествию во времени. Каждый шаг в северном направлении постепенно открывает все более древние слои.

Чтобы представить себе масштаб истории Земли, вообразите прогулку в прошлое, с каждым шагом углубляясь на 100 лет назад, т. е. на три поколения в пересчете на человеческий возраст. Полтора километра такой прогулки уведут вас на 175 тыс. лет назад. Конечно, 25 км Чесапикских холмов – серьезный маршрут для дневной прогулки, зато он уведет вас в прошлое более чем на три миллиона лет. Но для более или менее значимой отметки в истории Земли придется совершать этот подвиг в течение многих недель. Двадцать дней по 25 км в день помножьте на количество шагов по сто лет каждый – и вы достигнете отметки 70 млн лет назад – период, предшествовавший гибели динозавров. Пять месяцев таких прогулок уведут вас на 530 млн лет назад, во времена кембрийского «взрыва» – почти одновременного появления несметного числа животных с твердым скелетом. Со скоростью, равной ста годам на каждый шаг, вам понадобится не менее трех лет, чтобы достичь времени зарождения жизни, и почти четыре года, чтобы прийти к истокам истории Земли.

Можем ли мы быть уверенными в этих цифрах? Исследователи собрали большое количество разнообразных данных, которые определенно указывают на невероятную древность Земли – на глубины времени. Самые наглядные свидетельства – геологические процессы, которые приводят к ежегодным отложениям осадков; сосчитав слои, можно сосчитать количество лет. Наиболее впечатляющим примером геологического календаря являются вары – сезонные микрослойки – тонкие перемежающиеся слои светлых и темных отложений, в которых представлены весенние осадки, грубозернистые, и зимние, мелкозернистые. Тщательно документированные пробы из ледниковых озер в Швеции представляют данные о 13 527 годах осадконакопления, когда ежегодно появлялся новый сдвоенный слой. Тонкослоистый сланец Грин-Ривер, который обнажается в крутых склонах великолепных каньонов Вайоминга, представляет собой непрерывный вертикальный разрез, в котором можно насчитать более миллиона годовых слойков. Точно так же скважины, пробуренные на глубину тысяч метров в ледниках Антарктиды и Гренландии, вскрывают отложения, которые образовывались в течение более 800 тыс. лет, год за годом, слой за слоем в результате выпадения снега. Все эти отложения располагаются поверх еще более древних горных пород.

Измерения более медленных геологических процессов позволяют еще глубже проникнуть в историю Земли. Для формирования массивных Гавайских островов потребовались нечастые, но регулярные вулканические извержения, в результате которых лавовые слои накладывались один на другой. Если судить по интенсивности современных извержений, это происходило в течение по меньшей мере десятков миллионов лет. Аппалачи и другие древние, пологие горные массивы приобрели свой современный вид за сотни миллионов лет постепенного выветривания, а едва ощутимые сдвиги тектонических плит, которые перемещают континенты и увеличивают океаны, происходят циклами в сотни миллионов лет каждый.

Не менее убедительные доказательства глубины времен представляют физика и астрономия. Постоянная и уже вычисленная скорость распада радиоактивных изотопов углерода, урана, калия, рубидия и других элементов является исключительно точным инструментом для установления возраста геологических процессов, и часы эти уводят в прошлое на миллиарды лет назад, к моменту формирования Солнечной системы. Если взять миллион атомов радиоактивного изотопа, половина из них распадется за срок, который называется периодом полураспада. Например, из миллиона атомов урана-238 с периодом полураспада 4,468 млрд лет к концу этого периода останется половина. Остальные атомы за это время распадутся, образовав до полумиллиона атомов других элементов, заканчивая устойчивыми атомами свинца-206. Еще через 4,468 млрд лет останется только четверть атомов урана. Так, с помощью радиометрического датирования был установлен возраст древнейших примитивных хондритов – 4,566 млрд лет.

А как насчет бесчисленных миллиардов лет до образования Солнечной системы? Астрофизические измерения перемещения отдаленных галактик указывают на то, что Вселенная гораздо старше 4,5 млрд лет. Все галактики удаляются от нас и друг от друга. Данные доплеровского (красного) смещения подтверждают, что чем дальше от нас расположены галактики, тем выше их скорость удаления. Если прокрутить обратно эту космическую ленту, то все сойдется в одной точке – 13,7 млрд лет назад. Это момент Большого взрыва. Свет от многих удаленных объектов идет к нам через космическое пространство более 13 млрд лет.

Эти данные доказаны со всей неопровержимостью. Любые заявления, что Земля не старше десяти тысяч лет, противоречат однозначным данным всех научных наблюдений. Единственная альтернатива состоит в том, что космос был создан десять тысяч лет назад сразу безмерно старым – именно к такому выводу пришел британский естествоиспытатель Филип Госсе в опубликованном в 1857 г. противоречивом трактате Omphalos[4] (в названии использовано греческое слово, означающее «пуп, пупок», поскольку не имеющий матери Адам был сотворен с пупком, чтобы выглядеть так, словно его родила женщина). Госсе каталогизировал сотни страниц свидетельств невероятной древности Земли, а затем выдвинул гипотезу о том, что Бог создал ее десять тысяч лет назад сразу со всеми признаками древности.

Некоторым может показаться удобной эта креационистская уловка «сотворенной древности» мира, известная как протохронизм. Астрофизикам, которые выдвигают свидетельства того, что звезды и галактики находятся от нас на расстоянии миллиардов световых лет, протохронисты возражают, что Вселенная была создана с уже идущим к Земле от дальних звезд и галактик светом. Горные породы с древним соотношением радиоактивных и дочерних изотопов, утверждают они, были сразу созданы с исходным смешением урана, свинца, калия и аргона, а потому выглядят старше, чем они есть на самом деле. Если вы придерживаетесь таких взглядов, то можете пропустить главу 11, повествующую о возможных сценариях будущего Земли. Если нет, то попробуйте вообразить прошлое на несколько миллиардов лет назад, когда возникла наша планета.

Рождение Земли 4,5 млрд лет назад – это событие, которое бессчетные триллионы раз повторялось в истории Вселенной. Каждая звезда или планета возникает в разреженном, почти вакуумном пространстве из газа и космической пыли – мельчайших частиц материи, невидимых невооруженным глазом, но заметных на расстоянии в полгалактики как огромные облака, из которых рождаются звезды. Миллиарды лет назад гравитация послужила повитухой при рождении Солнечной системы – Солнце стало единственным гигантом среди карликовых планетных тел. Ядерные реакции воспламенили вещество Солнца, которое окружило теплом и светом свои планеты. И наша Земля сделала первые робкие шаги к тому, чтобы стать обитаемым миром.

Какими бы чуждыми ни казались нам эти эпохальные события, мы ежедневно на протяжении всей жизни ощущаем на себе те же космические явления, которые привели к образованию Земли. Наши тела и среда обитания состоят из тех же самых веществ и атомов, которые сформировали Землю. Нас крепко удерживает на планете та же самая сила гравитации, которая скомпоновала звезды и планеты из газа и пыли и выковала химические элементы внутри звезд. Когда игра идет по универсальным законам физики и химии, ничего нет нового под Солнцем.

Горные породы, звезды и сама жизнь преподносят нам одни и те же уроки. Чтобы понять Землю, вы должны отвлечься от весьма незначительного пространственно-временного масштаба человеческой жизни. Мы живем в единственном крошечном мире среди необозримых просторов космоса, вмещающего 100 млрд галактик, каждая из которых состоит из сотен миллиардов звезд. Точно так же, день за днем мы живем в космосе, возраст которого сотни миллиардов дней. Ни смысл, ни путь космоса вы не найдете даже в самом лучшем мгновении или месте, связанном с человеческим существованием. Масштабы космического пространства и времени непостижимо велики. Поскольку появление Вселенной неизбежно вследствие непреложных универсальных законов космоса, которые дают нам надежду познать Вселенную, используя научный метод, такой космос, несомненно, исполнен смысла.



Глава 2
Мощный удар

Образование Луны

Возраст Земли: от 0 до 50 млн лет

Основной принцип, которого я придерживаюсь в этой книге, заключается в том, что планеты развиваются: они меняются с течением времени. Более того, каждая ступень эволюции зависит от предыдущего ряда ступеней. Чаще всего изменения происходят постепенно, в течение миллионов, а то и миллиардов лет, шаг за шагом преобразуя планету, но могут произойти и мгновенные, резкие и необратимые события, которые изменят ее навсегда. Так и произошло с Землей. Наша планета образовалась сравнительно быстро из бесчисленных частиц и звездного мусора, по некоторым оценкам, на это понадобилось не больше миллиона лет. К концу этого процесса довольно близко от Протоземли располагались несколько дюжин планетезималей, сотни километров в диаметре каждая. На протяжении примерно сотен тысяч лет, пока Земля достигала своего нынешнего размера, последние стадии этого процесса сопровождались столкновениями невообразимой силы. Каждые несколько тысяч лет одна мини-планета за другой врезались в Землю и поглощались ею.

В эти беспокойные времена Земля представляла собой горячую, почерневшую сферу, покрытую красными, раскаленными трещинами, фонтанами вулканической магмы и следами беспрерывных падений метеоритов. Каждый из таких гигантских налетчиков врезался в сферу, дробя в пыль камни, выбрасывая их на орбиту и превращая поверхность планеты в расплавленную, огненно-красную жижу. Однако в космосе царит холод, и лишенная атмосферы поверхность Земли после каждого такого метеоритного удара очень быстро охлаждалась и снова чернела.


Странная Луна

История формирования Земли выглядит довольно гладко, за исключением одной поразительной детали: Луны. Ее нельзя было не заметить, и на протяжении последних двух столетий постепенно становилось очевидным, что ее свойства невероятно трудно объяснить. Спутники поменьше понятны. Фобос и Деймос, два неправильной формы каменных массива размером с город на орбите Марса, по-видимому, являются притянутыми гравитацией астероидами. Дюжины спутников вокруг Юпитера, Сатурна, Урана и Нептуна, хотя и покрупнее, все же выглядят крохотными по сравнению с планетами-хозяевами – их масса в тысячи раз меньше массы планет, вокруг которых они обращаются. Крупнейшие из них образованы из невостребованных остатков пыли и газа в процессе формирования планет Солнечной системы и обращаются вокруг газовых гигантов, словно планеты в миниатюрных планетных системах. В отличие от них, Луна сопоставима по размерам с Землей, вокруг которой она движется: ее диаметр составляет более четверти земного, а масса всего в 80 раз меньше массы Земли. Как же возникла такая аномалия?

Историческая наука, особенно история Земли и планет, основана на вдохновенном повествовании (возможно, отчасти соответствующем фактам). Если существует сразу несколько историй, основанных на наблюдениях, геологи применяют осторожную формулу, известную как «многовариантная рабочая гипотеза» – эта стратегия знакома всем любителям детективных романов.

Еще до знаменитой посадки «Аполлона» на Луну, начиная с 1969 г., когда был открыт состав древних горных пород Луны[5] и стало возможным геофизическое исследование ее внутренних областей, в деле увесистой Луны фигурировали три главных подозреваемых. Первой, получившей широкую поддержку, гипотезой стала идея разделения, выдвинутая в 1878 г. Джорджем Говардом Дарвином (гораздо менее известным, чем его знаменитый отец Чарльз Дарвин). Согласно модели Джорджа Дарвина, расплавленная Земля первоначально вращалась вокруг своей оси с такой скоростью, что она вытягивалась и удлинялась до тех пор, пока с ее поверхности не сорвался сгусток магмы и стал вращаться по собственной орбите вокруг материнской планеты (при этом гравитационная сила Солнца почти не оказала на него воздействия). По данной теории Луна – это росток, отпочковавшийся от Земли. В одном из вариантов этого драматичного вымысла предполагается, что впадина Тихого океана – это шрам, полученный при родах спутника.

С этой моделью соперничала другая, основанная на теории захвата, согласно которой Луна представляла собой независимую планетезималь, возникшую в окрестностях Земли в процессе формирования Солнечной системы. В какой-то момент два небесных тела проходили так близко друг от друга, что более массивная Земля захватила Луну, сместила ее с независимой орбиты и постепенно привязала к себе. Такое проявление гравитационной энергии успешно притянуло каменистые спутники Марса – почему бы не предположить нечто подобное в отношении Земли?

В третьей гипотезе, основанной на теории совместного формирования, была выдвинута идея о том, что Луна сформировалась примерно в ее нынешнем положении на орбите из большой тучи обломков, оставшихся не востребованными на орбите Земли. Идея выглядит вполне правдоподобно, воспроизводя сценарий образования планет вокруг Солнца или спутников вокруг газовых планет-гигантов. Такие процессы регулярно повторялись в Солнечной системе: небольшие объекты образовывались из туч пыли, газа и камней вокруг более крупных небесных тел.

Целых три гипотезы – которая из них верна? Пытливым умам пришлось дожидаться данных анализа лунного грунта – более четырех центнеров образцов с шести посадочных площадок «Аполлонов».


Посадка на Луну

Полеты на Луну по программе «Аполлон» значительно обогатили науку о планетах. Они, безусловно, стали образцом американской доблести и продемонстрировали технологическую мощь страны. И, конечно же, они оказались колоссальным подспорьем военно-промышленному комплексу. Кроме того, они послужили толчком для множества открытий и изобретений, от мини-компьютеров до полимеров и напитка Tang, обеспечив такой рост экономики, который в разы окупил 20 млрд долларов, потраченных на полеты «Аполлонов». Неудивительно, что эти опасные и дорогостоящие экспедиции стимулировались в основном не интересами научного изучения Луны, а национальной гордостью и борьбой за первенство. Тем не менее трудно переоценить вклад полетов «Аполлонов» с их бесценной добычей лунных пород в развитие геологии и геофизики. На протяжении всей истории человечества Луна находилась совсем близко от Земли – на расстоянии менее 400 тыс. км. Когда при ясном закате в небе начинает краснеть полная Луна, кажется, протяни руку – и ты дотронешься до нее. Но образцов грунта у нас не было, и невозможно было судить, из чего состоит Луна, когда и где она образовалась. Благодаря первой партии образцов лунных пород мы впервые в истории в буквальном смысле слова прикоснулись к Луне (сегодня любой посетитель Смитсоновского музея может сделать то же самое).

Я в буквальном смысле слова впервые вдохнул запах лунных образцов зимой 1969–1970 гг., когда учился на старших курсах в MIT (Массачусетском технологическом институте), примерно через полгода после исторического полета «Аполлона-11». Образцы были получены 24 июля 1969 г., когда люди впервые ступили на поверхность Луны и вернулись обратно на Землю. В ту начальную эпоху освоения Луны из-за опасения занести инопланетные микроорганизмы космонавты и образцы лунных пород были подвергнуты строжайшему карантину. Вскоре после того, как их модуль опустился в Тихом океане вблизи Гавайев, Нил Армстронг, Базз Олдрин и Майк Коллинз с бесценным грузом, состоявшим из 21 кг лунных горных пород и грунта, поднялись на борт американского военного корабля Hornet и вместе со всей коллекцией были размещены в герметичной передвижной карантинной установке НАСА. С Гавайских островов их доставили в Хьюстон в специально созданную Лунную приемную лабораторию, где космонавты и их бесценные образцы содержались почти три недели на тот случай, если они действительно подхватили на Луне какое-нибудь опасное заболевание.

В течение последующих трех лет полеты по программе «Аполлон» совершались один за другим. Лунный модуль «Аполлона-12» под названием Intrepid («Неустрашимый») с космонавтами Чарльзом Конрадом-младшим и Аланом Бином опустился на Луну 19 ноября 1969 г. и неделю спустя вернулся на Землю с 32 кг образцов горных пород и грунта; космонавты вместе с грузом были помещены в Хьюстонскую карантинную установку. По счастливой случайности, мой научный руководитель, умнейший и энергичнейший Дэвид Воунз стал членом научно-исследовательской группы по предварительному изучению лунных образцов с «Аполлона-12». Этот небольшой коллектив ученых получил уникальную возможность тщательно исследовать вторую партию лунных образцов с помощью самых передовых технологий. Специальностью Дейва была петрология магматических пород – изучение происхождения горных пород, образовавшихся из магмы. Все образцы, доставленные «Аполлоном-11» и «Аполлоном-12», оказались вулканического происхождения, так что Дейв пребывал на седьмом геологическом небе.

В некоторых отношениях работа оказалась отнюдь не легкой: они, по существу, находились в заключении, и над ними довлела необходимость получить достоверные данные о едва ли не самых дорогостоящих и значимых образцах, когда-либо собранных. С другой стороны, их невероятно воодушевляло то, что они оказались среди первых представителей человечества, работающих с образцами горных пород и грунтом инопланетного происхождения – космической материей, которая наконец объяснит нам происхождение Луны.

Мое первое знакомство с Луной произошло, когда Дейв вернулся в MIT. Помню, как открылись двери лифта на 12-м этаже Зеленого корпуса. И вот появился Дейв, невысокий очкарик в сопровождении двух здоровенных, вооруженных охранников в форме агентов ФБР. Они, конечно, охраняли не столько Дейва, сколько лунные образцы, которые на тот момент могли стоить миллионы долларов на рынке коллекционеров. Учет велся до миллиграмма. Дейв выглядел усталым и напряженным: он долгое время провел в командировке, находился под постоянным наблюдением, и работа была далека от завершения.

Когда речь заходит о лунных образцах, большинство представляет их себе как нечто увесистое, вроде камней, что можно подержать в руках. Но большая часть материала, доставленного «Аполлонами», состояла из лунного грунта, реголита. Мелкозернистые частицы реголита являются рыхлой породой, раскрошившейся на такие мелкие фрагменты, что их трудно разглядеть даже под микроскопом – следствие космических атак: от ударов увесистых метеоритов до непрерывного воздействия солнечного ветра. Эта сверхмелкая пудра обладает необычными свойствами, например, липнет ко всему, к чему прикоснется, как красящий порошок для ксерокса. Дейву предстояло пересыпать часть этой пудры из флакона размером с небольшой стакан в три-четыре баночки размером примерно с пальчиковую батарейку, чтобы распределить по соседним лабораториям.

Вроде бы задача нетрудная. Высыпьте порошок из флакона на листок гладкой бумаги. Осторожно пересыпьте ложечкой небольшие порции порошка в маленькие баночки. Дейв сотни раз проделывал такие операции, и это не должно было занять больше минуты. Но здесь слишком велика была ответственность. По бокам его стояли два угрюмых охранника, да в придачу кучка любознательных студентов. И вот, когда Дейв наклонил флакон, рука у него слегка дрогнула. Порошок прилип к стенкам и не высыпался. Дейв постучал по флакону указательным пальцем. Ничего. Снова постучал. И вдруг вся эта драгоценная лунная пыль (на самом деле всего лишь небольшая кучка размером с шоколадный трюфель, но в тех обстоятельствах она показалась огромной) высыпалась сразу – пуфф! Пыль разлетелась, налипла Дейву на пальцы и просыпалась через край бумаги на стол. По-моему, все мы вдохнули вместе с воздухом распыленные частички. Никто не произнес ни слова.

Ничего катастрофического не произошло, пыль сохранилась почти полностью, в конце концов, благополучно перекочевала в баночки, и федеральные агенты удалились, чтобы доставить их в соответствующие лаборатории. В общем, это было забавно. Пару дней спустя мы аккуратно заключили в рамку восьмисантиметровый квадратный кусок бумаги с отчетливым отпечатком Дейвова пальца в лунной пыли и повесили «картину» над лабораторным столом, на котором все это приключилось.


Вслед за первой последовали другие посадки «Аполлонов» на Луну. Самым грандиозным оказался в декабре 1972 г. полет «Аполлона-17», доставившего более 110 кг образцов из долины Таурус-Литтров, предполагаемой области вулканической деятельности. Это был последний полет; в последующие четыре десятилетия никто не высаживался на поверхность Луны. Как бы то ни было, образцы лунного грунта, тщательно сохраняемые в стерильных хранилищах Дома лунных образцов в Космическом центре НАСА в Хьюстоне (для надежности на базе ВВС в Сан-Антонио, штат Техас, хранится запасная коллекция), продолжают привлекать пристальное внимание ученых и предоставляют им богатый материал для исследований.

Несколько лет спустя после завершающей миссии «Аполлона» именно эти образцы послужили отправной точкой моего послужного списка, когда я получил свою первую должность в качестве исследователя-стажера в Геофизической лаборатории Института Карнеги. В мои задачи входило исследование различных видов «лунных частиц» с «Аполлона-12», «Аполлона-17» и «Луны-20» (одной из трех советских автоматических межпланетных станций, доставившей 55 г лунного грунта). Лунная пыль состояла главным образом из частиц размером с шарики или песчинки, и я должен был просматривать тысячи этих частиц, одну за другой. Я проводил целые часы за микроскопом, всматриваясь в эти изумительные зеленые и красные кристаллики и крошечные золотистые шарики, похожие на цветное стекло, – осколки разрушенных взрывом горных пород, которые на протяжении миллиардов лет подвергались метеоритному обстрелу.

Отобрав несколько дюжин перспективных крупинок, я подвергал каждую необычную частицу трем видам анализа. Вначале я использовал монокристаллическую рентгеновскую дифракцию, чтобы определить, с каким типом кристаллов я имею дело. Чаще всего мне попадались обычные разновидности оливина, пироксена и шпинели. Если мне встречался интересный кристалл, я тщательно ориентировал его грань и измерял спектр оптического поглощения (способность кристалла поглощать световые волны различной длины). Например, зеленые кристаллы оливина обычно поглощают волны красной области спектра; красные кристаллы шпинели, напротив, больше поглощают волны зеленого цвета. Я также измерял спектр необычных стеклянных частиц, прослеживая выбросы и колебания оптического спектра, которые указывали на присутствие редких элементов – например, хрома или титана. Небольшой скачок в 625 нм, еле заметное поглощение в оранжево-красной части спектра, характерное для лунного хрома, но не для хрома, который встречается на Земле, становилось памятным открытием.

По завершении рентгеновской и оптической обработки я брался за фантастический прибор под названием электронный микрозонд, чтобы определить точное соотношение элементов в моих образцах. Раз за разом я подтверждал то, что уже отмечалось до меня: минералы с поверхности Луны, в целом подобные аналогичным веществам на Земле, в деталях существенно отличаются от них. Например, в них содержится гораздо больше титана; различны они и по содержанию хрома.

Эти и ряд других данных, полученных при исследовании образцов, существенно ограничили круг теорий происхождения Луны. Прежде всего обнаружилось, что Луна значительно отличается от Земли, в частности, гораздо меньшей плотностью; она не обладает твердым, плотным железо-никелевым ядром. Ядро Земли составляет почти треть массы планеты, в то время как ядро Луны едва достигает 3 % от ее массы. Во-вторых, в лунных породах практически не встречается летучих элементов – тех, что испаряются в момент нагревания. В лунной пыли отсутствуют такие распространенные на Земле элементы, как азот, сера и водород. Их отсутствие означает, что в отличие от Земли, покрытой жидкой водой и изобилующей такими насыщенными водой веществами, как глина или слюда, среди минералов, доставленных с Луны «Аполлонами», не обнаружено веществ, содержащих воду. По каким-то причинам поверхность Луны подверглась взрыву или спеканию, что уничтожило летучие элементы, в результате чего Луна отличается крайней сухостью.

Третьим важнейшим фактором, обнаруженным в результате полетов «Аполлонов», стал кислород, точнее, распределение его изотопов. Каждый химический элемент определяется числом положительно заряженных протонов в его ядре. Это число всегда уникально: например, кислород известен как «атом с восемью протонами». Кроме того, атомные ядра содержат другой вид элементарных частиц – не несущие электрического заряда нейтроны. Более 99,7 % всех атомов кислорода во Вселенной имеют в составе ядра восемь нейтронов (вместе с восемью нейтронами они составляют изотоп, известный как кислород-16), а более редкие изотопы с девятью или десятью нейтронами (кислород-17 и кислород-18) исчисляются долями процента.

Кислород-16, кислород-17 и кислород-18 практически одинаковы по химическим свойствам (можно дышать любым, не ощущая никакой разницы), но отличаются по массе. Кислород-18 тяжелее кислорода-16. Соответственно при переходе кислородосодержащих соединений в другое состояние, например из твердого в жидкое или из жидкого в газообразное, менее массивный кислород-16 может удаляться гораздо быстрее. В период бурного рождения Солнечной системы такие переходы из одного состояния в другое совершались сплошь и рядом, что привело к изменению количества изотопов кислорода. Выяснилось, что соотношение кислорода-16 и кислорода-18 отличается на разных планетах и зависит от удаленности планеты от Солнца в момент ее формирования. Образцы лунного грунта показали, что пропорции изотопов кислорода на Луне и на Земле практически одинаковы. Иными словами, Луна и Земля в момент формирования находились почти на одном расстоянии от Солнца.

Как же сказались все эти открытия на трех соперничающих гипотезах о происхождении Луны? С самого начала под большим сомнением находилась теория совместного образования Земли и Луны из одного протопланетного сгустка, или совместной аккреции. Если бы Луна образовалась из остатков земного вещества, тогда их строение было бы примерно одинаково. Конечно, Луна схожа с Землей в том, что касается изотопов кислорода, но теория совместного формирования не в состоянии объяснить фундаментальные различия в содержании железа и летучих веществ. В целом состав лунного вещества значительно отличается от земного.

Различие в составе вещества ставит неразрешимые проблемы и перед гипотезой захвата. Теоретические модели движения планет предполагают, что захваченная планетезималь должна была сформироваться примерно на том же расстоянии от Солнца, что и Земля, а значит, совпадать с ней по составу. Луна не совпадает. Конечно, небесное тело размером с Луну могло образоваться и в другой части газово-пылевого облака и уже потом приблизиться к земной орбите, но компьютерное моделирование орбитальной динамики подсказывает, что в этом случае Луна должна была обладать высокой скоростью относительно Земли, а значит, и сценарий захвата тоже не выдерживает критики.

Остается Джордж Говард Дарвин и его теория разделения. Она успешно объясняет как сходство в соотношении изотопов кислорода (Земля и Луна являются единой системой), так и различие в содержании железа (ядро Земли к тому моменту уже сформировалось; сгусток вещества, образовавший Луну, представлял собой часть уже расслоившейся, бедной железом мантии Земли). Она прекрасно согласуется с тем, что Луна постоянно повернута к Земле одной стороной: вращения Луны вокруг Земли и вокруг собственной оси синхронны и совпадают по направлению движения. Однако при этом остается нерешенной важная проблема: куда же исчезли летучие элементы, отсутствующие на Луне?

Против теории разделения свидетельствуют и общие законы физики. Примерно ко времени программы «Аполлон» компьютерное моделирование формирования планет достигло такого уровня, что позволило теоретикам с уверенностью исследовать динамику быстрого вращения жидких сфероидов, равных по размеру Земле. Коротко говоря, разделение не может произойти. Гравитационная сила Земли слишком велика, чтобы позволить сгустку расплавленной породы оторваться и выйти на собственную орбиту. По существу, расплавленная Земля должна была бы вращаться вокруг собственной оси с невероятной скоростью, совершая полный оборот примерно за час, чтобы от нее оторвался равный Луне сгусток. Система Земля – Луна просто не обладает для этого достаточным моментом импульса.

Подведем итог: ни одна из трех господствующих теорий образования Луны не соответствует данным, полученным в результате полетов «Аполлона». Требуется иное объяснение.


Свидетельские показания лунного грунта

У хорошего планетолога всегда есть в запасе новая теория. Данные наблюдений, полученные по программе «Аполлон», опровергли все три распространенные до 1969 г. теории образования Луны, однако ученым не понадобилось много времени, чтобы выступить с новой гипотезой на основании неопровержимых фактов. Новые данные о строении Луны свидетельствовали по крайней мере об одном: Луна более или менее похожа на Землю. Она совпадает с Землей по соотношению изотопов кислорода и по наличию большинства имеющихся на Земле элементов, но есть резкое расхождение в количестве железа и летучих веществ. Эти данные следовало привести в соответствие с орбитальными характеристиками, тысячи лет известными науке: Луна вращается вокруг Земли в той же плоскости и в том же направлении, что и другие планеты Солнечной системы. Земля имеет небольшой угол наклона оси примерно 23° (что вызывает смену времен года). Луна всегда повернута к нам одной стороной.

Ранние теории образования Луны не уделяли достаточного внимания механике движения планет, не входящих в систему Земля – Луна, в том числе и поразительным исключениям в общем порядке Солнечной системы. Начать с того, что Венера вращается вокруг оси в направлении, противоположном вращению всех остальных планет. Это может показаться не столь существенным, но Венера совпадает по размерам с Землей, а вращается – не так! Еще более странная картина с Ураном, третьей по величине планетой, ось вращения которой повернута таким образом, что планета как бы «лежит на боку» относительно плоскости вращения, так что кажется, будто она катится по орбите вокруг Солнца. Наблюдаются странности и у спутников других планет. Тритон, крупнейший из спутников Нептуна, по размерам сравнимый с Луной, вращается под острым углом по отношению к орбите планеты и в направлении, противоположном всем остальным телам Солнечной системы.

Традиционная наука отличается одной особенностью, которая может обескураживать тех, кто не знаком с правилами игры. С одной стороны, мы выстраиваем строгие теории, обобщая огромное количество разрозненных фактов. Например, все планеты и спутники вращаются вокруг Солнца в одном направлении и в одной плоскости, что указывает на их общее происхождение из одного газово-пылевого облака. Но затем мы обнаруживаем исключения из общего правила – и отбрасываем их как странные аномалии. Венера вращается в противоположном направлении? Тритон вращается в ином направлении? Не беда. Эти отклонения случайны по отношению к общей модели.

Подобным образом обстоит дело во многих научных областях, например в дискуссии о глобальном потеплении. Многие ученые утверждают, что изменения в атмосфере приведут к повышению средней температуры на планете на несколько градусов. Но подобные изменения могут вызвать сильнейшие ураганы в южной части США. Глобальное потепление может изменить океанские течения, например Гольфстрим, что, в свою очередь, сделает северную Европу намного холоднее, превратив ее в «холодильник» вроде Сибири. Такие противоречия вдохновляют противников теории глобального потепления. Ученые заявляют: «Происходит глобальное потепление, а у нас только что разразился сильнейший в истории снегопад». Что на это ответить? По здравом размышлении можно сказать, что природа удивительно разнообразна и отличается богатством, сложностью, многообразием взаимосвязей и длинной, запутанной историей. Любые отклонения, будь то орбиты движения планет или климат Северной Америки, нельзя рассматривать как неудобные мелочи: именно они важны для понимания того, что происходит на самом деле, как устроен мир. Мы выстраиваем грандиозные модели природных процессов, а затем используем странности и противоречия для уточнения несовершенной теории (если же исключения превосходят правило, мы создаем новую теорию). Вот почему настоящие ученые обожают всякие отклонения от правил. Если бы мы понимали все на свете и могли бы предсказать что угодно, не было бы смысла вставать по утрам и спешить в лаборатории.

Вернемся к происхождению Луны: именно отклонения от стандартных закономерностей, т. е. мелкие орбитальные аномалии, в середине 1970-х гг. привели к идее «Большого всплеска», или «Мощного удара». Вначале последовала серия взаимосвязанных, но слабо доказанных гипотез, которые затем объединились в коллективно выработанное представление, оформленное на знаменитой Гавайской конференции 1984 г., где собрались ведущие планетологи и сопоставили свои теоретические соображения. При таком стечении крупнейших умов возобладал принцип «бритвы Оккама»: наиболее правильным может быть простейшее решение проблемы, если оно согласуется с фактами. Теория «Мощного удара» вполне подходила.

Чтобы оценить эту революционную идею, надо вернуться на 4,5 млрд лет вспять, во времена, когда планеты только что образовались из планетезималей. На пути к нынешнему диаметру 12 742 км Земля, сталкиваясь с ближайшими небесными телами, поглотила большинство из них. Предпоследние столкновения с объектами диаметром сотни километров, должно быть, представляли собой эффектное зрелище, но практически не влияли на состояние Земли – гораздо более массивной протопланеты.

Но толчок толчку рознь. Одно достопамятное событие стоит особняком в истории Земли. Около 4,5 млрд лет назад, когда Солнечная система насчитывала около 50 млн лет от роду, почерневшая Протоземля оказалась в тесном соседстве с соперницей, лишь слегка уступавшей ей по размерам. Соперница (ее назвали Тейя, по имени богини, породившей Луну) вполне заслуживала статуса планеты, поскольку была, по-видимому, в два-три раза больше Марса и составляла приблизительно треть массы Земли. Закон астрофизики гласит, что две планеты не могут существовать вместе на одной орбите. В какой-то момент они неминуемо столкнутся, и побеждает всегда планета большего размера. Так и произошло при столкновении Земли с Тейей.

Исследователи использовали наглядное компьютерное моделирование, пытаясь представить, что могло произойти. Столкновение предопределено законами физики, поэтому можно было испробовать тысячи различных моделей с всевозможными исходными условиями, чтобы выяснить, может ли таким образом сформироваться спутник. Ответ тесно связан с исходными параметрами: массой и строением Протоземли, массой и строением Тейи, сравнительными скоростями их движения, углом и местом столкновения. Большинство комбинаций не срабатывает – Луна не образуется. Но несколько моделей оказываются поразительно удачными и порождают систему типа Земля – Луна, подобную той, что имеется в действительности.

Одна такая комбинация демонстрирует ситуацию удара по касательной – крупная Тейя слегка накреняет еще более крупную Землю. Ситуация прокручивается в замедленном режиме, через взгляд из космоса. Момент контакта двух небесных тел вначале выглядит как легкий поцелуй. Затем через четыре-пять минут Тейя шлепается на Землю, как круглый комок мягкого теста на пол, без каких-либо видимых последствий для Земли. Десять минут спустя Тейя постепенно сплющивается, а Земля начинает терять округлую форму. Примерно через полчаса после столкновения Тейя просто исчезает, а Земля приобретает асимметричные очертания. Раскаленная порода испаряется и выбрасывается светящимися потоками из зияющей раны, затмевая картину деформации небесных тел.

Другой часто упоминаемый сценарий, предложенный в 1970-е гг. и усовершенствованный в течение двух последующих десятилетий, был разработан теоретиком Аластером Камероном в Гарвард-Смитсоновском научно-исследовательском центре астрофизики. Согласно его увлекательной теории, масса Тейи составляла примерно 40 % массы Протоземли. Произошло боковое столкновение, но, по версии Камерона, Тейя, ударившись о Землю, отскочила растянутой каплей, а затем вновь была притянута гравитацией, получив coup de gr^ace – завершающий смертельный удар, после которого исчезла навсегда.

В обоих сценариях катастрофическое столкновение уничтожает Тейю, которая превращается в гигантское раскаленное облако, температура которого составляет десятки тысяч градусов, и это облако вращается вокруг Земли. При этом сама Тейя тоже наносит Земле определенный ущерб. Порядочный кусок земной коры и мантии расплавляется и выбрасывается взрывом, смешиваясь на орбите с раскаленным облаком, оставшимся от Тейи. Некоторое количество вещества исчезает в глубоком космосе, но большая часть остатков вращается вокруг Земли, захваченная силой гравитации. В этом облаке металлы из ядер обеих планет смешиваются, охлаждаются до жидкой консистенции и погружаются в Землю, формируя новое, более крупное ядро. Вещества из мантий тоже смешиваются, образуя шарообразное облако из испарившихся минералов. Несколько дней или недель на Землю обрушивается нескончаемый дождь из раскаленных силикатных капель, падающих в безбрежный океан магмы. В итоге Земля захватила значительную часть того, что было Тейей, и стала более массивной.

Но отнюдь не вся Тейя была поглощена. Земля оказалась в окружении огромного количества расплавленных обломков горных пород, в основном из мантий обеих протопланет. Остывая, эти раскаленные капли вещества спекались, причем более мелкие частицы поглощались более крупными. Подобно когда-то образовавшимся планетам, под воздействием гравитационных сил быстро формировалась Луна, по-видимому, достигшая своего нынешнего размера всего за несколько лет.

Согласно физическим законам формирования планет, в общем, понятно, где должна была образоваться Луна. Всякое массивное тело имеет невидимую, окружающую его сферу, называемую пределом Роша, внутри которой силы тяготения настолько велики, что спутник там образоваться не может. Именно поэтому вокруг Сатурна имеются гигантские кольца, но нет никаких спутников на расстоянии ближе 80 000 км от его поверхности. Силы притяжения Сатурна препятствуют образованию спутников из ледяных частиц, составляющих его кольца.

Если исчислять предел Роша от центра вращающегося объекта, для Земли он составляет примерно 18 000 км, или 11 600 км – от ее поверхности. Соответственно модели образования Луны помещают точку формирования спутника на допустимое расстояние от 24 000 км и далее, где обломки гигантского столкновения могут объединяться друг с другом, не рискуя быть разорванными гравитацией. Таким образом, согласно большинству теорий, Луна образовалась примерно 4,5 млрд лет назад. Земля обрела спутник, сформированный по большей части из ее собственных обломков.

Ученые охотно восприняли теорию гигантского столкновения, поскольку она объясняет большинство загадок лучше других моделей. В ядре Луны практически нет железа, поскольку большая часть железа Тейи была поглощена Землей. На Луне нет летучих веществ, поскольку летучие вещества Тейи были сметены взрывом в момент столкновения. Луна всегда обращена к Земле одной стороной, поскольку моменты импульса Земли и Тейи объединились в одной орбитальной системе.

Теория гигантского столкновения также объясняет аномальный наклон земной оси на 23° – фактор, не объясненный ни одной из предыдущих теорий. От удара Тейи Земля буквально завалилась на один бок. Вообще теория образования Луны в результате гигантского столкновения породила множество идей относительно других аномалий Солнечной системы. Возможно, такие столкновения происходят часто и даже закономерно. Возможно, этим объясняется «неправильное» вращение Венеры вокруг собственной оси, а также потеря ею такого количества воды. Возможно, и боковое вращение Урана тоже вызвано сравнительно недавним гигантским столкновением подобного рода.


Другое небо

Образование Луны сыграло решающую роль в истории Земли, и последствия этого события поистине удивительны, хотя только в последнее время стали привлекать внимание науки. Четыре с половиной миллиарда лет назад Луна сильно отличалась от того романтичного серебристого диска, который мы наблюдаем сегодня. В те времена она являлась огромной, грозной и невообразимо опасной силой для околоземного пространства.

Все это связано с одним удивительным обстоятельством: Луна образовалась в каких-нибудь 24 000 км от поверхности Земли, т. е. на расстоянии полета от Вашингтона до Мельбурна, ныне же Луна располагается примерно в 382 000 км от нашей планеты. На первый взгляд, представляется невероятным, что гигантская Луна просто дрейфует в пространстве, удаляясь от Земли, но измерения не лгут. Астронавты с «Аполлона» установили зеркальные отражатели на поверхности Луны. Лазерные лучи с Земли, отражаясь в зеркалах, возвращаются на Землю, позволяя замерить расстояние с точностью до миллиметров. Год за годом, начиная с 1970-х, Луна неизменно отдаляется: в среднем примерно на 3,82 см в год. Вроде бы мелочь, но если помножить это расстояние на время, то с учетом нынешней скорости получается, что она удаляется от Земли примерно на 1,5 км в 40 000 лет. «Открутив запись назад», мы можем вычислить, на каком расстоянии от Земли она находилась 4,5 млрд лет назад.

Во-первых, Луна тогда выглядела совершенно иначе. На расстоянии 24 тыс. км Луна, диаметром 3,5 тыс. км, смотрелась настоящим гигантом, подобного которому мы не наблюдаем в наше время. Ее величина на небосводе составляла почти 8° – примерно в 16 раз больше видимого размера Солнца, а лунный диск закрывал на небе в 250 раз большую площадь.

Но и это еще не все. В то время Луна отличалась неистовой вулканической активностью и ничем не напоминала мирный серебристо-мерцающий объект, который мы созерцаем сегодня. С Земли можно было бы отчетливо наблюдать, как на ее черной поверхности полыхали кратеры вулканов и трещины, наполненные раскаленной магмой. Новорожденная полная Луна смотрелась бы впечатляюще, ее поверхность отражала в сотни раз больше солнечного света, чем сейчас. При свете той Луны можно было бы спокойно читать книгу, но это же обстоятельство помешало бы астрономическим наблюдениям. Ее ослепительное сияние полностью затмевало бы звезды и планеты.

Усиливала впечатление и та скорость, с которой двигались вновь образованные тела. В космическом пространстве ничто не препятствует движению, поэтому вращение небесных тел может продолжаться миллиарды лет. Взаимосвязанные объекты вроде Луны с Землей обладают моментом импульса, величина которого зависит от двух круговых движений. Во-первых, это вращение Земли вокруг своей оси; чем быстрее это вращение, тем больше момент. А момент импульса Луны зависит прежде всего от расстояния и скорости ее обращения вокруг Земли. Вращение вокруг собственной оси особого значения не имеет.

Совокупный момент импульса системы Земля – Луна претерпел мало изменений за последние несколько миллиардов лет, но соотношение их движений изменилось существенно. В настоящее время момент системы Земля – Луна связан преимущественно с обращением Луны вокруг Земли, с учетом расстояния 382 тыс. км и орбитального периода 27 суток. Массивная Земля, расположенная в центре этой системы, совершая неторопливый 24-часовой поворот вокруг своей оси, составляет незначительную часть момента импульса Луны. (Аналогично в орбитальном движении отдаленных газовых планет-гигантов сосредоточен почти весь момент импульса Солнечной системы, хотя в Солнце сосредоточено 99,9 % всей массы системы.)

Однако 4,5 млрд лет назад дело обстояло иначе. Поскольку Луна находилась всего в 24 000 км от Земли, все вращалось с головокружительной скоростью, подобно фигуристке, которая обхватывает себя руками, чтобы увеличить скорость вращения. Начать с того, что Земля совершала оборот вокруг своей оси всего за пять часов. Оборот вокруг Солнца и тогда составлял целый год (примерно 8766 часов); этот период не изменился за всю историю существования Солнечной системы. Но сам год вмещал более 1750 коротких дней, поскольку Солнце всходило и заходило каждые пять часов!

Такое предположение выглядит по меньшей мере странным и вряд ли доказуемым, но некоторые данные измерений подтверждают теорию короткого дня в древнейшем периоде истории Земли. Самым интригующим доказательством являются коралловые рифы. На некоторых видах кораллов отчетливо видны линии роста, которые отражают небольшой дневной прирост и хорошо выраженный годичный цикл. У современных кораллов наблюдаются 365 ежедневных линий за каждый год прироста. Однако у древних ископаемых кораллов девонского периода, т. е. росших примерно 400 млн лет назад, наблюдается более 400 линий ежедневного прироста за год, что указывает на более короткий суточный цикл планеты. В то время сутки длились примерно 22 часа, а Луна, по-видимому, располагалась на 16000 км ближе к Земле, чем теперь.

Другим дополнительным свидетельством являются «приливные ритмиты» – тонкослоистые осадочные породы, в которых запечатлены ритмы приливных волн, включая дневные, месячные и годичные циклы приливов. Микроскопические исследования приливных ритмитов возрастом 900 млн лет в каньоне Биг-Коттонвуд в штате Юта указывают на то, что в то время земные сутки равнялись 18,9 часа, а год состоял из 464 дней – 464 закатов и восходов. Расчетное расстояние между Землей и Луной в то время составляло 350 000 км, что подразумевает скорость удаления примерно равную сегодняшней – 3,91 см в год.


Безумный мир

Пока нет данных о приливных циклах Земли древнее миллиарда лет назад, но можно с уверенностью утверждать, что 4,5 млрд лет назад все было гораздо более стремительным и «необузданным». Тогда не только сутки на Земле составляли пять часов, но и находящаяся в непосредственной близости Луна обращалась по орбите вокруг Земли гораздо быстрее. Чтобы обернуться вокруг Земли, Луне требовалось всего 84 часа – 3,5 сегодняшних суток. С такими скоростями вращения Земли и Луны привычный лунный цикл, состоящий из новолуния, убывающей Луны, полнолуния и ущербной Луны, совершался с фантастической быстротой: на каждую новую фазу приходилось несколько пятичасовых суток.

Это сопровождалось множеством последствий, как благоприятных, так и не очень. Луна занимала такое большое пространство в небе и так быстро вращалась на околоземной орбите, что это вызывало частые затмения. Полное солнечное затмение происходило каждые 84 часа, практически в каждое новолуние, когда Луна оказывалась между Землей и Солнцем. Солнечный свет полностью исчезал на несколько минут, зато на черном небе отчетливо светились звезды и планеты, а на фоне черного лунного диска ярко выделялись огненные вулканы и океаны магмы. Регулярно происходили и лунные затмения – как по расписанию, каждые 42 часа. Во время полнолуния, когда Земля располагалась прямо между Солнцем и Луной, огромная тень Земли полностью скрывала гигантский сверкающий лик Луны. И вновь на черном небе появлялись звезды и планеты, пока Луна готовила свое огненное шоу.

Гораздо более грозным последствием близости Луны были чудовищные приливы. Если бы Земля и Луна были абсолютно твердыми телами, они и сегодня находились бы точно в том же положении, что и 4,5 млрд лет назад: располагались на расстоянии 24 000 км друг от друга, вращались вокруг оси и на своих орбитах с той же скоростью и испытывали частые солнечные и лунные затмения. Но ни Земля, ни Луна не отличаются абсолютной твердостью. Их породы могут изгибаться и собираться в складки, особенно в расплавленном состоянии, они вздымаются и опадают под воздействием приливов. Молодая Луна, находясь на расстоянии 24 000 км от Земли, обрушивала на нее невероятные приливные силы, почти равные тому гравитационному воздействию, которое оказывала Земля на расплавленную лунную поверхность. Трудно даже вообразить, какими магматическими волнами это сопровождалось. Каждые несколько часов расплавленная магма на поверхности Земли вспухала гигантскими волнами высотой больше километра по направлению к Луне, что сопровождалось невероятным внутренним трением и неизбежно вело к повышению температуры и длительному сохранению коры в жидком состоянии, чего не могло бы быть у планеты без такого соседа. В свою очередь, гравитационные силы Земли заставляли вспучиваться поверхность Луны, обращенную к Земле, вызывая деформацию шарообразной формы нашего спутника.

Именно эти приливные деформации и заставляют Луну удаляться от нашей планеты. Как случилось, что объект диаметром 3500 км отнесло от Земли с расстояния всего 24 000 км до целых 382 400 км? Ответ заключается в сохранении совокупного момента импульса – постоянной суммы моментов Земли и Луны. Согласно законам физики, исходный момент импульса системы Земля – Луна должен практически полностью сохраняться вплоть до нынешнего времени.

Четыре с половиной миллиарда лет назад гигантские приливы сотрясали планету Земля каждые несколько часов. Однако Земля вращалась вокруг своей оси гораздо быстрее (полный оборот совершался за пять часов), чем вокруг нее вращалась Луна (полный оборот совершался за 84 часа), приливное вспучивание за счет большей массы постоянно воздействовало на Луну всей силой тяготения, с каждым оборотом перенося момент импульса от Земли к Луне. Около 400 лет назад немецкий математик Иоганн Кеплер впервые сформулировал непреложные законы движения планет, в соответствии с которыми чем больше орбитальный момент импульса спутника, тем дальше он должен располагаться от основной планеты. И вот с каждым оборотом Луна неумолимо удаляется от Земли.

Одновременно с воздействием приливных сил Земли на Луну деформированная Луна оказывала аналогичное обратное воздействие, заставляя Землю замедлять вращение вокруг собственной оси. Здесь и срабатывает момент импульса. Чем быстрее Луна обращается по орбите, тем больше она удаляется от Земли и, следовательно, тем больше момента импульса она забирает. Чтобы компенсировать потерю, Земля вынуждена все медленнее вращаться вокруг своей оси, сохраняя таким образом суммарный момент системы Земля – Луна: снова представьте себе фигуристку, разводящую на этот раз руки в стороны, чтобы замедлить вращение. За 4,5 млрд лет вращение Земли вокруг оси замедлилось от пяти часов до 24, а Луна тем временем удалялась все больше и забирала значительную долю общего момента.

Отнюдь не все системы планета – спутник ведут себя аналогично. Если основная планета вращается вокруг оси медленнее, чем ее спутник на орбите, возникает неизбежный эффект торможения. Приливные волны планеты отстают от ее вращения; движение спутника по орбите тормозится, и с каждым оборотом он сближается с планетой. В конечном итоге спутник по спирали опустится на планету и либо будет поглощен ею, либо произойдет нечто вроде гигантского столкновения. Возможно, именно по этой причине Венера с ее обратным вращением не имеет спутника. По-видимому, катастрофическое обрушение на нее ее собственного спутника некогда вызвало потерю значительной части воды и превратило ее во враждебный, безводный, обжигающий, безжизненный мир.


В начале существования системы Земля – Луна обмен угловыми моментами от замедляющей вращение Земли к ускоряющейся Луне происходил гораздо в более солидных масштабах. В первые века после формирования Луны оба небесных тела были опоясаны океанами бурлящей магмы, которые подвергались растяжению и деформации. Гигантские приливные волны на Земле и подобные им на Луне, вероятно, заставляли Луну удаляться на тысячи метров в год, в то время как вращение Земли неуклонно замедлялось относительно первоначальной неистовой скорости. Но такие огромные приливы расплавленной земной поверхности не могли продолжаться долго. По мере увеличения расстояния между Землей и Луной приливные силы уменьшались, причем увеличение расстояния вдвое вызывало уменьшение гравитационных приливных сил в 8 раз. С ростом расстояния втрое приливы уменьшалась в 27 раз.

Приливные потрясения происходили все реже и не могли препятствовать отвердению планетных тел. За несколько миллионов лет после гигантского столкновения поверхности Земли и Луны превратились в черную твердь. Земные приливы – деформация твердых пород – по-прежнему происходили достаточно часто в ту давнюю пору, но уже мало напоминали гигантские ежедневные волны магмы былых времен.

Светящаяся Луна напоминает нам, что космос – это пространство, в котором созидание переплетается с разрушением. Мы по сей день не застрахованы от возможных космических катастроф: астероиды-убийцы и гигантские кометы все еще время от времени пересекают земную орбиту. Миллионы лет назад один такой крупный булыжник из космоса уничтожил динозавров; через миллионы лет после нас другие каменные гости вполне могут обрушиться на Землю. Если мы хотим выжить как вид, нам надо внимательнее вглядываться в небеса, где наш ближайший космический сосед молча напоминает: конечно, все меняется медленно и постепенно, но в космических просторах случается всякое.



Глава 3
Черная Земля

Первичная базальтовая кора

Возраст Земли: от 50 до 100 млн лет

Земля испытала немало превращений за долгую историю своего существования. Гигантское столкновение было, по-видимому, самым разрушительным и (с учетом формирования Луны) обусловившим далекоидущие последствия. Но такой результат – образование огромного единичного спутника на орбите вокруг планеты, полной летучих веществ, отнюдь не является неизбежным следствием законов физики и химии. Окажись параметры того древнего столкновения Тейи с Землей слегка иными, процесс, приведший к формированию Луны, происходил бы совершенно по-другому. Если бы столкновение произошло не по касательной, а лобовым ударом по центру, то Тейя смешалась бы с Землей и стала ее частью. Весьма вероятно, в таком случае Земля и Тейя образовали бы большую планету без спутника. Тейя могла бы также разминуться с Землей, а ее орбита изменилась бы настолько, что направилась бы либо в сторону Венеры, либо Марса и навсегда удалилась бы от Земли. Наконец, удар по касательной мог прийтись под таким незначительным углом, что образовавшееся облако осколков сформировало бы вокруг Земли множество более мелких лун, которые украсили бы ночное небо над Землей.

В изменчивых космических просторах случай играет немаловажную роль. История Солнечной системы представляет собой длинный перечень состоявшихся и несостоявшихся столкновений. Астероид, погубивший на Земле динозавров, вполне мог разминуться с нашей планетой и в результате позволил бы тираннозаврам и их потомкам просуществовать еще десятки миллионов лет. Большеголовые птицы достигли бы развитого интеллекта и научились бы изготовлять орудия труда и охоты. А малорослые млекопитающие, особенно расплодившиеся в мезозойскую эру, не достигли бы ничего. Чуть-чуть в сторону – и Земля пошла бы по другому пути развития.

Но некоторые процессы в космосе неизбежны и предопределены. С момента Большого взрыва Вселенная заполнилась множеством протонов и электронов и соответственно – большим количеством водорода и гелия. Огромные резервы водорода и гелия с неизбежностью привели к формированию звезд. Все остальные элементы возникли так же неизбежно в результате термоядерного синтеза и появления сверхновых после взрыва насыщенных водородом звезд. В свою очередь, все типы планет, вроде Земли, Марса, Юпитера и многих других, известных и вновь открываемых на орбитах далеких звезд, образовались в результате взаимодействия исходных химических элементов.

Земля после столкновения с Тейей пережила бурные времена охлаждения и самоупорядочения. Что представляла собой эта новорожденная планета? Геологи окрестили первые 500 млн лет ее существования гадейским эоном, намекая на адские условия того периода. Размышляя над этим названием, можно вообразить впечатляющую картину Земли в гадейскую эпоху: сернистые испарения вулканов, потоки огненной лавы и беспрерывные атаки метеоритов и комет терзали тогда поверхность Земли. Тем не менее вряд ли можно восстановить подробности существования Земли в эти первые сотни миллионов лет, поскольку отсутствуют сколько-нибудь достоверные данные о них.

Мы многое знаем о происхождении Земли благодаря свидетельствам образования Солнечной системы – самого Солнца и множества объектов, связанных с ним гравитационными силами. Десятки тысяч метеоритов дают достаточное представление об эпохе планетезималей. Подробности происхождения Луны обнаруживаются в лунных горных породах и грунте. Но от первых дней существования Земли не осталось ничего, по крайней мере никаких следов на самой Земле. Ни обломка породы, ни грана вещества.

Удивительно, но такие данные можно было бы извлечь из метеоритов, выброшенных из древнейших слоев Земли во время мощных столкновений миллиарды лет назад, а затем вновь упавших на Землю или на ее спутницу Луну. Наверняка такие образцы существуют, и даже во множестве, причем некоторые из них могут сохраниться в первозданном виде. На самом деле поиск таких реликтов, сохранившихся с начальной эпохи существования Земли, рассматривался в качестве одного из обоснований для повторных экспедиций на Луну. Подробная геологическая съемка лунной поверхности могла бы способствовать поискам гадейских горных пород, чтобы пролить свет на недосягаемое прошлое Земли.

Но даже и без таких приятных находок, дающих возможность подержать в руках обломок одного из первых затвердевших горных пород с поверхности Земли, у нас остаются шансы. Земля, конечно, менялась неоднократно, но законы химии и физики не меняются. Четыре с половиной миллиарда лет назад точно так же господствовали эти законы, и никакие гигантские столкновения или иные катаклизмы планетного масштаба не могут их изменить.


Неизбежность взаимодействия элементов

Развитие Земли в начальный период явилось следствием двух взаимосвязанных химических аспектов: космохимии (возникновение элементов) и петрохимии (возникновение горных пород). Вначале была космохимия и звездное производство, породившее все тяжелые элементы: всю Периодическую таблицу после водорода и гелия, занимающих первые два места в первом ряду. В нашей Вселенной главная роль принадлежала таким элементам, как кислород, кремний, алюминий, магний, кальций и железо, которые значительно преобладали над всеми остальными тяжелыми элементами, особенно на твердотельных планетах земного типа. Эти шесть элементов составляют 98 % массы Земли, а также Луны, Меркурия, Венеры и Марса.

За каждым из элементов «большой шестерки» стоит особая химическая история. Каждый по-своему внес вклад в развитие Земли после гигантского столкновения. Ключом ко всему являются химические соединения. Напомню, что атомы соединяются друг с другом, когда окружающие их облака электронов вступают во взаимодействие и образуют более устойчивые соединения, а именно: атомы с магическим числом из двух, десяти или 18 электронов. Для осуществления такого обмена одни атомы должны отдать свои электроны, а другие – принять их.

На Земле главным акцептором электронов является кислород. В ядре каждого атома кислорода содержится восемь положительно заряженных протонов, которые уравновешиваются восемью отрицательно заряженными электронами. Но кислород находится в постоянном поиске двух дополнительных электронов, которые составили бы магическое число десять. Эта ненасытная нужда превращает кислород в один из самых химически активных и агрессивных газов в природе. Противное вещество, что ни говори.

Для большинства из нас кислород представляется главным образом как важная часть атмосферы: около 21 %, которые поддерживают нашу жизнь. Но его нынешняя счастливая роль в атмосфере – это результат сравнительно недавних событий в истории Земли. По крайней мере в первые два миллиарда лет земная атмосфера была напрочь лишена кислорода. И по сей день большая часть земного кислорода содержится в горных породах и минералах – 99,9999 % от их общего состава. Поднимитесь на какой-нибудь величественный скалистый горный пик или пройдите по продуваемой всеми ветрами высокогорной тропе – большая часть атомов у вас под ногами – это кислород. Когда вы лежите на песчаном пляже, два из трех атомов под вами – тоже кислород.

Предоставляя кислороду роль главного химического акцептора, существует множество атомов, готовых поделиться с ним своими электронами. Самым обильным поставщиком электронов является кремний, составляющий примерно четверть всех атомов в земной коре и мантии. В ядре кремния содержится 14 положительно заряженных протонов, уравновешенных 14 отрицательно заряженными электронами. Обычно кремний отдает четыре электрона, достигая магического числа десять электронов, и становится ионом кремния с положительным электрическим зарядом. В земной коре и мантии эти четыре отпущенных на волю электрона почти всегда поглощаются двумя атомами кислорода, превращая их в отрицательно заряженные ионы. Вследствие этого во многих горных породах встречаются соединения с сильными кислородно-кремниевыми связями, например, кварц, или SiO2, – союз одного атома кремния с двумя атомами кислорода. Твердые, прозрачные зерна кварца существуют с давних времен. Прибрежные залежи кварцевых песчинок исчисляются триллионами, в настоящее время кварц является самым распространенным минералом песчаных пляжей. Возможно, вы встречали в магазинах красивые, хорошо ограненные, прозрачные кристаллы кварца, продаваемые как «магические кристаллы». Держа в руках такое сокровище, вспомните, что оно на две трети состоит из кислорода.

Кристаллические кремниево-кислородные соединения под общим названием силикаты являются самыми распространенными минералами на Земле; известно более 13 тыс. разных видов (и почти каждый месяц выявляются все новые). Они отличаются большим разнообразием атомной структуры и свойств благодаря многообразию связей между кремнием и кислородом, будь то крепкие, устойчивые к атмосферному воздействию породы (например, кварц или полевой шпат), или зерна полудрагоценного зеленого оливина и красного граната (символические камни для родившихся в августе и январе), или игольчатые цепные силикаты, часть из которых является не чем иным, как знаменитый асбест, или тонкопластинчатые минералы, например слюда, некогда использовавшаяся вместо стекла в окнах.

Вещества, менее распространенные, чем кремний, такие как кальций, магний и алюминий, тем не менее играют ключевую роль в строении самых главных силикатных горных пород, встречающихся повсюду в земной коре и мантии. Будучи положительно заряженными ионами, подобно своим более часто встречающимся двоюродным братьям – силикатам, они тоже могут иногда соединяться с кислородом, образуя такие формы, как оксид кальция, известный как негашеная известь, или «кипелка»; довольно редкий оксид магния (магнезия); а также оксид алюминия, который в соединении со следовыми количествами таких редких элементов, как хром или титан, образует драгоценные камни – рубин и сапфир.

Шестой элемент из числа важнейших – железо – является самым «гибким» из всех. Остальные пять (кислород, кремний, алюминий, магний и кальций) отличаются определенным постоянством химических свойств. Кислород почти всегда выступает акцептором двух электронов, кремний почти всегда является поставщиком четырех электронов, алюминий отдает три электрона, а магний и кальций – по два. В отличие от них, железо, 26-й элемент в периодической таблице, выступает в трех совершенно разных химических ипостасях.

Разносторонность железа демонстрирует многослойная структура Земли. Железо составляет каждый десятый атом в богатых кислородом земной коре и мантии, тогда как металлическое ядро Земли на целых 90 % состоит из железа. Этот резкий контраст связан с тем, что 26 электронов этого элемента слишком заметно превышают оптимальное число восемнадцать, а потому железо главным образом выступает в качестве поставщика электронов. Ни одно вещество не примет восемь электронов сразу, так что железу приходится взаимодействовать с любым первым встречным акцептором.

Иногда железо действует подобно магнию и отдает два электрона, становясь двойным положительно заряженным ионом. В таком двухвалентном состоянии железо придает зеленовато-голубоватый оттенок многим минералам и химическим соединениям. Верным признаком наличия двухвалентного железа является, например, зеленый цвет драгоценного камня перидота (оливин с примесью железа) или голубовато-зеленый оттенок бедной кислородом крови в наших венах. В этом виде железо соединяется с кислородом в пропорции один к одному. Атомы железа и магния сопоставимы по размеру, а потому эти вещества нередко свободно замещают друг друга в самых распространенных минералах земной коры. Некоторые часто встречающиеся минералы, включая оливин, гранат, пироксен и слюду, имеют разновидности, в зависимости от содержания в них магния и железа: от бесцветных вариантов, со 100 %-ным содержанием магния, до густо окрашенных, где 100 % составляет двухзарядное железо.

Однако железо встречается не только в двухвалентном виде. В присутствии достаточного количества акцепторов электронов оно охотно отдает третий электрон и становится трехзарядным положительным ионом. Трехзарядная форма железа придает соединениям характерный кирпично-красный цвет. Красная ржавчина, краснозем, красные кирпичи и насыщенная кислородом кровь обязаны своими оттенками трехвалентному железу. Подобно алюминию, который тоже принимает три положительных заряда, трехвалентное железо соединяется с кислородом в пропорции два к трем и образует Fe2O3 – широко известный минерал гематит, названный так из-за присущего ему кроваво-красного цвета. Если магний вступает вместо железа в двухзарядные соединения, то алюминий часто замещает трехвалентный вариант железа. Соотношения алюминия и железа в таких минералах, как гранат, амфибол и слюда, бывают самые разные, при этом богатые железом разновидности отличаются красным цветом вместо зеленого.

Итак, удивительная способность переходить из двухзарядного в трехзарядное состояние (мы еще вернемся к этой его способности спустя пару миллиардов лет, когда на Земле предположительно зародилась жизнь) позволяет железу в двухвалентном или трехвалентном обличье вести себя подобно другим веществам большой шестерки. Но постойте – железо обладает еще одной важнейшей способностью: оно легко превращается в металл.

Большая часть описанных до сих пор химических соединений обменивается электронами, превращаясь в ионы. Алюминий, магний, кальций и железо отдают электроны, кислород их принимает. Соответственно такие соединения называются ионными. Однако металлы образуются иным путем. Каждый атом металла отдает один или несколько электронов и обретает положительный заряд. Но эти отторгнутые электроны образуют вокруг металла нечто вроде вязкого, отрицательно заряженного «моря», которое удерживает все положительно заряженные атомы вместе, как дробинки в патоке. Железо в форме металла представляет собой огромное скопление атомов, совместно владеющих свободными электронами.

Такое коммунальное хозяйство весьма продуктивно. Начать с того, что электроны, находящиеся в общем владении, свободно передвигаются, что делает металлы прекрасными проводниками электричества (электричество, собственно, и представляет собой направленный поток электронов). Для сравнения: в ионах, состоящих из кислорода и алюминия или магния, каждый электрон закреплен на своем месте так прочно, что поток электричества невозможен. Другим следствием металлических соединений является то, что такие вещества преимущественно гнутся, а не ломаются. «Электронное море», окружающее атомы, можно сворачивать и закручивать, не умаляя его совместной силы, в отличие от хрупких камней и минералов.

Внимательный читатель наверняка уже заметил, что не только железо способно образовывать металлы. Банки из алюминия, фольга, электропроводка всем известны; сплавы из металлического магния широко применяются в высокотехнологичных гоночных автомобилях и игрушках; в основе большинства электронных устройств используются полуметаллы (металлоиды) на основе кремния (отсюда Кремниевая долина). Но все эти металлические виды алюминия, магния и кремния являются продуктами современного химического производства. На то, чтобы отделить их от кислорода, уходит много энергии, и в виде металлов они практически не встречаются в природе.

Железо гораздо меньше привязано к кислороду и свободнее входит в самые разные соединения. В отличие от кремния, алюминия, магния или кальция, оно спокойно вступает во взаимодействие с любыми акцепторами электронов, особенно с серой (блестящий пирит является сульфидом железа), а также с медным колчеданом. В отличие от других элементов, железо легко образует плотный металл, который оседает в глубине планет и формирует их массивное ядро.


Расплавленная Земля

Большая шестерка элементов, каждый из которых является неизбежным результатом взрывающихся звезд и эволюции планет земного типа, лежит в основе разнообразных горных пород на Земле. Их химические свойства обусловили необратимый ход преобразований, приведших к современному состоянию мира. Однако прежде образования горных пород Земля должна была остыть.

Попробуйте еще раз представить бурные времена, последовавшие за гигантским столкновением, в результате которого образовалась Луна. В первые дни, а может, и недели после столкновения то, что стало впоследствии Землей и Луной находилось в неупорядоченном состоянии. В то время ни Земля, ни Луна не имели твердой поверхности. Они представляли собой два шарообразных тела, покрытых океаном магмы, кипящей, раскаленной, поливаемой дождем расплавленного кремния, и все это при температурах, превышающих многие тысячи градусов.

По мере освобождения от остатков Тейи жар, подобный жару доменной печи, поднимался от Земли в холодный вакуум космоса, и внешняя оболочка планеты неуклонно остывала. При этом космические силы старались как можно дольше сохранять земную поверхность в расплавленном состоянии. Огромные астероиды продолжали обстреливать планету. Каждый такой удар добавлял тепловой энергии, дополнительно раскаляя область столкновения, что препятствовало образованию устойчивой коры. Приливные силы Луны, располагавшейся на близком расстоянии, также вносили свою лепту в поддержание поверхности Земли в жидком состоянии, поскольку каждые пять часов вокруг планеты вспухала бурная волна магмы, заново разбивая тоненькую твердую оболочку. Добавляли жару и радиоактивные элементы, в изобилии имевшиеся на Земле: от короткоживущих тепловыделяющих изотопов алюминия и вольфрама до долгожителей – радиоактивных изотопов урана, тория и калия. Да и недавно возникшая развивающаяся атмосфера, разогреваемая парами от вулканических выбросов, богатых углекислым газом и водой, усиливала общий нагрев, производя сверхпарниковый эффект.

Неизвестно, сколько это продолжалось, – сотни, а может, сотни тысяч лет – геологический миг, пока Земля пребывала в расплавленном состоянии. Но ей суждено было постепенно остыть и затвердеть. Согласно второму началу термодинамики раскаленные тела, не имеющие источника внешней энергии, обязательно охлаждаются: чем горячее объект, тем выше скорость остывания.

Этот температурный переход осуществляется за счет трех известных механизмов. Во-первых, это теплопроводность. Когда более горячий объект соприкасается с более холодным, тепловая энергия перетекает от горячего к холодному. Этот процесс вы можете легко представить, если когда-либо обжигали ноги о нагретую солнцем мостовую или касались рукой раскаленного обогревателя: он происходит в результате постоянного колебания атомов. Когда холодный объект с медленно колеблющимися атомами соприкасается с «буйными» атомами горячего объекта, некоторые быстрые атомы передают свои колебания медленным. Если вы коснетесь достаточно горячего объекта, такие столкновения атомов могут повредить клетки кожи, вызывая ожоги. Механизм теплопроводности удобен для локальной передачи тепла при соприкосновении объектов, но не слишком эффективен в планетарном масштабе. При этом требуется очень много времени для передачи колебаний между атомами.

Более удобным для планетарных процессов передачи тепловой энергии является конвекция, когда тепло передается в большом объеме. Налейте в кастрюлю воды, включите плиту и понаблюдайте. Вначале процесс развивается медленно: нагреваясь, кастрюля передает тепло холодной воде за счет теплопроводности, когда активные атомы металлов постепенно раскачивают атомы воды. Но вскоре включается другой механизм. Нагретая внизу вода начинает подниматься сквозь прохладные слои и массово несет тепло на поверхность. Одновременно прохладные слои сверху опускаются на горячее дно. Нагревание идет все быстрее и быстрее, столбики воды поднимаются и опускаются вплоть до начала кипения. В результате конвекционных потоков поднимающейся горячей и опускающейся холодной воды в большом объеме быстро распространяется тепло с помощью такого стремительного и эффективного танца.

В масштабах всей Земли процесс конвекции продолжается непрерывно – в прохладных бризах жарким летним днем, в обширных океанских течениях от экватора до Арктики, в бурных грозовых фронтах, в горячих источниках и гейзерах. То же самое происходит внутри Земли, где горячие спрессованные породы размягчаются и поднимаются наверх, словно расплавленная карамель, в продолжение миллионов лет. Более прохладные и плотные породы с поверхности погружаются вниз, в то время как более горячие и менее плотные поднимаются, вытесняя их. На протяжении всей земной истории конвекция служит главным механизмом охлаждения планеты.

И наконец, тепловое излучение – третий механизм передачи тепла. Всякий горячий объект распространяет тепло на более прохладное окружение в форме инфракрасного излучения, которое в вакууме проходит 300 000 км за одну секунду. Это всем знакомый вид энергии, особенно когда вы расслабитесь и нежитесь под лучами солнца, похожий на волны видимого света (однако тепловое излучение отличается более длинными волнами). Самым очевидным источником энергии инфракрасного излучения является Солнце, омывающее Землю инфракрасными лучами, которые достигают ее за 8,3 минуты. Электрообогреватель, уютный огонь в камине или старые добрые батареи водяного отопления – всем нам хорошо знакомые источники инфракрасного излучения. Каждый нагретый объект излучает тепло в более холодную окружающую среду. Наше тело не является исключением. Переполненная аудитория быстро нагревается до неприятной температуры – каждый человек излучает тепло подобно стоваттной электролампе. Это легко проверить, надев очки ночного видения, через которые видно, как люди и животные, излучающие инфракрасную энергию, ярко светятся в темноте.

Интенсивность теплопередачи, в результате теплопроводности, конвекции или излучения, зависит от разницы температур между горячим и холодным объектом. Теплопроводность работает быстрее, конвекция энергичнее, а теплоизлучение гораздо мощнее, если разница между температурами достаточно велика. Земля – планета теплая. Обращаясь вокруг Солнца в холодном пространстве, она постоянно излучает тепловую энергию в космическую пустоту. Но раскаленная Земля после столкновения с Тейей выбрасывала тепловую энергию в космос в невиданных для нашего времени объемах. Поистине, она пылала в черной пустоте космического пространства.


Первая твердь

По причине громадного выброса тепловой энергии в космос, формирование твердой земной коры было неизбежно. Скорее всего, поблизости от одного из полюсов Земли, наименее затрагиваемого приливными силами, расплавленная поверхность охладилась настолько, что смогли образоваться первые кристаллы. Но эти процессы протекали отнюдь не просто. Большинство обычных веществ имеет четко определенную температуру перехода из жидкого состояния в твердое – так называемую точку замерзания. Жидкая вода замерзает при 0 °С, серебристый металл ртуть – при –38 °С, а этанол (обычный питьевой спирт) – при –117 °С. С магмой все обстоит иначе. Любопытная особенность магмы состоит в том, что у нее нет определенной точки замерзания (вообще понятие точки замерзания для магмы, раскаленной свыше 1300 °С, можно считать чем-то вроде оксюморона).

Начнем непосредственно с пекла сразу же вслед за великим столкновением 4,5 млрд лет назад, когда Земля и Луна были окружены силикатным паром при температурах, превышающих 5000 °С. Это адское пекло быстро охлаждалось, газ конденсировался в капли и проливался магматическим дождем на новорожденных космических близнецов, чья температура неуклонно снижалась до 3000 °С, затем до 2000 °С и до 1500 °С. Именно тогда начали формироваться первые кристаллы.

Такие представления о появлении первых горных пород на Земле царят в среде петрологов-экспериментаторов, изобретающих все новые лабораторные опыты, нагревая и сжимая горные породы, дабы воспроизвести условия земных глубин. Попытки раскрыть тайну происхождения горных пород сталкиваются с двумя техническими сложностями. Во-первых, необходимо работать с невероятно высокими температурами, в тысячи градусов, до которых не разогревается ни одна бытовая печь. Для достижения таких температур ученые разработали катушки из тщательно уложенной платиновой проволоки, через которые пропускается сильный ток. Еще более сложным техническим условием является необходимость поддерживать такие температуры одновременно с давлением, превышающим десятки, а то и сотни тысяч атмосфер. Для выполнения таких задач исследователи применяют массивные гидравлические прессы и мощные насосы.

Вот уже более века центром таких героических подвигов во славу земных глубин служит моя родная Геофизическая лаборатория Института Карнеги. Некоторое, увы, короткое время я работал вместе с Х. С. Йодером-младшим (вплоть до его безвременной кончины), одним из инициаторов экспериментальной петрологии и крупнейшим в мире специалистом по происхождению базальтов. Внимательный к людям, Йодер был человеком увлеченным, импозантным и энергичным – в буквальном смысле слова выдающимся. Во время Второй мировой войны он служил в ВМС США и близко познакомился с гигантскими металлическими механизмами. В 1950-е годы Йодер пришел на работу в Геофизическую лабораторию Института Карнеги, где использовал отработанные детали боевых орудий с линкоров, орудийные дула и бронированную обшивку, сохранившие серую окраску, для создания лаборатории высокого давления, которая определила судьбу Йодера на полвека, а также позволила нам кое-что узнать о земле, по которой мы ходим.

Центром установки, созданной Йодером, была «бомба» – массивный стальной цилиндр 30 см в диаметре и 50 см в длину, с внутренним диаметром примерно 2,5 см. Один конец бомбы соединялся с рядом насосов, компрессоров и усилителей давления, способных выработать до 12 тыс. атмосфер. Именно такое давление существует на глубине 40 км от поверхности Земли – эквивалент энергии от взрыва динамитной шашки (если бы устройство, не дай бог, взорвалось). На другом конце бомбы находился 30-сантиметровый контейнер для образцов и огромная шестигранная гайка. Мы герметично закупоривали этот контейнер, закручивая гайку гаечным ключом метровой длины и 9 кг весом.

Вся прелесть этого устройства состояла в том, что мы помещали каменный порошок и образцы минералов в маленькие золотые трубки, загружали эти трубки в нагреваемый цилиндрический контейнер и помещали все это в барокамеру-бомбу. Дальше надо было только обеспечить нужное давление, включить электронагреватель, а «бомба» проделывала все остальное. На каждый цикл уходило до шести золотых трубок; длился такой цикл от нескольких минут до нескольких дней. Замечательное изобретение Йодера идеально подходило для исследования условий возникновения горных пород в коре и мантии Земли.

Йодер со своими коллегами выяснил, что расплавленный металл, включавший большую шестерку элементов, обычно начинает твердеть, образуя кристаллы силиката магния – оливина, при охлаждении до 1500 °С. Как на Луне, так и на Земле в те далекие времена, когда шел процесс охлаждения, в раскаленной магме начинали вырастать красивые зеленые кристаллики, словно крошечные семена, которые постепенно увеличивались до размера дробинок, потом горошин, потом виноградин. Но оливин, как правило, плотнее жидкой среды, в которой он вырастает, и потому первые кристаллы начинали тонуть, причем чем больше они вырастали, тем быстрее тонули, скапливаясь в плотную массу кристаллов и образуя потрясающей красоты зеленого цвета породу – дунит. Этот камень представляет исключительную редкость на Земле, появляясь на поверхности в основном во время горообразовательных процессов или эрозии, когда обнажаются глубинные скопления оливина.

Процесс погружения кристаллов оливина медленно изменял остывающую магму в глубинах Земли и Луны. Оставшиеся расплавленные металлы меняли структуру; постепенно теряя магний, они становились более насыщенными кальцием и алюминием. На Луне по мере остывания магматического океана начал формироваться второй минерал. Анортит, или полевой шпат, состоящий из алюмосиликата кальция, кристаллизировался наряду с оливином, образуя светлые скопления. В отличие от оливина, анортит легче окружающей его жидкой среды и потому оставался на плаву. На Луне анортит в огромных количествах всплывал на поверхности магмы и образовывал обширный верхний слой: целые плавучие горы полевого шпата простирались грядой в несколько километров над расплавленной поверхностью. Эти белесовато-серые массы до сих пор покрывают около 65 % поверхности Луны и называются Лунным нагорьем. Поднявшись первыми над поверхностью океана магмы, они являются древнейшими горными образованиями на Луне. Судя по образцам лунного грунта, доставленным «Аполлонами», возраст анортитов составляет от 3,9 млрд лет (самые молодые) до 4,5 млрд (самые древние), т. е. они образовались вскоре после Великого столкновения.

На Земле, где влаги было больше и океаны магмы глубже, а соответственно внутренние температуры и давление были гораздо выше, события развивались по-другому. Небольшое количество анортита образовалось в ранний период остывания Земли, в основном ближе к поверхности, где давление было ниже, но этот минерал сравнительно редок. Зато в больших масштабах формировался богатый магнием пироксен, самый распространенный из числа силикатов, который, смешиваясь с оливином, образовал толстый слой кристаллической шуги. Древнейшие породы на Земле включали оливин и пироксен в виде твердой зеленовато-черной породы под названием перидотит. Разновидности перидотита начали формироваться на глубине примерно 80 км от поверхности Земли, возможно, более 4,5 млрд лет назад, и процесс этот продолжался многие сотни миллионов лет.

Несмотря на относительное обилие в начале процесса охлаждения, перидотит в настоящее время редко встречается на поверхности Земли. Согласно одной модели, массы перидотита затвердели и остыли, образовав кратковременную твердую поверхность Земли. Но остывающий перидотит, подобно своему предшественнику, дуниту, был значительно плотнее магмы, в которой он формировался. В результате слой твердого перидотита раскалывался и погружался в мантию, вытесняя на поверхность магму, которая, в свою очередь, остывая, образовывала новые массы перидотита. На протяжении сотен миллионов лет земная мантия постепенно твердела, превращаясь в своего рода конвейерную ленту, простирающуюся на 80 км из глубины до поверхности Земли. Соотношение между плотным перидотитом и магмой изменялось в сторону увеличения перидотита, пока почти весь верхний слов мантии не превратился в твердую оливин-пироксеновую породу.


Правда о ядре

Под земной корой, на глубине 80–320 км охлаждение и кристаллизация магмы в мантии происходят в похожем режиме, разве что помедленнее. Подробности этого процесса остаются неясными – необходимы более совершенное оборудование высокого давления и высоких температур для установления истины. По всей видимости, отделение кристаллов от расплавленной массы в процессе погружения и всплытия играет такую же значимую роль, что и в верхних слоях магмы.

Почти все, что нам известно об этих скрытых, глубинных процессах, мы получаем из наблюдений сейсмологов, которые изучают распространение звуковых волн в земных недрах. Земля постоянно гудит, как колокол: сокрушительные приливы, громыхающий транспорт и землетрясения, большие и малые, – все это сотрясает Землю и распространяет сейсмические волны. Подобно звуковым волнам в узком ущелье с крутыми склонами, сейсмические волны порождают эхо, отражаясь от поверхности. Изучение сейсмических волн показывает, что внутренность Земли представляет собой сложную и многослойную структуру.

В самом общем виде в строении Земли можно выделить три слоя: тонкая, с низкой плотностью кора на поверхности, более толстая и плотная мантия посредине и плотное металлическое ядро в центре. Каждая из этих структур, в свою очередь, состоит из нескольких слоев. Мантия, например, делится на три слоя: верхняя мантия, переходная зона и нижняя мантия. Верхний слой, состоящий преимущественно из перидотита, простирается на глубину примерно 660 км. В этих глубинах давление заставляет атомы оливина сблизиться, что приводит к образованию более плотной разновидности кристаллов силиката – вадслеита, минерала, преобладающего в переходной зоне мантии. Для нижней мантии, занимающей следующие 2900 км, характерны еще более плотные разновидности силикатов магния. Давление в нижней мантии настолько велико – в сотни тысяч раз больше атмосферного, что кремниево-кислородные соединения переходят в еще более плотную форму, с более оптимальной упаковкой атомов, под общим названием перовскит.

Сейсмические наблюдения регистрируют природу и протяженность каждого из этих различающихся минералогическим составом слоев мантии, и в целом оказывается, что переходы между ними носят достаточно выраженный характер. Точная глубина залегания переходных границ между слоями мантии в разных местах слегка варьирует, где-то в пределах 16–32 км. Например, под континентами глубина границ одна, под океанами – другая, но всюду эти границы пологие и «правильные». В отличие от «идиллии» с внутримантийными границами, сейсмические данные о границе между мантией и ядром свидетельствуют о чрезвычайно сложной структуре. На первый взгляд, эта граница порождает, как и должно быть, сильное эхо. В самом деле, разница плотностей силикатной мантии и металлического ядра настолько велика, что создает физическую границу такую же резкую, как граница между водой и воздухом, что вызывает мощнейший сейсмический сигнал из глубин Земли. Эту границу – как одну из первых скрытых в глубине Земли тайн – сейсмологи зафиксировали более 100 лет назад.

Идеально гладкая и ровная граница должна была бы дать явный, сфокусированный сейсмический сигнал – эхо, которое сейсмограф зафиксировал бы в виде отчетливого пика. Однако сейсмические сигналы, отражающие границу между мантией и ядром, чаще всего носят смазанный, беспорядочный и прерывистый характер. Выглядит так, будто там, в глубине, встречаются неровные глыбы или кучи обломков. Геофизики, известные своим пристрастием к невыразительной терминологии, назвали эту бугристую и хаотичную зону слоем D^2, т. е. D-два-штриха. (Астрофизики придумывают куда более образные термины, например, коричневый карлик, красный гигант, темная энергия или черная дыра; они более изобретательны в игре названий.)

Сложность этого слоя D^2 отчасти объясняется значительной разницей в плотности между однородным железом металлического ядра и многообразием состава насыщенных кислородом минералов мантии. Минералы мантии плавают на поверхности плотного ядра, как пробка на поверхности воды, но сами эти минералы сильно различаются между собой по удельному весу. В первичном океане магмы некоторые силикаты тонули, другие всплывали. В результате большие куски кристаллизованного твердого вещества погружались к основанию мантии и подобно плотам плавали на поверхности металлического ядра. Некоторые сейсмологи говорят о возможных «горах» в несколько сотен километров высотой и нагромождениях плотных минералов, скопившихся на границе между мантией и ядром: именно они хаотически преломляют сейсмические сигналы.

По-видимому, на границе ядра и мантии возможны также бассейны и лужи необычайно плотной силикатной жидкости, богатой алюминием и кальцием, а также массой «несовместимых элементов», которые вообще отсутствуют во внешних слоях Земли. Проверить это чрезвычайно трудно, но сейсмологи указывают на существование в слое D^2 локальных «зон низких скоростей», непосредственно над границей между мантией и ядром, где сейсмические волны распространяются со скоростью примерно на 10 % ниже, чем в области соседних плотнотельных сред. Замедление сейсмических волн – это вернейший признак жидкой среды. Эти жидкие образования и пруды жидкости подсказывают также решение частной проблемы недостающих элементов: просто нужно искать все несовместимые элементы в недосягаемом слое D^2, где они навечно спрятаны в этой загадочной, разнородной по составу зоне минералогического старья.

Что же представляет собой само ядро? В пору ранней юности у Земли было плотное, богатое железом ядро диаметром более 3000 км, правда, еще расплавленное (в отличие от того ядра, которое мы знаем сегодня – в виде постоянно растущего шара из твердых кристаллов железа диаметром примерно 1200 км). Температура на границе между ядром и мантией могла тогда превышать 5000 °С, при давлении миллион атмосфер.

Раскаленное ядро с самого начала (и по сей день) является довольно подвижным образованием – в нем движутся завихряющиеся потоки жидкого металла. Одним из важных последствий движения этих потоков является формирование первичного магнитного поля Земли – магнитосферы, похожей на гигантский электромагнит. Магнитные поля отклоняют электрически заряженные частицы, так что магнитосфера Земли служит невидимым щитом-отражателем, защищающим Землю от интенсивного бомбардирования солнечным ветром и космическими лучами. Возможно, этот барьер был необходимым условием для зарождения и сохранения жизни.

Ядро является также важным источником тепловой энергии, помогая поддерживать конвекцию в мантии. По сей день мантийные потоки из пластичных горных пород поднимаются из глубины более 3000 км, с границы между мантией и ядром, в вулканических горячих зонах, таких как Гавайи или в Йеллоустоун. Примечательно, что выявленные места выбросов магмы на поверхность могут предопределяться глубинной топографией. Упомянутые многокилометровые горы слоя D^2 могут выполнять роль своеобразных теплоизоляторов, лежащих на горячем ядре. Вполне вероятно, что в самых глубоких долинах, разделяющих эти величественные скрытые горы, теплопоток выше, что приводит к образованию известных нам вулканических горячих зон.


Базальт

По существу, эволюция минералов основывается на предопределенной последовательности формирования горных пород, где каждая последующая стадия логически вытекает из предыдущей. Образование первой перидотитовой земной коры, порожденной первичной магмой, было критически важной, но промежуточной фазой развития Земли. Окончательно охлажденная и затвердевшая, она оказалась слишком плотной и не могла сохраниться на поверхности магмы, а потому снова погрузилась в недра Земли. Для того чтобы опоясать планету, требовалась менее плотная порода. Такой породой оказался базальт.

Во всех планетах земного типа черный базальт преобладает среди близких к поверхности пород. Изрезанный шрамами от атак астероидов, верхний слой Меркурия состоит преимущественно из базальта. То же самое можно сказать о выжженной, гористой коре Венеры и выветрелой[6] красной поверхности Марса. Темные пятна на Луне («моря») контрастируют с бледно-серыми анортозитовыми нагорьями и являются не чем иным, как остатками огромных озер черного базальта; 70 % поверхности Земли, включая дно всех океанов, подстилается базальтовой корой.

Базальты состоят из разных минералов, среди которых явно выделяются два силикатных минерала. Один из таких важнейших минералов – полевой шпат плагиоклаз, между прочим, самый главный алюмосодержащий минерал на планетах земного типа и их спутниках и самый распространенный минерал в земной коре. Преподаватель MIT, профессор Дейв Воунз однажды посоветовал, если мне покажут какой-нибудь загадочный камень с целью определить, из каких минералов он состоит, смело отвечать «из плагиоклаза» – и я окажусь прав в 90 % случаев. Второй важнейший минерал в составе базальта – это пироксен, обычный силикат, входящий также и в перидотит. Пироксен входит в число самых простых минералов, которые способны вмещать всю «большую шестерку» (а также множество более редких элементов).

Чтобы понять происхождение плагиоклаза и пироксена, двух основных минералов в составе базальта, вспомните странные свойства, которыми сопровождается остывание и плавление горных пород. Четыре с половиной миллиарда лет назад, когда остывал океан магмы на Земле, первым образовался оливин, потом анортит и, наконец, в большом количестве – пироксен. В результате получился перидотит, силикат магния, который и составил большую часть верхнего слоя мантии. Большие массы перидотита погружались в магму, где снова нагревались и частично плавились.

Наше знакомство с процессом плавления подсказывает, что переход из твердого состояния в жидкое происходит при определенных температурах. Лед плавится (тает) при 0 °С, свечной воск – около 60 °С, а тяжелый свинец – при 327 °С. Однако с горными породами дело обстоит не так просто: большинство пород не имеет постоянной температуры плавления. Если нагреть перидотит свыше 1000 °C, он начнет плавиться (плавление может начаться и раньше, если в перидотите содержится много воды и углекислого газа). Состав первых микроскопических капель существенно отличается от основной массы породы. В начале плавления капли содержат гораздо больше кальция и алюминия, немного больше железа и кремния и гораздо меньше магния, чем основная порода. Первоначальные капли также отличаются гораздо меньшей плотностью. Поэтому даже 5 % расплавленного перидотита порождают в мантии большое количество магмы, которая накапливается вдоль границ минеральных блоков, заполняет трещины и карманы и поднимается к поверхности, чтобы впоследствии превратиться в базальт. За миллиарды лет существования Земли частичное плавление перидотита породило сотни миллионов кубических километров базальтовой магмы.

Расплавленный базальт поднимается к поверхности планеты двумя дополняющими друг друга путями. Один – это величественное зрелище извержения вулканов, как на Гавайях или в Исландии, когда над горой вздымаются огненные фонтаны и реки магмы стекают вниз потоками лавы. Такие драматические извержения происходят из-за содержания в породе воды и других летучих веществ, которые остаются жидкими в силикатной среде при высоких давлениях на большой глубине, но резко переходят в газообразное состояние, приближаясь к поверхности. При таких взрывах пепел и токсичные газы поднимаются вверх, достигая стратосферы, а вулканические бомбы размером с автомобиль разлетаются на километры, уничтожая все вокруг.

Слой за слоем, базальтовые лавы и пепел образуют черные горы, высотой на многие тысячи метров, покрывая тысячи квадратных километров. Такой тип потоков базальтовой лавы и вулканического пепла отличается чрезвычайно мелкозернистой структурой и обилием стекла вследствие того, что охлаждение жидкой породы происходит так быстро, что не успевают сформироваться кристаллы. В результате получается ровная, черная кора застывшей лавы. Другие характерные оливиновые базальты, возникающие, если только перидотит плавится лишь частично, на сравнительно небольших глубинах порядка 30 км, содержат небольшое количество блестящих кристаллов оливина, которые образуются еще на глубине, на первой стадии отвердения. Эти зеленые кристаллы украшают невыразительную черную породу.

Нужна огромная энергия для того, чтобы магма могла пробиться к поверхности, поэтому значительная часть базальтовой магмы никогда не поднимается на поверхность. Эти раскаленные докрасна жидкие массы застревают глубоко под поверхностью Земли, где они остывают медленнее, образуя столбчатые кристаллы полевого шпата и пироксена в составе диабаза или габбро. Иногда магма внедряется в узкие, субвертикальные трещины в массивах горных пород, образуя доскообразные заполнения с гладкой поверхностью (дайки). Если вмещающая дайку горная порода мягкая, то в результате миллионов лет эрозии может появиться длинная, прямая диабазовая стена, которая выглядит зловеще, как разрушенный археологический объект. Напротив, если магма внедряется между слоями осадочных пород, залегающими горизонтально, образуются тела, напоминающие толстое одеяло (силлы). Обрывистые скалы Палисады, которые можно наблюдать вдоль западного берега реки Гудзон чуть выше Нью-Йорка, являются как раз одной из таких базальтовых силл, которые плавно погружаются к западу, образуя параллельные возвышенности в северном Нью-Джерси и южной части штата Нью-Йорк (тут же расположены места самой дорогой недвижимости). В некоторых случаях магма охлаждается в магматических камерах неправильной формы, которые могут уходить глубоко вниз и тянуться на многие километры. Однако независимо от того, в какой геометрической форме в конце концов окажется застывшая магма, на самом деле диабаз и габбро ничем не отличаются от базальта.

Неизбежное образование базальтовой коры впервые осчастливило Землю устойчивой, твердой поверхностью, способной плавать поверх магмы. До образования коры, когда поверхность планеты формировалась только магмой и перидотитом, ничто не могло возвышаться над земной поверхностью сколько-нибудь заметно и достаточно долго. Раскаленная докрасна перидотитовая каша не годилась для поддержки гор. Совсем другое дело – прочный базальт относительно малой плотности. Средний удельный вес базальта примерно на 10 % ниже, чем у перидотита. Благодаря этому плавающий в магме массив базальта мощностью 16 км мог выступать из океана магмы более чем на 1,6 км. Быстро нарастающие вулканические конусы могли подниматься еще выше, вероятно, выше 3 км над средним уровнем поверхности. Итак, исполненная хаоса поверхность Земли начала приобретать более-менее отчетливые очертания.


Враждебный мир

Если смотреть из космоса – например, с безопасного расстояния молодой Луны, базальтовая оболочка Земли выглядела бесконечно черной с красными дуговидными трещинами и отдельными яркими пятнами, где гигантские, фонтанирующие лавой вулканы вздымались над поверхностью. Облака грязновато-белого, смешанного с золой пара окутывали некоторые из наиболее богатых летучими веществами вулканы и окружающую территорию.

Вообразите себя на только что образовавшейся, черной земной коре гадейской эпохи, более 4,4 млрд лет назад. Вы не смогли бы долго просуществовать в суровом, чужеродном мире. Метеориты неустанно обрушиваются на поверхность планеты, разбивая тонкую, хрупкую кору, разбрасывая вокруг камни и расплескивая магму. Повсюду вздымаются конусы вулканов, поднимаясь на тысячи метров ввысь и выбрасывая громадные фонтаны магмы под воздействием взрывов пара и летучих веществ, которые в один прекрасный день охладятся настолько, что превратятся в океаны и атмосферу. И ни следа жизненно необходимого кислорода. Над суровой, совсем еще юной Землей витает невыносимый запах сернистых соединений, вашу кожу ошпаривает раскаленный пар, ваши глаза выжигает ядовитый газ. В этом враждебном мире вас ждала бы короткая, но мучительная агония.

Удалявшаяся Луна все еще играла важную роль в образовании земной коры. Охватывавшие весь земной шар приливы раскаленных камней и магмы, хотя и не с той мощью, что в первые века после катастрофы с Тейей, постоянно раскалывали и коробили земную поверхность, образуя трещины, сквозь которые красная жижа вновь и вновь выплескивалась наружу, препятствуя образованию твердой поверхности. Неприятное соседство с Луной вызывало бешеное вращение Земли вокруг собственной оси: сутки по-прежнему продолжались пять часов, бушевали неистовые бури и немыслимой силы ураганы, куда более жестокие, чем все те, что нам показывают сегодня в метеосводках.

Но под этой неприглядной поверхностью уже начались неотвратимые процессы превращения Земли в живую планету. В ее перемешанных, расплавленных глубинах начали формироваться определенные структуры – вещество, из которой впоследствии образуются континенты и океанское дно, атмосфера и моря, растения и животные. Нагрев, охлаждение и кристаллизация с последующим разделением кристаллов, часть из которых оседала, а часть всплывала, накапливание перидотита, частичное плавление – все это формировало Землю в те далекие времена юности планеты, 4,5 млрд лет назад. Эти процессы продолжаются даже и по сей день.

Необъятное хранилище внутренней тепловой энергии Земли, о котором мы в основном и рассуждаем в этой главе, продолжает играть важнейшую роль в формировании нашей родной планеты. В наши дни самым очевидным проявлением мощи раскаленных недр являются действующие вулканы с их фонтанами раскаленной магмы и огненными реками лавы. Об адском пекле, скрытом глубоко в недрах планеты, напоминают гейзеры и горячие сернистые источники. Вот уже более 4,5 млрд лет земной истории поверхность планеты держит удар тепловой энергии, рвущейся из раскаленной сердцевины к растрескавшейся поверхности и далее в космическое пространство. Под напором конвективных завихрений мантии и непрерывным давлением приливных сил Луны поверхность Земли изгибается и коробится, раскалывается и скручивается. Континенты находятся в постоянном движении, расходятся, сталкиваются, трутся друг о друга в бесконечном танце тектонических плит под управлением тепловой энергии. В течение всей нашей жизни внутреннее тепло Земли изменяет твердь, по которой мы ходим, перерабатывает воду, которую мы пьем, и изменяет воздух, которым мы дышим.

Из-за внутреннего жара Земля какое-то время оставалась черной планетой, глазированной тонкой базальтовой коркой. Но детство планеты не могло длиться долго. Новый ярко-голубой слой вот-вот должен был окутать земной шар в результате вулканической активности.



Глава 4
Голубая Земля

Образование океанов

Возраст Земли: от 100 до 200 млн лет

Раннее детство Земли, первые полмиллиарда лет или около того, окутаны мраком тайны. Горные породы и минералы предоставляют нам осязаемые данные о большей части исторического прошлого планеты, но мало что из горных пород и минералов сохранилось от самого древнего из периодов – гадейской эпохи. По этой причине любое описание процесса первичного охлаждения Земли и появление на ее черной поверхности воды опираются на предположения, основанные на экспериментах, моделях и расчетах. При этом неизбежны различного рода неточности.

Впрочем, это тоже полезно. Ведь ничто не приносит такое разнообразие и оживление в работу лаборатории, как осознание того, что «мы знаем, что мы ничего не знаем», и вероятность того, что в любой день мы можем обнаружить какой-нибудь мелкий факт, который приблизит нас к истине. Еще более соблазнительной представляется возможность обнаружить в природе вещей нечто такое, о чем «мы не знали, что мы не знали», т. е. сделать такие открытия, которые расширят пределы таинственного[7]. Именно способность ставить вопросы по-новому торит дорогу к прорывным открытиям: например, вместо того, чтобы просто спросить «Каковы химические и физические свойства минералов?», можно задаться вопросом «Как эволюционировали минералы?».

Очень важно составить список того, что мы не знаем. Все данные свидетельствуют о том, что Луна образовалась в результате сильнейшего столкновения, однако мы не можем с уверенностью сказать, ни когда именно это столкновение произошло, ни какова была заключительная траектория Тейи. Учитывая колоссальную мощь этого удара, можно представить, что на магматический океан Земли обрушился проливной дождь раскаленных силикатов, но у нас столь мало данных о длительности и интенсивности остывания перегретой планеты, что это может на десятилетия остаться предметом научной полемики. Столь же неточными представляются данные о первичном расстоянии и скорости удаления Луны, хотя они являются решающими для понимания ее эволюции. Точно так же мало известно, когда впервые образовались океаны и как они выглядели. Как бы то ни было, они образовались, и наш последующий рассказ, основанный на всех новейших данных, имеет полное право на существование.

Черная Земля не могла долго оставаться черной. По всей планете вулканы ежедневно миллиардами тонн выбрасывали в густеющую атмосферу азот, углекислый газ, ядовитые сернистые соединения и водяной пар. Эти летучие вещества и соединения – те же молекулы, которые образовали различные виды льдов в первичном газово-пылевом облаке, те же атомы, которые мы вдыхаем и которые входят в состав сложнейших тканей нашего организма, – выполняли множество функций в процессе быстрой эволюции Земли. Горячая вода, смешиваясь с горными породами магмы, снижала их температуру плавления, превращая их в чрезвычайно перегретый суп, устремлявшийся к поверхности. Вблизи поверхности газы, растворенные в этом магматическом супе, превращались из жидкости в бурно расширяющийся газ, вызывая массированные извержения вулканов, нечто вроде газированной воды, вырывающейся из-под крышки бутылки после хорошего взбалтывания. В насыщенных водой флюидах (жидких и газообразных легкоподвижных компонентах магмы) растворялись также и концентрировались редкие элементы: бериллий, цирконий, серебро, хлор, бор, уран, литий, золото и многие другие – все это впоследствии превратится в разнообразные рудные тела в становящейся более сложной земной коре. В хаосе земной поверхности бурлящие потоки и сокрушительные волны выполняли главную роль в эрозии горных пород, образовании первых песчаных отмелей и накоплении прибрежных осадочных отложений. Коротко говоря, вода явилась главным архитектором твердой поверхности Земли.

Внимание к океанам и атмосфере носит несколько антропоцентричный характер, поскольку эти подвижные среды занимают незначительное место на планете в целом. В наше время океаны составляют всего 0,02 % всей массы Земли, а атмосфера занимает примерно одну миллионную часть от ее массы. Тем не менее Мировой океан и атмосфера оказали и продолжают оказывать невероятно большое влияние на превращение Земли в уникальную планету, каковой она является сегодня.

Пять основных игроков – азот, углерод, сера, водород и кислород – исполняют ведущие роли среди подвижных газовых составляющих Земли. Все эти ингредиенты в изобилии производятся крупными звездами, широко распространяются при взрыве сверхновых звезд, и все они сконцентрировались в самых примитивных, богатых углеродом хондритах более 4,5 млрд лет назад.

В целом средний химический состав метеоритов хондритов совпадает с таковым составом Земли. Элементы большой шестерки (кислород, кремний, алюминий, магний, кальций и железо), описанной в главе 3, встречаются в похожей пропорции, так же как и разнообразные, менее распространенные элементы. Но даже самое беглое знакомство с этими удивительными обломками древности показывает, что в наше время на планете отсутствует большая часть летучих веществ, которые были раньше. Самые примитивные хондриты содержат более 3 % углерода, но все известные источники углерода на Земле содержат не более 0,1 %. Похожим образом и содержание воды в хондритах превышает среднее содержание воды в породах современной Земли примерно в 100 раз и больше. Такие существенные различия в составе указывают на бурное и беспорядочное прошлое. Большинство неустойчивых веществ либо улетучилось с Земли в космос, либо погребено так глубоко, что до них не добраться.

Ключ к пониманию превращения Земли из враждебной негостеприимной черной планеты в прохладный, обитаемый голубой мир следует искать в истории ее непоседливых летучих соединений. Но со времен первого полумиллиарда лет планеты в первозданном виде не сохранилось ни одного из летучих соединений. Почти весь азот и углерод, сера и вода претерпели бесчисленное количество изменений, хотя те же самые атомы использовались вновь и вновь. Хондриты метеоритов дают нам основу для предположений; несколько образцов минералов и горных пород времен первого миллиарда лет земной истории вкупе с данными, полученными с Луны и других объектов Солнечной системы, позволяют уточнить наши рассуждения. Так же как при изучении эволюции мантии и коры в первые 100 млн лет и процесса формирования звезд задолго до этого, ключ к сколько-нибудь достоверному сценарию следует искать в знании неизменных характеристик исследуемых элементов, в нашем случае в физических и химических свойствах летучих – азота, углерода, серы и воды.

Из этих четырех веществ легче всего разобраться с азотом. Это химически инертный газ, который образует малое число минералов, почти не участвует в образовании горных пород и в основном сосредоточен в атмосфере. Только с появлением жизни на Земле увеличилось значение азотного цикла в формировании верхних слоев планеты. Углерод и сера также выдвинулись на заметные роли примерно 1–2 млрд лет назад, когда жизнь и насыщенная кислородом атмосфера преобразовали земные реалии. Но четвертый компонент, вода, с самого начала стал определяющим для истории Земли.


Вода: краткая биография

Многообразные геологические функции воды вытекают из химических свойств окиси водорода. Не забудем, что водород – это элемент номер один, а кислород – элемент номер восемь; ни один из них не содержит магического числа двух или десяти электронов. Каждый принимающий электроны атом кислорода нуждается в двух дополнительных электронах, чтобы достичь магического числа десять, а каждому атому водорода с единственным электроном нужен еще один электрон. В результате образуется молекула с пропорцией водорода к кислороду два к одному: H2O. В этом соединении атомы принимают компактную V-образную форму: к центральному, более крупному атому кислорода с двух сторон присоединяются два атома водорода, нечто похожее на уши Микки-Мауса. Позаимствовав два электрона у двух атомов водорода, атом кислорода получает слабый отрицательный электрический заряд, а каждый из двух атомов водорода соответственно приобретает слабый положительный заряд. В результате возникает полярная молекула, в которой друг другу противостоят положительно и отрицательно заряженные частицы (примерно как уши и подбородок у Микки-Мауса).

Многие особенности молекулы воды объясняются такой полярностью. Полярная вода является суперрастворителем, поскольку сильное воздействие ее положительных и отрицательных зарядов способно разрушать другие молекулы. Поэтому в воде так быстро растворяется поваренная соль, сахар и многие другие вещества. Чтобы растворить горные породы, времени требуется больше, но за миллионы лет в океанах скопились почти все химические элементы. (В результате в каждом кубическом километре морской воды содержится около 44 кг золота, ценностью более 2,4 млн долларов, по текущему курсу драгоценных металлов, если бы существовали технологии, позволяющие добыть это золото из воды.) Такая несравненная способность воды растворять и перемещать различные химикаты превращает ее в идеальную среду для зарождения и развития жизни. Жизнь на Земле и, пожалуй, повсюду в космосе зависит от воды.

Полярность молекул воды обусловливает их прочную связь друг с другом: положительно заряженная сторона молекулы притягивает отрицательно заряженные края других молекул. Вот почему лед является таким твердым (в чем можно убедиться, если вам приходилось когда-либо падать, катаясь на коньках). Чрезвычайно крепкая межмолекулярная связь воды сказывается и в высоком поверхностном натяжении – удивительное свойство, которое позволяет мелким насекомым буквально ходить по воде. В свою очередь, поверхностное натяжение ведет к капиллярности, которая позволяет воде подниматься по узким каналам ствола растения и питать влагой деревья высотой десятки метров. Появление круглых капель дождя под влиянием сильного взаимного притяжения молекул воды – еще одно проявление поверхностного натяжения и важное условие необычайно быстрого круговорота воды на планете. Неполярные, летучие молекулы вроде метана или углекислого газа не способны образовывать круглые капли. Они просто парят в атмосфере в виде сверхтонкого, всепроникающего тумана, так что на планетах, где в атмосфере преобладают такие газы, слово «дождь» не известно.

Крепкая взаимосвязь молекул предопределяет и многие другие, весьма любопытные свойства воды: вода в жидком состоянии на 10 % плотнее льда. Почти все известные химические соединения, находящиеся в твердом состоянии, тонут в жидкости из того же вещества – это объяснимо с точки зрения интуитивной логики, поскольку в твердом веществе молекулы упаковываются в повторяющиеся правильные группы, тогда как в том же веществе, находящемся в жидком состоянии они располагаются хаотично. Представьте себе коробки с обувью в кладовой обувного магазина. Ровные стопки и ряды коробок (именно так располагаются молекулы в кристаллических структурах) занимают гораздо меньший объем в пространстве, чем их беспорядочное нагромождение (так хаотично болтаются молекулы в жидкости). Но молекулы воды отличаются большей вязкостью, т. е. оказываются гораздо более плотно связанными в жидком виде, чем в упорядоченных кристаллах льда.

Важным следствием этого свойства оказывается плавучесть льда: в виде кубиков в стакане, льдин на реке или гигантских айсбергов в океане. Если бы не эта особенность, многие водоемы каждую зиму промерзали бы до дна, вместо того чтобы образовывать толстый защитный слой льда на поверхности воды. При таком абсолютном оледенении водные формы жизни в холодных регионах вряд ли смогли существовать, да и сам круговорот воды остановился бы. Любопытно отметить, что это свойство является одним из условий (может, не самым важным) для катания на коньках и на лыжах. Сильное давление лезвия конька на твердый лед сопровождается образованием на его поверхности тончайшего слоя жидкой воды, благодаря которому коньки скользят по льду. При слишком низкой температуре (обычно ниже –73 °С) жидкая водяная смазка не образуется, что сильно затрудняет скольжение конька или лыжи.

Еще одним отличительным свойством «чистой» воды является ее недостаточная чистота. Независимо от самой тщательной фильтрации или дистилляции, вода никогда не состоит только из молекул H2O. Некоторая часть молекул, состоящих из трех атомов, неуклонно распадается на положительно заряженные ионы водорода (гидроны, или ионы H+, которые на самом деле представляют собой независимые, положительно заряженные протоны без каких-либо электронов вообще), а также отрицательно заряженные гидроксильные ионы (ионы OH). Гидроны быстро присоединяются к молекулам воды, образуя ионы гидроксония H3O+. То, что мы называем чистой водой при комнатной температуре, содержит примерно одинаковое количество ионов гидроксония и отрицательно заряженных гидроксильных ионов, в химических терминах это и есть pH = 7 (можно сказать, что «сила водорода» составляет 10–7 моль/л).

Две важные, но малоизученные характеристики первичных океанов Земли – pH и содержание солей представляют особый интерес для исследователей. Вода легко растворяет любые примеси, как положительно заряженные ионы натрия (Na+) или кальция (Са2+), так и отрицательно заряженные ионы хлора (Cl) или карбоната (СО32–). В общем случае совокупный электрический заряд любого объема водного раствора должен быть равен нулю: общее число положительных зарядов должно быть уравновешено адекватным числом отрицательно заряженных частиц. В чистой воде комнатной температуры 10–7 молей H3O+ нейтрализуются 10–7 молей OH. Однако в кислотах требуется избыток H3O+, чтобы нейтрализовать отрицательные ионы (например, хлора в соляной кислоте HCl). В щелочной среде дополнительное количество OH требуется для нейтрализации положительно заряженных ионов (например, натрия в гидроокиси натрия NaOH).

Концентрация кислотных и щелочных компонентов определяется по шкале pH. Низкие значения pH указывают на кислотные примеси, где ионов H3O+ больше, чем ионов OH. Жидкость с небольшой кислотностью со значением pH = 6 (типично для необработанной питьевой воды во многих регионах) содержит в десять раз больше ионов гидрония, чем нейтральный раствор со значением pH = 7. Вот примеры жидкостей с большей кислотностью: кофе (pH = 5, H3O+ в 100 раз больше), уксус (pH = 3, H3O+ в 10 тыс. раз больше), лимонный сок (pH = 2, H3O+ в 100 тыс. раз больше). А вот, напротив, примеры жидкостей, в которых ионы OH – преобладают над ионами H3O+ и значение pH которых больше 7 – это типичные щелочи, такие как пищевая сода (pH = 8,5), гидроксид магния (лекарство от изжоги, pH = 10) и домашние моющие средства (pH = 12). Ниже мы увидим, что показатели pH и солености первичного океана Земли являются остродискуссионными вопросами.


Вода, вода, кругом вода

Одно из самых распространенных в космосе веществ – это вода. Куда бы мы ни обратили свой взгляд, повсюду встречается вода. Ее наличие на планетах, спутниках и кометах объясняет, почему же воды так много на Земле, а также указывает на возможность присутствия жизни в космосе, поскольку вода и жизнь тесно связаны между собой. Наблюдения в телескопы могут быть обманчивыми, поскольку обилие воды в нашей атмосфере искажает представление о наличии воды на отдаленных объектах. Тем не менее в глубоком космосе на некоторых космических объектах обнаруживается ледяной покров – его определяют по выраженному поглощению замерзшей водой инфракрасных лучей.

Этот спектроскопический след показывает, что значительные объемы замерзшей воды встречаются на некоторых кометах и астероидах. Астрономические исследования зафиксировали множество ледяных миров в пределах Солнечной системы – от Плутона с его небесным спутником Хароном до Сатурна с его сверкающими ледяными кольцами. Все газовые гиганты, изначально состоящие из водорода и гелия, в своих плотных атмосферах содержат значительные запасы водяного пара. На громадных спутниках Юпитера Европе и Каллисто, предположительно, под многокилометровым покровом льда находятся еще более глубокие океаны воды.

Ближние к нам планеты земного типа, на первый взгляд, кажутся безводными. Однако благодаря наблюдениям с помощью запущенного НАСА на Меркурий космического аппарата Messenger обнаружились солидные отложения льда в холодных полярных кратерах, дна которых не достигают лучи Солнца. Следующая планета, Венера, возможно, вначале имела запасы воды, сопоставимые с земными, но в настоящее время воды на ее поверхности, скорее всего, почти нет. Ее раскаленная углекислая атмосфера свидетельствует о безудержном парниковом эффекте и о давно исчезнувшей поверхностной воде, когда-то существовавшей на планете.

Совершенно иная картина открывается на Марсе, где белые шапки полярного льда то увеличиваются, то уменьшаются в соответствии с 687-суточным марсианским годом. По мнению астрономов, на Красной планете вполне может быть вода, а значит, и жизнь. В 1870-е гг., во время сильного сближения Марса и Земли, итальянский астроном Джованни Скиапарелли зафиксировал темные линейные объекты, которые он интерпретировал как естественные долины, возможно, произведенные работой воды, по-итальянски – canali. В переводе это слово было ошибочно передано как «каналы», что означает высокотехнологичные инженерные сооружения, и это породило устойчивое мнение о наличии на Марсе разумной жизни. Наиболее горячим приверженцем этой идеи был гарвардский астроном Персиваль Лоуэлл, буквально одержимый открытиями Скиапарелли. Он потратил все семейное состояние на постройку обсерватории во Флагстаффе, штат Аризона, и там занимался исключительно наблюдениями за Марсом. Пользуясь новейшим 60-сантиметровым телескопом и ясным аризонским небом, он полагал, что сумеет разрешить загадку сети каналов, протянувшихся от полярных ледников к засушливой зоне экватора. В своих чрезвычайно популярных книгах: Mars (1895), «Марс и его каналы» (Mars and Its Canals, 1905) и «Марс как прибежище жизни» (Mars as the Abode of Life, 1908) Лоуэлл описывает последнее отчаянное техническое достижение расы, исчезнувшей вследствие недостатка воды.

Красочные фантазии Лоуэлла породили целую волну научно-фантастических романов и рассказов (включая классическую «Войну миров» Г. Уэллса в 1898 г.), но так и не сумели убедить научное сообщество, что на Марсе имеется вода, тем более жизнь. Несмотря на более чем вековую историю исследований с использованием все более и более мощных телескопов, а также с запуском на Марс сложнейшей техники: зондов (начиная с Mariner-4 в 1965 г.), искусственных спутников (первым из них стал Mariner-9 в 1971 г.) и посадочных модулей (начиная с Viking в 1976 г.), убедительных доказательств наличия на Марсе источников воды и водоемов так и не было получено. В конце 1970-х гг. путем спектрального анализа с помощью Viking было документально зафиксировано наличие водяного льда в северной полярной зоне, но только в 2000-е гг., благодаря применению сложнейших приборов на последнем поколении искусственных спутников, а также манипуляторов на зонде Phoenix и марсоходах Spirit и Opportunity было подтверждено наличие огромных запасов воды и условий ее залегания на Марсе.

В настоящее время большая часть водных запасов Марса состоит из зон вечной мерзлоты и, возможно, грунтовых вод в более теплых регионах – потенциальные водоемы, которые пока остаются изолированными от поверхностного сухого слоя. Признаки наличия таких глубинных резервуаров были обнаружены в 2002 г. с помощью высокоточного нейтронного спектрометра[8], установленного на зонде Odyssey, запущенном к Марсу. Космические лучи, обстреливая поверхность Марса, способны выбивать нейтроны из водородосодержащих (а значит, и водоносных) отложений. Спектрометр разработан для обнаружения таких нейтронов на обширных территориях марсианской поверхности, от экваториальных зон до высоких широт. Однако эти интригующие результаты вызвали не меньше вопросов, чем дали ответов, поскольку таким образом невозможно было определить характер агрегатного состояния воды – жидкость это, лед или часть минерального соединения.

В 2007 г. запущенная НАСА многофункциональная автоматическая космическая станция Mars Reconnaissance Orbiter, используя радар, способный «видеть» сквозь грунт, представила изображение в достаточно высоком разрешении скрытой в глубинах Марса воды. Эти новаторские исследования обнаружили скопления льда размером с ледники в умеренных широтах южного полушария. Позднее европейская космическая станция Mars Express Orbiter, используя аналогичный радар, обнаружила глубинный лед на большей части территории планеты. В зонах, близких к южному полюсу, зафиксированы ледники толщиной более полукилометра. Поистине, Марс может располагать объемом воды в виде льда, которая могла бы покрыть всю планету океаном глубиной несколько сотен метров. Возможно, когда-то на Марсе существовали родственники земных океанов.

Наличие воды также может быть установлено по присутствию особых горных пород и минералов. Посадочный модуль Phoenix (НАСА), а также марсоходы Spirit и Opportunity обнаружили многочисленные дополнительные доказательства в виде минералов, образованных при взаимодействии горных пород с водой. В приповерхностных отложениях Марса часто встречаются водосодержащие глинистые минералы, и, возможно, именно они являются тем богатым источником водорода, который был обнаружен ранее с помощью нейтронного спектрометра. Эвапориты, минералы, которые обычно встречаются на месте высохших озер и морей, так же часто встречаются на Марсе, как и опал – слабо кристаллизованная разновидность кварца, которая обычно образуется при просачивании горячей воды сквозь осадочные породы.

Используя новые подходы к исследованию Красной планеты, ученые находят все больше и больше доказательств, что в былые времена на поверхности Марса была вода. Фотографии высокого разрешения показывают древние русла рек и промоины с разбросанными валунами, каплевидные острова, оползни и сеть проток. Эти формы рельефа врезаются в осадочные отложения, которые ранее, видимо, были отложены мелководными озерами или морями. Ведь террасы, похожие на морские, которые охватывают северное полушарие Марса, указывают на то, что когда-то этот регион мог быть больше чем на треть покрыт океаном. Если все обстояло так, то менее разогретый Марс, возможно, за миллионы лет до Земли был голубой планетой, пригодной для жизни.

И наконец, Луна – ключ к пониманию того, как сформировалась вода на ее большом брате – Земле. С общепринятой точки зрения, Луна сухая, как кость (на самом деле она даже суше кости, которая сохраняет в себе довольно много воды даже жарясь в пустыне на солнце). Многие данные подтверждают степень сухости Луны: земные телескопы не фиксируют характерного инфракрасного поглощения; в составе образцов лунного грунта, собранных «Аполлонами» со всех шести мест посадки, не обнаруживается следов воды (с учетом возможностей аналитического оборудования 1970-х гг.); находка железа, пролежавшего на поверхности Луны более четырех миллиардов лет, без признаков ржавчины, исключает малейшую возможность наличия агрессивной воды.

Хотя общепринятая точка зрения – вещь своеобразная. Наступает момент, и находится человек, подвергающий сомнению то, что всеми принималось за истину, и порой это приводит к интересным открытиям. В 1994 г. единственный полет Clementine предоставил радиолокационные измерения, показавшие наличие замерзшей воды, но это мало кого убедило. Четыре года спустя на Lunar Prospector была использована нейтронная спектроскопия, что позволило выявить значительную концентрацию атомов водорода, а следовательно, и вероятное наличие водяного льда или водосодержащих минералов поблизости от полюсов Луны. Но многие эксперты все же указали на солнечный ветер – как на более вероятный источник атомов водорода. В октябре 2009 г. специалисты НАСА спланировали падение последней ступени ракетоносителя Atlas в один из лунных кратеров (кратер Кабеус, вблизи южного полюса Луны) и тщательно исследовали шлейф обломков на содержание воды. Как и предполагалось, вынесенная пыль включала небольшое, но различимое количество животворящей влаги – вполне достаточное для возобновления интереса к вопросу о существовании воды на Луне. В том же октябре журнал Science опубликовал три статьи подряд, утверждающих, что теперь существует бесспорное доказательство наличия воды на Луне.

Здесь на сцену вышел Эрик Хаури с коллегами из Института Карнеги. Используя ионный микрозонд – высокочувствительный прибор, не существовавший во времена первого поколения ученых, исследовавших образцы лунного грунта, – команда Хаури вернулась к исследованию цветных стеклянных шариков, вроде тех лунных образцов, с которыми я впервые работал в далеком 1976 г. Лет за десять до Хаури эти шарики изучали на наличие признаков воды другие ученые, но приборы, бывшие в их распоряжении, не могли соперничать в точности с ионным микрозондом, с помощью которого можно вести измерения в масштабе одной тысячной миллиметра. Хаури и его коллеги пришлифовали «бисерины» таким образом, что в ионном зонде стало возможно увидеть их концентрические структуры. Наружный слой образца содержал очень мало воды – одну миллионную объема, но сердцевина крупнейших образцов содержала в сто раз больше воды. За миллиарды лет большая часть воды, содержавшейся вначале в стеклянных бусинах, испарилась в космос, причем с поверхности в большей степени, чем из сердцевины. Как бы то ни было, учитывая факт значительного содержания оставшейся внутри воды, Хаури с коллегами считают, что исходное содержание воды в лунной магме было не менее 750 миллионных объема – огромное количество воды, сопоставимое со многими вулканическими породами на Земле и более чем достаточное для вулканической активности, в ходе которой взрывные извержения вулканов выбрасывали магму на поверхность миллиарды лет назад.

Если вулканы Луны в прошлом извергались под воздействием воды, то где-то внутри мерзлых лунных недр должны храниться огромные массы Н2О. Поскольку Луна образовалась из отколовшегося при столкновении с Тейей куска земной мантии, можно предположить, что наша планета также располагает громадными скрытыми запасами воды глубоко внутри.


Зримый круговорот воды

Сколько бы воды мы ни обнаружили на Луне или на Марсе (похоже, ее там много), единственным водным миром в Солнечной системе остается Земля. Рассказ о земной воде – ее запасы на планете, в каких формах она существует, где находится и как перемещается – дело нелегкое. Еще в 1990-е гг. считалось, что океаны являются самым крупным хранилищем воды, вмещающим около 96 % всей водной массы Земли. На втором месте с большим отрывом располагаются ледяные шапки и ледники, которые на сегодня содержат примерно 3 % (и, вероятно, не более 5–6 % во времена расползания ледников на пике ледникового периода). Грунтовые воды (вся близкая к земной поверхности вода, как в хорошо очерченных водоносных слоях, так и в дисперсном виде) составляют примерно 1 %, тогда как вода озер, рек, ручьев, прудов и атмосферы, вместе взятых, составляет не более сотых долей процента всей поверхностной воды на Земле.

Вся эта вода находится в постоянном движении, перемещаясь из одного водоема в другой за временной интервал от дней до миллионов лет. Динамичный, поддерживающий земную жизнь круговорот воды является самой очевидной причиной изменений на нашей вечно меняющейся планете. Представьте себе перемещение одной-единственной молекулы Н2О – молекулы, состоящей из одного атома кислорода и двух атомов водорода, – возрастом много миллиардов лет. Начнем прослеживать путь нашей молекулы из могучего Тихого океана, где наибольшая часть приповерхностных молекул воды проводит весь отпущенный им срок существования. Мощное и холодное Калифорнийское океанское течение уносит эту молекулу от побережья Аляски на юг, вдоль побережья Калифорнии до Байи и далее к экватору. По мере прогрева и подъема глубинных слоев наша молекула поднимается почти к поверхности океана и начинает грандиозное путешествие по часовой стрелке вокруг северной части Тихого океана – вначале в Северном экваториальном течении, по направлению на запад, огибая Японию, затем в Северном тихоокеанском течении, направляясь на восток к Северной Америке. Когда наша молекула снова оказывается вблизи Калифорнии, она окончательно поднимается на поверхность океана и испаряется в атмосферу, где участвует в образовании облаков.

Преобладающие ветры несут массу дождевых облаков на восток, пересекая пустынный Юго-Запад в направлении Скалистых гор. По мере того как облака поднимаются в более холодные слои атмосферы, они начинают проливаться дождем. В конце концов, наша молекула достигает земной поверхности в составе дождевой капли; извилистым путем она переходит из ручейка в ручей, затем в речушку, затем в полноводную реку. До этого момента молекула двигается быстро – примерно год-два уходит на пересечение Тихого океана, день-другой на подъем к облакам и выпадение вместе с дождем, около недели на пересечение холмистой местности вместе с потоком. Однако, погрузившись в почву, она попадает в обширный водоносный горизонт и может провести там тысячи лет, путешествуя в подземном царстве.

Здесь вмешательство человека нарушает естественный природный ритм, поскольку необходимость в воде заставляет фермеров выкачивать колоссальные объемы грунтовых вод для поддержания земледелия в засушливом регионе Юго-Запада США. Наша молекула снова оказывается на поверхности и через поливальные установки попадает на кукурузные поля Техаса, где быстро испаряется, устремляясь в безоблачное техасское небо, продолжая путешествие на восток.

Эта история продолжается бесконечно. Некоторые молекулы временно распадаются на ионы – гидронии и гидроксилы, но потом снова собираются в новые молекулы воды в компании с другими атомами. Некоторые молекулы могут вмерзать в толстый ледовый покров Антарктики, где застревают на миллионы лет. Другие под воздействием различных химических реакций становятся частью глинистых минералов в составе почвы.

Живая природа также стала неотъемлемой частью круговорота воды. Растения поглощают молекулы воды и углекислого газа и под воздействием солнечных лучей соединяют их в ходе фотосинтеза, необходимого для роста корней, стволов, листьев и плодов. Богатые питательными веществами растительные ткани идут на корм животным и, подвергаясь метаболизму под воздействием дыхательных процессов, превращаются в продукты жизнедеятельности, в частности, снова выпускаемые с каждым выдохом молекулы углекислого газа и воды.


Подземный круговорот воды

С середины 1980-х гг. ученые начали всерьез задумываться о мировых запасах воды, поскольку они явно не исчерпываются приповерхностной водой. Поскольку нам известно, что подземные массы магмы содержат достаточное количество воды для поддержания вулканической деятельности, можно сделать вывод, что силикатные минералы, кристаллизованные глубоко в недрах Земли, каким-то образом улавливают молекулы H2O. Значит, должен существовать скрытый в недрах круговорот воды, который мог бы многое поведать нам о том, как и когда Земля превратилась в омываемую океанами планету, каковой она является в наше время.

Экспериментальный подход к исследованию глубинных вод строился на предположении, что наиболее распространенные минералы мантии – оливин, пироксен, гранат и их более плотные подземные разновидности – могут содержать в своем составе некоторое количество воды. В 1990-е гг. экспериментальное выявление наличия воды в «заведомо безводных» минералах стало главным содержанием минералогии высоких давлений и дало удивительные результаты. Выяснилось, что под воздействием высоких давлений и температур некоторые минералы с легкостью поглощают многочисленные атомы водорода, которые с минералогической точки зрения являются эквивалентом воды (поскольку в таких минералах атомы водорода соединяются с кислородом). Минералы, которые в условиях земной коры, куда они попадают в момент извержения вулканов и где господствуют низкие давления и температуры, неизменно остаются безводными, тогда как в глубинных слоях мантии они способны поглощать влагу.

Вообще техника эксперимента довольно проста. Берем образец оливина или пироксена, добавляем воду, нагреваем их под высоким давлением и наблюдаем, что при этом происходит с водой. На практике дело обстоит совсем не так просто. Для воспроизведения условий нижних слоев земной мантии образец должен подвергнуться давлению в сотни тысяч атмосфер и одновременно нагреву не менее чем до 2000 °С. Для совершения такой непростой операции исследователи применяют два различных подхода.

Одни предпочитают массивные прессы величиной с комнату, способные оказывать многотонное давление на крохотный образец – усовершенствованные разновидности «бомбы», которой пользовался Йодер полстолетия назад. Агрегат состоит из четырех вложенных друг в друга конструкций наподобие матрешки: каждая конструкция окружает меньшую по объему, фокусируя высокое давление на объеме, который становится все меньше и меньше. Снаружи две гигантские металлические плиты сдавливают внутренние части установки сверху и снизу с силой в тысячи тонн. Эти внешние плиты давят на вторую конструкцию, состоящую из шести изогнутых стальных частей – три сверху и три снизу, которые равномерно сдавливают третью конструкцию, представляющую собой куб из восьми карбид-вольфрамовых пластин. Сам образец минерала в виде пыли плюс вода находится в четвертой, внутренней конструкции – контейнере, чаще всего с золотой или платиновой внутренней поверхностью, чтобы не допустить выдавливания образцов за пределы контейнера. Для усиления эффекта давления контейнер с образцом и водой снабжен внутренним электрическим нагревателем, и температура нагрева измеряется непрерывно с помощью тончайшей проволочной термопары.

Другой популярный экспериментальный подход для воссоздания условий земной мантии основывается на применении камеры с алмазной наковальней, которая обеспечивает мощное давление путем сжатия двух алмазов с плоскими поверхностями. Берем два алмаза бриллиантовой огранки размером полкарата, вроде камушков в обручальном кольце, и полируем их острые концы, чтобы создать плоскую круглую поверхность полмиллиметра в диаметре – это и образует опорные плоскости наковален. Затем помещаем алмазы в сверхточно отрегулированные металлические тиски, установив между ними тонкий лист металла с небольшим отверстием в центре. Центруем отверстие между двумя алмазными кристаллами, загружаем в него минеральный образец и воду и сжимаем тиски. Благодаря крошечной площади наковален удается достичь огромного давления. Камеры с алмазными наковальнями установили рекордное давление до 3 млн атмосфер, равное тому, что наблюдается в земном ядре. При этом прозрачные ограненные алмазы позволяют наблюдать за образцом в процессе давления. Так что эксперимент сопровождается использованием полного набора спектроскопических измерений, а нагрев до температур мантии легко осуществляется мощным лазером, луч которого хорошо проходит сквозь алмазные поверхности наковален.

Если эксперимент получается – достигаются и поддерживаются необходимые давление и температура, термопара не разрушается, а образец не выдавливается, – начинается решение хитроумных аналитических задач. Водосодержащие минералы вроде глины или слюды распознаются легко, но как измерить миллионные доли воды в составе сухого образца? В некоторых случаях применяется ионный зонд; именно его высокая чувствительность и пространственное разрешение позволили Эрику Хаури обнаружить признаки воды в лунном вулканическом стекле. Другим хорошим способом является инфракрасная спектроскопия, которая позволяет проследить характерные связи между кислородом и водородом. Возникшие между водородом и кислородом новые соединения изменяют характер взаимодействия инфракрасного излучения и кристалла, и благодаря этим сдвигам можно отследить попадание воды в структуру минерала. Однако осторожные коллеги (и недоверчивые конкуренты) непременно усомнятся в том, что эксперимент безупречен, а аналитические приборы достаточно чувствительны. Единственное включение жидкости – частичка воды, неразличимая под микроскопом, может дать ложный сигнал при всей изощренности измерений.

Как все новое в науке, такие эксперименты потребовали времени, чтобы получить признание, но чем больше проводилось наблюдений, тем больше минералов из глубин земной мантии обнаруживали способность удерживать воду. Относительно безводными являются минералы нижнего слоя земной коры – оливин и пироксен, содержащие не более 0,01 % воды. Но стоит повысить давление до 100 000 атмосфер, а температуру до 1000 °С, характерных для мантии, как оливин трансформируется в вадслеит, способный удерживать до 3 % воды. Соответствующий слой, переходная зона земной мантии на глубине от 410 до 659 км, является одним из самых «обводненных» мест на планете и, возможно, содержит в девять раз больше воды, чем все океаны на поверхности. Минералы нижнего слоя мантии менее насыщены водой, но зато значительно превышают в совокупности объем минералов на Земле в целом, составляя примерно половину всего земного вещества, так что, по некоторым оценкам, эта область содержит в 16 раз больше воды, чем океаны. С учетом возможности существования других водонасыщенных минералов, а также вероятного наличия большого количества водорода в железном ядре, в недрах планеты могут содержаться запасы воды объемом более восьмидесяти океанов.


Первый океан

По самым осторожным оценкам, начальные запасы летучих веществ на Протоземле более чем в 100 раз превышали их нынешний объем на Земле. Одна из основных проблем в исследовании летучих элементов заключается в том, чтобы определить, сколько их было и как они исчезли.

Кое в чем мы можем быть уверены. С самого первого дня огромное количество летучих веществ выбрасывалось наружу по мере того, как громадные вулканы извергали из глубин Земли гигантские клубы пара в стремительно густеющую атмосферу. В первые несколько миллионов лет существования Протоземли ее атмосфера была во много раз плотнее, чем сейчас. На протяжении миллионов лет из нее на поверхность планеты обрушивалась вода, охлаждая первую твердь и образуя обширные, но мелкие океаны.

А затем Великое столкновение сдуло прочь всю атмосферу. Почти все молекулы, оказавшиеся на поверхности, исчезли в космическом пространстве, словно кто-то нажал гигантскую кнопку перезагрузки. У нас нет достоверных данных, какие объемы азота, воды и других летучих элементов при этом испарились, но явно колоссальные. В течение последующих пяти миллионов лет множество небольших каменных глыб, около 150 км в диаметре, обрушивались на поверхность Земли, вызывая невообразимые разрушения, и каждый раз при этом испарялась значительная часть океанов, уменьшая запас летучих веществ.

И все же в течение нескольких миллионов лет после Великого столкновения водяные пары снова стали основным компонентом первозданной атмосферы, где постоянно бушевала буря, клубились темные тучи, завывал ветер, сверкали молнии и беспрерывно шел проливной дождь. Омываемая ливнями базальтовая кора остывала и твердела, а глубокие провалы постепенно заполнялись водой, образуя океаны. На какое-то время над земной поверхностью сформировалась глобальная сауна, поскольку тонкая пленка поверхностной воды проникала в трещины и расщелины, попадая на раскаленные камни земных недр и возвращаясь на поверхность в виде колоссальных гейзеров из пара и перегретой воды. Такое интенсивное взаимодействие воды и раскаленных камней ускоряло охлаждение коры, образуя все более глубокие водоемы, озера, океаны.

Невозможно подсчитать, сколько времени понадобилось на формирование Мирового океана, но свидетелем этого процесса оказываются древнейшие на земле кристаллы. Некоторые из самых древних горных пород можно обнаружить в слоях осадочных отложений, возрастом более трех миллиардов лет, вскрывающихся в районе горного массива Джек-Хиллс среди засушливых плоскогорьев Западной Австралии. Минералы и горные породы размерами с песчинку, которые слагают эти отложения, образовались в процессе эрозии давно исчезнувших массивов гораздо более древнего возраста. Малая часть этих песчинок, примерно одна на миллион, состоит из циркона – силиката циркония (ZrSiO4), одного из прочнейших в природе материалов.

Отдельные зерна циркона, размером меньше точки в конце предложения, первоначально сформировались как акцессорные минералы вулканических пород. Представьте себе твердеющий расплавленный базальт, в котором содержатся только следовые количества циркония. Большинство химических элементов, редких или распространенных, легко входит в кристаллические структуры пироксена, оливина или полевого шпата. Но цирконию нет места в обычных минералах. Он стремится обособиться, образуя обособленные крошечные кристаллики.

Эти неприметные кристаллики циркона в силу целого ряда обстоятельств стали уникальным источником сведений о ранних стадиях развития Земли. Во-первых, цирконы могут существовать практически вечно (по крайней мере пока существует Земля). Единичный кристалл циркона вымывается из одной породы (возможно, из вулканического вещества, где он изначально образовался), потом становится частью осадочного слоя песчаника, затем выветривается из него снова и снова – и так продолжается миллиарды лет. Одно и то же зерно циркона может пройти через десяток различных, последовательно образующихся и разрушающихся осадочных пород.

Во-вторых, по кристаллам циркона можно определять геологический возраст, поскольку они часто включают уран, который может составлять примерно 1 % от общего числа их атомов. Радиоактивный уран с периодом полураспада в 4,5 млрд лет является самым точным секундомером в природе. Как только кристалл циркона сформировался, атомы урана оказываются запертыми в нем и начинают распадаться с постоянной скоростью; половина из них распадается в среднем за 4,5 млрд лет, при этом каждый трансформируется в стабильный атом свинца. Соотношение распадающихся материнских атомов урана и образующихся дочерних атомов свинца позволяет точно определить возраст кристалла циркона.

Наконец, два из каждых трех атомов циркона состоят из кислорода, что позволяет определить температуру образования кристалла. Вспомним, что одним из свидетельств образования Луны оказалась характерная пропорция устойчивых изотопов кислорода: Луна и Земля имеют одинаковое соотношение кислорода-16 к кислороду-18, что свидетельствует о том, что они образовались на равном удалении от Солнца. Подобным же образом, через соотношение кислорода-16 и кислорода-18, можно определить температуру, при которой образовался кристалл циркона: более тяжелые образцы, обогащенные кислородом-18, указывают на более низкую температуру образования. Для вулканических пород такая температура может служить показателем содержания воды в магме, в которой вырос кристалл циркона, потому что вода снижает температуру кристаллообразования. Более того, соотношение изотопов в воде, близкой к поверхности, тяготеет к преобладанию тяжелого кислорода, так что кристаллы циркона с высоким содержанием кислорода-18, с большой долей вероятности, взаимодействовали с поверхностной водой.

Таким образом, кристаллы циркона в древнейших горных породах могли пережить много циклов отложения и эрозии, сохраняя данные о возрасте, температуре и наличии воды в окружающей среде во время образования. Всю эту информацию хранят кристаллы, едва заметные невооруженным глазом!

Подводя общий итог, можно сказать, что многие кристаллы циркона из горного массива Джек-Хиллс в Австралии имеют одинаковый возраст, превышающий 4 млрд лет, но возраст одного самого древнего зерна приближается к умопомрачительным 4,4 млрд лет. Этот древнейший из известных кристаллов циркона – поистине самый старый из сохранившихся твердых фрагментов Земли – имеет поразительно богатый кислородом состав. Некоторые исследователи полагают, что 4,4 млрд лет назад, когда Земле было всего 150 млн лет от роду, ее поверхность была сравнительно прохладной и сырой, следовательно, в то время существовали океаны.

Однако другие ученые не вполне согласны с этой гипотезой. Они указывают на то, что кристаллы циркона могут быть невероятно сложными: это зерно возрастом 4,4 млрд лет, как практически и все слегка более молодые собратья из Джек-Хиллс, обладает древним кристаллическим ядром. Детальное изучение строения отдельных кристаллов выявило наличие концентрических слоев более молодого циркона, выросшего вокруг более старых слоев. Совсем нередко бывает так, что наружная оболочка отдельного кристалла моложе его ядра как минимум на миллиард лет, что соответствует сложным вариациям содержания изотопов кислорода. Если более древнее ядро кристалла подвергалось изменениям в течение очередных стадий роста кристалла, то данные об истинном состоянии земной поверхности в далекой древности могут быть скрыты.

Как бы то ни было, в истории с цирконом большинство специалистов сходятся в том, что не более 100 млн лет спустя после Великого столкновения Земля превратилась в сверкающую голубой водой планету, покрытую океаном километровой глубины. Из космоса она, должно быть, выглядела ярко-голубым мраморным шаром, над которым вились отдельные белые облака, но в целом преобладал ультрамарин. (Цвет океана обусловлен простыми законами физики. Солнечный свет, отражаясь от поверхности воды, сочетает все цвета радуги – красные, желтые, зеленые и синие оттенки, но вода сильнее поглощает красную часть спектра, так что нашему зрению преимущественно предстают волны света из синей части спектра.)

А как же суша? Ныне почти треть земной поверхности составляют континенты, но на заре времен, в огненный гадейский период континенты еще не сформировались. Лишь кое-где среди волн первозданного голубого океана вздымались исходящие паром вулканические острова. Их конические очертания и узкие, черные щебнистые осыпи изредка нарушали однообразный водный простор между полюсами и экватором.

Обращаясь мысленно к опоясывающему Землю древнему океану, мы пытаемся вообразить, каким он был. Был ли он горячим? Возможно, в самом начале, учитывая медленно остывающий под ним океан магмы. Был ли он пресным или соленым? Вода современного океана отличается соленостью, но почему бы не предположить, что первоначальный океан на Земле был пресным, поскольку в воде тогда растворилось мало химических элементов, и лишь постепенно обретал нынешнюю соленость. Однако недавние исследования показывают, что горячий первоначальный океан очень быстро стал гораздо более соленым, чем сегодня. Обычная поваренная соль (NaCl) легко растворяется в горячей воде. В наше время около половины запасов соли Земли находится либо в соляных пластах, либо в иных соляных месторождениях на суше, представляя собой остатки испарившейся соленой воды. Большая часть этих соляных месторождений залегает глубоко под землей, но в первые полмиллиарда лет на Земле не было суши, в которой могли бы отложиться запасы соли. Следовательно, уровень солености Мирового океана в те времена по меньшей мере вдвое превышал современный. Более того, в той теплой воде в более высокой концентрации растворялись и другие элементы: железо, магний и кальций – составные части базальта.

Исследователи также предполагают, что гадейский океан мог быть по преимуществу кислотным или щелочным. Решающим фактором в этом вопросе, определяющим уровень pH и солености, является атмосферный углекислый газ. По всем данным, содержание углекислого газа в первоначальной атмосфере Земли в тысячи раз превышало сегодняшний показатель, который составляет около 0,04 % (хотя с каждым годом этот показатель увеличивается). Высокая концентрация CO2 в гадейской атмосфере означала и гораздо большее его содержание в воде, что должно было сказаться на уровне pH и солености. Углекислый газ, соединяясь с дождевой водой, образует углекислоту H2CO3. В океане карбонатный осадок частично распадается на ионы водорода, которые образуют гидронии и бикарбонат (HCO3). Этот прирост положительных ионов водорода придает океану кислотность, возможно не ниже pH = 5,5. Такой уровень кислотности, в свою очередь, ускорял выветривание базальта и других пород, насыщая и без того соленый океан.


Парадокс тусклого Солнца

Мало нам проблем с противоречивыми выводами о первоначальном океане, а тут еще одна загадка: согласно современным астрономическим наблюдениям и все более точным астрофизическим расчетам, звезды, подобные нашему Солнцу, на протяжении своего существования медленно, но неуклонно становятся все более яркими. По таким расчетам, молодое Солнце 4,4 млрд лет назад было на 25–30 % менее ярким, чем сегодня. Более того, всего около 1,5 млрд лет назад свет нашего светила оставался недостаточно комфортным. Если сегодня Солнце внезапно потускнеет до такого состояния, Земля стремительно превратится в пустынный ледник: океаны покроются льдом от полюсов до экватора и все живое на Земле погибнет. При таком катастрофическом изменении климата выживут только самые выносливые организмы, подземные микроорганизмы и животные, обитающие в защищенных гидротермальных зонах поблизости от вулканов.

С учетом нежаркого раннего Солнца Земля должна была бы быстро обледенеть. И все же геологические данные недвусмысленно свидетельствуют об изобилии жидкой воды на ее поверхности по крайней мере 4 млрд лет назад. Часто встречаются осадки, отложенные как в мелких, так и в глубоких водоемах. Именно в этот период на Земле зародилась и окрепла жизнь. Как же могло получиться, что первоначальный океан оставался жидким?

Конечно, часть теплового дефицита при нежарком Солнце компенсировалась раскаленным состоянием самой Земли. Хотя образование поверхностной коры над магматическим океаном уже состоялось, обилие расплавленных горных пород и вулканическая активность в достаточной мере согревали поверхность Земли. Поверхностный океан на согретой изнутри планете продолжал оставаться теплым даже в процессе остывания и утолщения земной коры.

Популярная гипотеза, объясняя парадокс прохладного Солнца, указывает на мощный парниковый эффект, возникший под воздействием концентрации углекислого газа в атмосфере, возможно, раз в десять более плотной, чем в наше время (именно высокая концентрация CO2 могла вызвать окисление океана и повысить его соленость).

Другой научный сценарий исходит из того, что Земля, сначала в черной фазе, затем в голубой, поглощала гораздо больше солнечной энергии, чем сегодня. В наше время океан поглощает больше света, чем суша, – возможно, вода первоначальных океанов отличалась более высоким содержанием железа. Это усиленное поглощение солнечной энергии сочеталось с недостаточной облачностью, которая способствует рассеянию света; в наши дни растения и химические элементы играют важную роль в образовании облаков, но миллиарды лет назад никаких растений, способных усилить процесс сгущения облачности, на Земле не было.

Существует и другая гипотеза, согласно которой важная роль отводится высокому содержанию парникового газа метана в атмосфере. Любопытным следствием концентрации метана в атмосфере могли стать химические реакции в верхних слоях атмосферы, в результате которых ультрафиолетовое излучение запустило синтез разнообразных органических молекул, включая составные элементы элементарных живых форм. Скопление таких органических молекул могло способствовать образованию толстого слоя тумана, превратившего голубую Землю в оранжевую планету, чем-то похожую на крупный спутник Сатурна – Титан.

Таким образом, не располагая точными данными о положении дел в те времена, мы имеем несколько возможных объяснений того, почему Земля не превратилась в обледеневший шар. Об одном можно утверждать с уверенностью: однажды возникший, Мировой океан сыграл важную роль в формировании структуры земной поверхности – в формировании рельефа, в эволюции минеральных веществ и в происхождении биосферы. Вода продолжает воздействовать на все стороны жизни как концентратор минеральных ресурсов, как главный фактор эволюции земной коры и как среда для всех видов жизни.



Глава 5
Серая Земля

Первичная гранитная кора

Возраст Земли: от 200 до 500 млн лет

Сегодняшняя Земля – это планета контрастов: одну ее треть занимает суша, две трети – вода; из космоса планета смотрится как смесь голубого, коричневого и зеленого цветов с завихрениями белого. Не так все выглядело 4,4 млрд лет назад, когда разбросанные повсюду симметричные конусы вулканов из черного базальта были единственными скудными островками суши, разнообразившими монотонную голубизну неглубоких морей. Картина изменилась с появлением гранита – грубой, шероховатой прочной основы континентов.

История Земли представляет собой процесс дифференцирования – разделения и концентрации элементов во все новые и новые породы и минералы, в моря и континенты и, наконец, в живые формы. Это повторялось раз за разом. Внутренние плотнотельные планеты – Меркурий, Венера, Земля и Марс – формировались в то время, когда интенсивные порывы солнечного ветра отделяли водород и гелий от более тяжелой шестерки элементов, выталкивая легкие газообразные элементы наружу, в область таких гигантов, как Юпитер, Сатурн, Уран и Нептун. На Земле тяжелое расплавленное железо устремлялось к центру по мере того, как металлическое ядро отделялось от насыщенной перидотитом мантии. В результате частичного расплавления перидотита образовался базальт – порода, богатая кремнием, кальцием и алюминием, которая, отделившись от перидотита, сформировала первую, тонкую и черную земную кору. В результате извержений базальт выбрасывался на поверхность, а вода и другие летучие вещества отделялись от базальтовой магмы, создавая океан и атмосферу. Каждое извержение разделяло и вновь соединяло элементы, всякий раз ускоряя расслоение и увеличивая разнообразие веществ на планете.

Возникновение континентов стало следующим важным этапом эволюции Земли. По мере того как остывали внешние слои базальтовой коры, формировалась своего рода крышка, заслонка для все еще расплавленной магмы в нижних слоях. Базальт, нагреваемый снизу, снова начинал плавиться при сравнительно низких температурах, чему способствовало наличие воды, – примерно при 700 °С. Повышение температуры увеличивало объем расплавленного базальта: вначале расплавилось 5 %, потом 10 %, затем 25 %. Одновременно плавился периодит, и в результате получилась магма, состав которой существенно отличался от начальной базальтовой породы. В новом сплаве заметно увеличивалось присутствие кремния, а также натрия и калия. В этой расплавленной жидкости также концентрировалась вода и такие редкие элементы, как бериллий, литий, уран, цирконий, тантал и многие другие. Вновь образованная кремнистая магма отличалась гораздо меньшей плотностью, чем базальт, а потому неминуемо пробивалась к поверхности, формируя первый гранит.

Большинство гранитов имеет простой минеральный состав – они состоят всего из четырех минералов. Прозрачные бесцветные кристаллы кварца – чистого оксида кремния – изобилуют в граните. Их жесткие зерна, выветриваясь, создали первые на Земле белые песчаные пляжи. Две разновидности полевого шпата, в составе которых преобладает либо калий, либо натрий, придавали первым земным гранитам однообразный серовато-белый оттенок. Кроме того, в каждом виде гранита присутствовали доли четвертого, темного железистого минерала – либо пироксена, либо слюды, а иногда удлиненные кристаллы амфибола. Приглядитесь к полированному граниту столешницы или облицовки зданий – и вы увидите там все четыре компонента.

Наличие более редких элементов может проявиться в крохотных зернах дополнительных минералов, например циркона, в котором сконцентрирован цирконий. В предыдущей главе уже упоминалось о мелких красных кристаллах циркона, извлеченных из осадочных пород в горах Джек-Хиллс в Австралии, указывающих на существование первоначального океана 4,4 млрд лет назад. Те же самые кристаллы, образованные в более прохладной, влажной среде, могут указывать на ранние сроки формирования гранита. Цирконы из Джек-Хиллс не только содержат тяжелые изотопы кислорода, подтверждающие наличие воды и относительно прохладных температурных условий их формирования, но и включают отдельные вкрапления кварца (в основном, кристаллы возрастом 4 млрд лет) – минерала, чрезвычайно редко встречаемого до образования гранитов. По мнению некоторых специалистов, эти древние, охлажденные кристаллы циркона, содержащие кварц, являются последними сохранившимися остатками древнейшей гранитной коры.

Происхождение гранита является первым свидетельством отличия эволюции минералов Земли от эволюции минералов на соседних планетах. Образование гранита требует огромного количества базальта, располагающегося близко к поверхности планеты, а также интенсивного источника внутреннего тепла, способного его расплавить. Планеты меньшего размера, Марс и Меркурий, а также спутник Земли Луна тоже покрыты базальтовой корой, но они слишком малы, чтобы образовать большое количество гранита. Им недостает внутреннего источника тепловой энергии. Несомненно, и на этих планетах образовалось какое-то количество гранита, но оно не идет ни в какое сравнение с глубоко укорененными гранитными континентами Земли.


Плавучесть

Зачаточная земная кора из черного базальта, размягчаемая теплом, идущим из недр планеты, плотность которой была раза в три больше воды, не могла обеспечить устойчивый рельеф. Вулканические извержения километр-два высотой могли образовать разбросанные на значительном расстоянии черные острова, но до образования континентов на Земле не существовало ни крупных горных массивов, ни глубоких океанских впадин. Гранит со своей сравнительно низкой средней плотностью (в 2,7 раза плотнее воды) сыграл решающую роль. Гранит неизменно всплывает поверх базальта и перидотита; он образует крупные нагромождения, вздымаясь на несколько километров над поверхностью, подобно айсбергу. Лед, будучи на 10 % легче воды, может служить аналогом. Из-за этой разницы не более 10 % объема айсберга возвышается над водой. Зазубренный айсберг высотой метров 60 может подниматься над водой всего на 10 м – в результате мы можем наблюдать так называемую «верхушку айсберга». По той же причине гранит, плотность которого на 10 % меньше, чем у базальта, всплывает над его поверхностью в аналогичной пропорции.

Итак, базальтовая кора Земли плавилась, образуя гранитные слои один над другим, начали формироваться похожие на верхушки айсбергов выступы над поверхностью. Гранитный слой толщиной 1,5 км мог возвышаться над уровнем базальтовой коры почти на 300 м. Однако со временем масса гранита увеличилась, и ее толщина достигла многих километров; соответственно континентальные массивы все выше поднимались над океаном, а некоторые горные гряды вздымались над поверхностью воды на тысячи метров. Ныне цепь Скалистых гор на западе Америки, гранитные корни которых уходят в глубину более чем на 60 км, включает отдельные пики до 4 км высотой. Этот становой хребет Американского континента возвышается как свидетельство плавучести гранита.

В 1970 г., когда я учился на геологическом факультете MIT, выталкивающая сила как основа геологических изменений была незыблемым правилом во всех учебниках. (Мы пользовались 2-м изданием книги британского геолога Артура Холмса «Основы физической геологии»[9], выпущенной в 1965 г. и прекрасно иллюстрированной.) Это явление называлось «изостазия». Ведущая сила «вертикальной тектоники» называлась «изостатическим равновесием». Замечательная гравюра, почти без изменений перешедшая из учебников геологии XIX в., изображала ряд прямоугольных деревянных блоков, плавающих в воде. Более объемные блоки больше возвышались над водой, подобно горам. Мы узнавали, как океанические бассейны заполнялись толстыми слоями отложений, а эти отложения плавились, образуя гранитные массивы. Мы изучали, как на основе этих плавучих гранитных основ постепенно вырастали горы. В то время это звучало вполне убедительно, и до сих пор эта гипотеза преобладает в представлении о том, как более 4 млрд лет назад сформировалась земная кора.

На ранних этапах истории Земли, возможно, в первые две сотни миллионов лет, над огненной поверхностью начали формироваться небольшие плавучие серые гранитные массивы, а в глубине под ними частично плавился базальт. В те времена вертикальная тектоника и изостазия преобладали, как и утверждал Артур Холмс. Эти первые континентальные голые островки гранита омывались всеми волнами и овевались всеми ветрами. Выветривание кристаллов кварца медленно формировало узкие полоски песчаных берегов, а отложения полевого шпата превращались в скудную глинистую почву. Первые разрозненные гранитные острова отличались малыми размерами, поднимались невысоко над поверхностью океана – и ничто не предвещало, что они превратятся в будущие континенты.


Повторный удар?

И все-таки как же испещренная вулканами, базальтовая Земля превратилась в планету с обширными гранитными континентами? Как несколько первых одиноких гранитных островков разрослись в громадные массивы суши, заполнившие оба полушария? Ученые выдвигали самые невероятные гипотезы. Одна из распространенных идей не отличалась оригинальностью: формирование континентов обусловлено случайностью – ударом астероида.

Действительно, в течение миллиарда лет после уничтожения Тейи и образования Луны время от времени Землю атаковали астероиды. Это неопровержимый факт. По оценкам экспертов, десятки крупных астероидов более сотни километров в диаметре, блуждающие остатки какой-нибудь планеты раннего периода, сталкивались с Землей в эпоху ее формирования. Представим себе, как 4 млрд лет назад потоки расплавленного камня поднимаются сквозь тонкую поверхность первичного океана. Десятки, если не сотни, таких огненных гейзеров вздымались из недр Земли, создавая конвекционный оборот тепловой энергии. Гигантские вулканы изрыгали базальтовую лаву, а расплавленная базальтовая кора тем временем порождала граниты, утолщая земную твердь.

И вдруг происходит катастрофа: 50-километровый астероид обрушивается на вулканический остров, уничтожая всякую твердую почву на сотни километров вокруг. Этот удар порождает гигантское озеро магмы, одновременно заваливая прилегающую к озеру поверхность сгустками расплавленной лавы и осколками камней. Космический пришелец блокирует поток магмы, которому теперь приходится искать другой выход на поверхность.

Согласно этому хитроумному сценарию, магматический поток после такой атаки меняет путь, выталкивая снизу некий микроконтинент, имеющий базальтовую основу и тонкую гранитную поверхность. Располагаясь под такой плотной, не пропускающей тепло базальтовой заслонкой, внутренний источник тепловой энергии способствует ускоренному образованию гранита и наращиванию таким образом слоя твердой гранитной корки. Эта фантастическая картина, возможно, являлась частью процесса формирования континентов на планете. За миллиард лет вертикальной тектоники, ускоренной падениями крупных астероидов, в океане возник бесконечный ряд вулканических островов смешанного базальто-гранитного состава. Так постепенно из моря поднималась суша. Четыре миллиарда лет назад громадные острова, хаотично разбросанные по всей планете, по-видимому, составляли весьма скромную часть ее поверхности.

Но вот появилась тектоника плит – и формирование земной коры вступило в ускоренную фазу.


Дрейфующие континенты

Открытие такого важного геологического механизма, как тектоника плит, оказало влияние на всю современную науку. Этой теории предшествовали по меньшей мере четыре века исследований, но довольно долгое время сама мысль о том, что целые континенты могут каким-то образом перемещаться по земной поверхности, была смутной и казалась ересью, а распространение и широкое признание получила лишь в результате интенсивной международной научной деятельности, приведшей к открытиям 60-х годов прошлого века. Но как только накопилось достаточно данных, естественные науки пережили один из самых революционных сдвигов в своей истории. На самом деле в течение пяти лет моего обучения в MIT, т. е. к середине 1970-х гг., все учебники по геологии пришлось полностью переписывать, поскольку незыблемый принцип вертикальной тектоники был полностью опровергнут.

Взгляд в прошлое показывает, что некоторые доводы против вертикальной тектоники давно должны были быть замечены. Несмотря на приличную высоту Скалистых гор, они являются просто карликами по сравнению с почти 9-километровым Эверестом, да и всем горным массивом Гималаев. Средняя глубина Мирового океана составляет примерно 3–4 км, тогда как глубина Марианской впадины в Тихом океане составляет более 11 км. Такие топографические контрасты просто не смогли бы существовать в изостатическом мире. Вертикальная тектоника не объясняет всего.

Некоторые намеки на роль латеральной тектоники (боковых движений) в геологической эволюции планеты можно найти в первых уточненных картах побережий Нового Света. К началу XVII в. уже стала очевидной поразительная совместимость между восточной береговой линией Американского континента и западными берегами Европы и Африки. Те же извилистые очертания, впадины и выступы, округленные контуры крайней юго-западной оконечности Африки и соответствующие им извивы побережья на востоке Южной Америки – все это указывало на некую древнюю картинку-пазл, фрагменты которой подходят друг к другу.

Было выдвинуто несколько причудливых гипотез в попытке объяснить загадочное совпадение между береговыми очертаниями континентов, разделенных Атлантическим океаном. Астроном Уильям Генри Пикеринг из Гарварда, сторонник теории Джорджа Дарвина об отпадении Луны от Земли (Луна оторвалась в виде расплавленного сгустка от быстро вращающейся Земли), утверждал, что одновременно с отрывом Луны в районе Тихого океана на противоположной стороне Земли образовалась впадина Атлантического океана. Некоторые усматривали в форме Атлантического океана промысел Божий. Возможно, берега Атлантического океана образовались в результате Всемирного потопа, который был вызван Господом несколько тысяч лет назад для сотворения огромного океана и «разделения земель».

Разрешить вопрос могли бы системные геологические изыскания, но четыре столетия назад даже слова «геология» не существовало, тем более каких бы то ни было изысканий. Горное дело и сельское хозяйство, движущие силы экономики, стоявшие за первыми геологическими съемками в конце XVIII в., были делом исключительно государственным и внутринациональным. Мало что предпринималось, чтобы вывести исследование геологических формаций за пределы политических границ, да и ресурсы отдельных стран отнюдь не с большой охотой соединялись в интересах общей работы. Золото в буквальном смысле принадлежало той земле, в которой его находили. В таком националистическом подходе к картографии не могло найтись места планам сопоставить геологические особенности побережий, расположенных по обе стороны Атлантического океана.

Впервые попытка подробно сравнить геологические особенности по обе стороны океана была предпринята совершенно неожиданным человеком – метеорологом Альфредом Вегенером, который большую часть жизни был связан с Арктикой. (Он умер в возрасте 50 лет, участвуя в спасательной экспедиции в ледяных просторах Гренландии.) Его профессиональная деятельность в основном была посвящена исследованию погодных процессов, но главным трудом его жизни стало то, что он называл «дрейфом материков»; это был первый и явно недооцененный вклад в теорию тектоники плит. Вдохновение, результатом которого стала столь неожиданная теория в области геологии, пришло к нему во время Первой мировой войны, когда он служил лейтенантом-резервистом в германской армии. Получив ранение в шею во время бельгийского похода, Вегенер был демобилизован и получил разрешение заняться наукой.

Подобно своим предшественникам, Вегенер был поражен очевидным сходством береговых очертаний материков по обе стороны Атлантического океана, хотя ряд ученых отметали это сходство как простое совпадение. Вегенер провел обширные исследования и обнаружил, что аналогичные совпадения наблюдаются в различных местах побережья Восточной Африки, Антарктиды, Индии и Австралии. Получалось, что все материки на Земле можно было аккуратно сдвинуть в один огромный суперконтинент, который Вегенер назвал Пангеей (от греч.

Наш сайт является помещением библиотеки. На основании Федерального закона Российской федерации "Об авторском и смежных правах" (в ред. Федеральных законов от 19.07.1995 N 110-ФЗ, от 20.07.2004 N 72-ФЗ) копирование, сохранение на жестком диске или иной способ сохранения произведений размещенных на данной библиотеке категорически запрешен. Все материалы представлены исключительно в ознакомительных целях.

Copyright © UniversalInternetLibrary.ru - читать книги бесплатно