Электронная библиотека
Форум - Здоровый образ жизни
Акупунктура, Аюрведа Ароматерапия и эфирные масла,
Консультации специалистов:
Рэйки; Гомеопатия; Народная медицина; Йога; Лекарственные травы; Нетрадиционная медицина; В гостях у астролога; Дыхательные практики; Гороскоп; Цигун и Йога Эзотерика



Глава 1. Радиоактивность

Шипение в самодувной печи лаборатории угрожающе нарастает. Мощный воздушный поток раздувает огонь, чтобы хватило жара расплавить металл. По мере нагревания постепенно улетучивается и сырой выпар из темных камней, что лежат в ящике у печи. На них выступает влага рудника, плесень подгнивших горбылей. Кажется, сам кислый воздух заброшенной серебряной штольни прокрался в трещинки и поры минералов, и теперь его оттуда выманивает в комнату уютное тепло. Но вскоре от затхлости не остается и следа, она исчезает, как бледнеющая память о нудном осеннем дожде. Ибо ничто на свете не в силах перекрыть вонь батареи едких жидкостей в склянках, ампулах и флаконах, выстроенных в ряд.

Берлинский аптекарь Мартин Генрих Клапрот приготовил весь свой наличный запас проверенных субстанций и микстур, чтобы взяться за новые образцы пород из Рудных гор. Он намеревался расщепить и разложить их огнем и кислотами, растворить их солями и размягчить водой. Растирая в ступке ярко-красные комья кровяной соли, он следит за тем, как меняет цвет только что поставленная на огонь настойка дубильного орешка. Она добывается из грубо размолотых коконов личинок осы-орехотворки, отложенных самками в дубовые листья. Их дубильная кислота вымоет из руды ненужные примеси. Черными чернилами, произведенными из такого же отвара, в это же самое время в далеком Париже пылкий демократ Лафайет и радикальный Робеспьер пишут свои наброски «Декларации прав человека и гражданина», в которой выдвигают такие неслыханные требования, как равное избирательное право для всех мужчин и даже полное упразднение монархии.

В эти революционные летние месяцы 1789 года весьма попахивает жареным и в Медвежьей аптеке Клапрота в тени громады Николай-кирхе на Шпандауэрштрассе, угол Пробстштрассе. На почтительном расстоянии от плавильной и фарфоровой печей экспериментатор подолгу вдувает через паяльную трубку в открытое пламя столько воздуха, сколько помещается в его легких. Фитиль свечи он разрезал надвое и теперь держит свою трубку в середине развилки. Так он может модулировать пламя, выдувать его в виде длинного и заостренного языка, чтобы оно охватывало пробу руды величиной с лесной орех, которая лежит на березовом угольке, свободном от искрения. Здесь, в тесной лаборатории, неконтролируемый полет искр или крохотных брызг металла вблизи легковоспламенимых химикалий и углей когда-нибудь да становится роковым даже для самых осторожных практиков. Однако Мартин Генрих Клапрот хорошо осведомлен о рискованных ситуациях при проведении химических реакций. Как член ложи «Единение», он даже похвально упомянут в «Справочнике масонства» за 1787 год. Однажды он уберег своих братьев по ложе от гибельного взрыва во время одного неряшливо подготовленного крупного алхимического эксперимента.

Он не хочет быть причастным к свойственному фракции алхимиков стремлению из всего сделать тайну. Он определенно дистанцируется от мистического пустословия адептов, которые все еще пребывают в поисках философского камня, намереваясь с его помощью превращать обыкновенные металлы в золото. Будучи образцовым поборником научно обоснованной химии, Клапрот считается только с тем, что он может видеть, обонять и взвешивать в своих тиглях и ретортах. Ему не раз приходилось уличать в мошеннических намерениях производителей чудодейственных лекарственных средств. Так, популярную «чудодейственную воздушную соль» он идентифицирует как простую глауберову соль, очищенную от добавок, а в продающемся по грабительским ценам «калии, окисленном святым духом» от основателя гомеопатии Самюэля Ханемана он разоблачает обычную буру.

Тот минерал, образец которого аптекарь и химик Клапрот хочет разложить на составные части, горняки Рудных гор называют смоляной обманкой. Она дает оттенки от сероватого до иссиня-черного и немного напоминает своим жирным блеском смолу. Тяжелые комья пористы и ломаются на куски, по форме похожие на почки и ракушки. Из-за их тяжести еще первые искатели серебра в начале XVII века в неглубоких штольнях Санкт-Йоахимсталя предполагали в этой горной породе высокое содержание металла. Но так ничего и не обнаружили. Потому и считали «обманкой» эти находки смоляной черноты, которые лишь притворялись, что таят в себе скрытые сокровища. На самом же деле смоляная обманка — как гласил окончательный вердикт экспертов — пустая порода, ни к чему не пригодная и лишь препятствующая поиску руд, заслуживающих добычи. С тех пор в серебряных штольнях Рудных гор она шла в отвал.

Клапрот, однако, хочет на сей раз докопаться до правды и основательно исследовать этот отвергнутый минерал. Он с интересом растирает между пальцами мелкие крупинки смоляной обманки, крошит их в калийную соль и помещает смесь в плавильный тигель. Черно-серая масса остается твердой и нерастворимой. Не плавится смоляная обманка и в пламени, усиленном паяльной трубкой. И вот он в поисках ее состава отжигает крошево и испепеляет его, спекает его с кровяной солью, спиртует и дистиллирует, тонирует и фильтрует, студит и высушивает, пока из его смеси с фосфорной солью неожиданно не образуется прозрачная зеленая бусинка — первое указание на верность интуиции экспериментатора. Ведь внутри породы явно кроется что-то особенное.

Многообещающие пробы были взяты из небольшого серебряного рудника «Георг Вагсфорт» в саксонском Йоханнгеоргенштадте, близ границы с Богемией. Этим летом у Клапрота часто бывали дела в Карлсбаде — популярном курорте царей, королей и европейской знати. Он только что закончил статью о минеральных источниках всемирно знаменитых богемских термальных вод. Сделанный им химический анализ целебной минеральной воды отвечает высокому научному стандарту и ожидает публикации в будущем году.


Йоханнгеоргенштадт расположен в двадцати пяти километрах севернее Карлсбада. В середине XVII века некоторые протестантские семьи покинули богемский шахтерский город Санкт-Йоахимсталь из-за религиозных преследований. На саксонской стороне Рудных гор, у подножия горы Фастенберг они построили новый город, который назвали именем своего суверена, курфюрста Йоханна-Георга II. Пивоварня с шинком были готовы раньше, чем ратуша и церковь.

Город лежит на 850 метров выше уровня моря у восточного склона горы Фастенберг с почти полностью изведенным лесом. Когда в июле 1789 года по пути из Карлсбада Мартин Клапрот останавливается здесь, весь город окутан чадом горящего день и ночь угля кузниц и металлургических заводов. Свои лучшие времена город пережил в середине XVII века, когда серебряные рудники — а их было в ближайших окрестностях около 180 — приносили прибыль. Большинство из них истощилось с тех пор, но для шестисот горняков работа еще была. Весь здешний ландшафт изувечен протяжными сточными канавами, мутными от ртути и шлаков, а также высокими, кое-где еще дымящимися отвалами. Запах серы, казалось, никогда отсюда не выветрится. Наметанным глазом Клапрот отмечает на склоне горы по дороге на шахту «Георг Вагсфорт» вентиляционные дыры метрового диаметра. Они дают рабочим в шахтах свежий воздух и солнечный свет. Многие отдушины дымятся. Он видит и добротно построенные входы в шахты — в некоторых по колено стоит вода, — и норы, вырытые наспех искателями счастья и кое-как потом присыпанные.


В берлинскую лабораторию поступает универсальное оружие — азотная кислота. Клапрот на всякий случай держится подальше от белой стеклянной бутыли с «сильной водой», aqua fortis, как величали азотную кислоту средневековые алхимики за ее растворяющую силу. Он поливает ею кусочек матово поблескивающей смоляной обманки до тех пор, пока под красными парами полностью не исчезает черный цвет — что Клапрот расценивает как полное разложение его пробы. Раствор, разведенный водой, приобретает «светло-желтый цвет, с зеленоватым оттенком».


Случается карете Клапрота проезжать и мимо забавных часов на ратуше Йоханнгеоргенштадта. Каждую четверть часа из корпуса часов выскакивают два железных горных козла и стукаются рогатыми лбами. Одновременно шахтер приподнимает свой горняцкий головной убор — цилиндр без полей — и стучит оземь палкой. Некоторые домовладельцы ворчат, недовольные последствиями «горной горячки», как здесь называют уже отшумевшую серебряную лихорадку. Множество не поддающихся учету шахт и горизонтальных рудных жил, проходивших под городом, скорее всего, и были причиной появления трещин в стенах домов и проседания фундаментов — ущерб, который могли ощутить лишь хозяева домов. Их уже не оставлял страх, что скоро и они будут причислять себя к жертвам «горной горячки». За кузницей Виттингсталя, горной деревушки из семи домов на окраине Йоханнгеоргенштадта, на особенно слякотных местах, где Брайтенбах впадает в Шварцвассер, поперек дорожной колеи проложены еловые жерди. Здесь вход в заброшенный прииск «Георг Вагсфорт», который порекомендовали Клапроту. По названиям соседних шахт — «Благословенье», «Нежданное счастье» и «Божья милость» — можно догадаться, какую радость испытывали горняки XVII века, находя в земле серебряные сокровища. Прииски заброшены еще сто лет назад, но время от времени сюда наведываются господа с утонченным вкусом, желающие прикупить цветные минералы для своих коллекций. Четыре года назад здесь впервые появился и тайный советник Гёте из Веймара, тоже по дороге из Карлсбада, приобрел красивый кусок пираргирита и с тех пор стал заезжать сюда для пополнения своей коллекции.

После утомительного спуска по приставным лестницам в бывший забой на Клапрота повеяло знакомым духом бесконечного осеннего дождя и прели. Горный мастер точно знает, куда направить луч шахтерской лампы. Он посветит во все расселины и трещины, чтобы брат прусского короля по масонской ложе мог упиться великолепием кристаллизованной зеленой слюды. Ее тонкие пластинки и кубики изумрудно-зеленого, лимонно-желтого и светло-желтого оттенков прочно облепляют смоляную обманку. Вся порода пронизана металлическими землями кирпичного и сернисто-желтого цвета. В одном рыхлом, жирно поблескивающем обломке Клапрот заметил даже голубовато-серый свинцовый пигмент в виде нежно мерцающей жилы и мелкозернистых вкраплений.


В лаборатории небольшая добавка соляной кислоты превращает aqua fortis в царскую водку. Этот прием Клапрот выполняет автоматически, не утруждая себя измерением дозы. Придя в соприкосновение с царской водкой, смоляная обманка разогревается и сильно вспенивается. После того как он разбавит смесь, отфильтрует ее и выжжет остатки серы, его взору предстанут чудесные кристаллы в виде вытянутых шестигранных пластинок, тоже меняющих цвет от светло-зеленого к желтому. После дальнейших опытов с щелочными солями и сернистым аммонием в осадок выпадают лимонно-, ярко- и шафраново-желтые отложения, которые он идентифицирует как металлоизвесть. Если замесить желтую муку с льняным маслом в некое подобие кухонного теста и запечь в фарфоровой печи при средней температуре, получится тонкая черно-коричневая пыль с металлическим блеском, которую можно растереть в пальцах. Снова залить азотной кислотой, нагреть. Опять поднимается красный пар, и теперь Клапрот уже не сомневается в том, что выгнал из своей металлоизвести кислород. Если расплавить ее в более сильном огне фарфоровой печи, она спекается в мелкоячеистую пенную массу из тускло поблескивающих металлических зерен. И если обработать полученный ком напильником, из-под железно-серого цвета блеснет ожидаемый металл. Теперь Клапрот убежден, что выделил из смоляной обманки металлическую субстанцию. Он открыл новый «металл».

Аптекарь Мартин Генрих Клапрот считал себя полным приверженцем экспериментальной химии. Будучи членом Королевский Прусской академии наук и профессором знаменитой горной академии Фрайберга, он вряд ли был бы превосходным практиком с отличной репутацией, если б не обладал способностью извлекать новые сведения из сходных реакций в давно известных обстоятельствах, да еще и находить для них практическое применение. Поэтому сейчас он идет на поводу у одной своей догадки и проверяет пригодность металлической эссенции смоляной обманки в качестве красителя для стекла и фарфора. Для этого он замешивает различные смеси из желтой металлоизвести с фосфорной кислотой. Ее еще называют костяной кислотой, потому что производится она из измельченных в порошок костей животных. Фосфорная кислота очень жаростойка и при накаливании растекается в подобие прозрачного стекла. Так Клапрот сперва получает прозрачную изумрудно-зеленую симуляцию стекла, тогда как с добавкой кремнезема возникает непрозрачное стекло, яблочно-зеленый светлый цвет которого напоминает ему полудрагоценный камень хризопраз. Если умеренно раскаленную металлоизвесть смоляной обманки, добавив флюс, нанести на фарфор и обжечь в эмалировочной печи, получится «оранжево-огненный» цвет.


Старые алхимики часто устанавливали — возможно, под воздействием возбуждающих паров в их лабораториях — связи между вещами и процессами, которые на первый взгляд не имеют между собой ничего общего. В прежние века, до того как Коперник и Галилей своими революционными идеями касательно движения планет вызвали переполох среди охранителей христианского учения, Земля еще пребывала в центре Вселенной. Она была окружена семью планетами, в число которых входило и Солнце. В течение долгого времени было известно и семь металлов — без сомнений, богоугодный, навек неизменный порядок, как и у планетной системы. И вот некий умник, идущий в ногу со временем, догадывается соотнести эти семь металлов с семью планетами. Лучи низведенного в спутники Земли Солнца вызвали появление на земле золота. Таинственные астральные вибрации Луны обусловили рост серебра под домами Санкт-Йоахимсталя и Йоханнгеоргенштадта. Железо лучше всего подходит Марсу, медь — Венере, свинец — Сатурну.

В революционном 1789 году уже ни один ученый не относится всерьез к этой системе, которая зиждилась на аналогиях, тем более что число известных металлов к тому времени выросло до семнадцати, тогда как соответствующие им планеты так и не были обнаружены. Однако всего за восемь лет до этого немецкий астроном Вильгельм Гершель открыл новое небесное тело, которое оказалось-таки планетой, и которое он назвал Ураном. Уран явился астрономической сенсацией, прежде всего потому, что он вращается в доселе невообразимом удалении от Земли и Солнца. Если принять расстояние от Земли до Солнца за астрономическую единицу, то Сатурн со своими девятью астрономическими единицами был до открытия Гершеля самым удаленным от центрального светила объектом. Уран же торит свой одинокий путь в сказочных девятнадцати астрономических единицах, или в трех миллиардах километров от Солнца. Так с появлением этого нежданного участника движения наблюдаемый универсум раздался сразу вдвое — по крайней мере, в сознании активно коммуницирующих членов академических кругов.

Мартин Генрих Клапрот тоже имел представление об этих шокирующих космических размерах, которые венчала новая планета. Возможно, они-то его и окрылили. Ведь за последние восемь лет, минувшие с открытия Гершелем Урана, новый металл так никто и не нашел. Теперь он был волен узаконить свое право открытия и примкнуть к старой традиции, назвав доселе неизвестный металл именем планеты. Он мог бы назвать новый элемент и клапротием, но ему суждено было зваться ураном. Очень помпезное имя для желтого красителя стеклянных изделий.


Тяжелые черные шторы на окнах не пропускают в лабораторию ни лучика света. Вот уже восемь недель господин профессор работает, ест и спит только в своей темной комнате на первом этаже Физического института университета Вюрцбурга и хранит свою тайну. Даже его любимая жена Берта, с которой он делит свою служебную квартиру на втором этаже, не знает о его странном открытии. При всем уважении к его труду она, должно быть, воспринимает его молчание как обиду. Больше всего ее ранит догадка, что муж явно наслаждается этим добровольным, граничащим с одержимостью заточением в темной норе — там, внизу. Когда ей случается — довольно редко — столкнуться в узком коридоре с этим бледным призраком, который когда-то был ее Вильгельмом, он что-то пишет на ходу или смотрит сквозь нее усталым, невидящим взором. Время от времени он отдает себе отчет в плачевном положении домашних дел. Но это не помогает. Он должен работать дальше, скрывая результаты, чтобы не выставить себя на посмешище преждевременными заявлениями. Ни перед Бертой, ни перед публикой. Вначале надо окончательно удостовериться. Ведь на кону стоит его доброе имя физика.

В лабораторном журнале профессора д-ра Вильгельма Конрада Рёнтгена вечер 8 ноября 1895 года отмечен как дата того открытия, которое и ввергло непоседливого, как ртуть, ученого в этот дурман работы. Он, как и многие физики его поколения, исследует многообразные формы электромагнитных явлений. Ровно тридцать лет назад шотландский физик Джеймс Клерк Максвелл четырьмя гениальными уравнениями показал, что как свет — видимый и ультрафиолетовый, — так и электрические и магнитные явления одинаково принадлежат к спектру электромагнитных волн. Рёнтгена особенно интересуют световые явления электричества в стеклянных трубках. Трубка длиной один метр с минимальным содержанием газа подключена двумя проводками к источнику тока цилиндрической формы. В тот достопамятный вечер пятницы он как раз обернул свою трубку светонепроницаемым черным картоном, чтобы выяснить, можно ли ее таким образом полностью изолировать. Включив в затемненном помещении ток высокого напряжения, он заметил слабое свечение на столе вблизи аппаратуры. Там случайно лежал бумажный экран, покрытый химическим веществом, отражающим свет, если на него попадает подходящее излучение.

Рёнтген озадачен. Ведь из его стеклянной трубки свет не пробивается. Плотно прилегающий черный картон надежно удерживает электрический свет. Он выключает ток. Свечение мгновенно исчезает. Он снова включает трансформатор. Экран на столе тут же озаряется. Рёнтген боится поверить своим глазам, ведь он не знает излучения, которое могло бы в таких экспериментальных условиях исходить из его стеклянной трубки. Он несколько раз повторяет процедуру, отодвигая при этом стол с экраном все дальше от трубки. На расстоянии двух метров люминесценция еще возникает, как только в трубке происходит газовый разряд. Судя по всему, черный картон не может удерживать излучение. Теперь он выставляет на пути лучей поочередно станиолевую полосу, бумажные тетради, еловую дощечку и, наконец, книгу толщиной в тысячу страниц. Неведомые лучи беспрепятственно проникают и сквозь эти преграды, оставляя на светящемся экране свои следы.

Только теперь, после пары дюжин лихорадочных, нервных опытов Рёнтген обращает внимание на нездешнюю красоту этого светового явления. По поверхности экрана в ритме колебательных разрядов катятся волны нежного желто-зеленого света или медленно плывут над ним, как облака. Но и в конце этого волнующего вечера смущенный ученый все еще полагает, что стал жертвой иллюзии. Слишком фантастическим кажется ему напрашивающийся вывод, что он имеет дело с неизвестным доселе излучением. В следующие дни он действует по системе и пускает в ход более тяжелые орудия, как то: тонкие листы из алюминия и цинка, из меди, серебра и золота. Однако и эти металлы не могут противостоять проникающей силе излучения. Лишь свинцовая и платиновая пластины толщиной в несколько миллиметров преграждают лучам из стеклянной трубки путь к экрану.

Постепенно Рёнтген привыкает к мысли, что он действительно открыл новый вид лучей, и приходит к дерзкой идее. Он заменяет световой экран из бумаги с покрытием на фотографическую пластинку. Опыт удается. Невидимые лучи, произведенные в стеклянной трубке, проникают сквозь глухой деревянный ящик, в котором хранится набор весовых образцов металла. На экспонируемой пластине, которая во время облучения лежала под ящиком, отчетливо прорисовались темные округлости образцов. И стрелка компаса в жестянке тоже становится видимой за счет нового способа светокопирования. Когда однажды его ладонь случайно попадает в поток излучения, он ужасается. Лучи явно могут просвечивать структуру материи насквозь и фотографировать там вещи, скрытые от человеческого взгляда. И поскольку они до сих пор так уверенно демонстрировали, что великодержавно проникают сквозь любые субстанции, фотопластинка может оставаться в своей светозащитной упаковке из бумаги или фольги. Это счастливое обстоятельство позволяет фотографировать непосредственно, без окольных путей через камеру и в освещенных помещениях. Так в лаборатории летят дни и недели. Все, что происходит в Вюрцбурге и в мире, мало интересует Рёнтгена. Двадцать седьмого ноября 1895 года, в разгар его опытов, шведский химик Альфред Нобель, изобретатель динамита, учреждает фонд, который должен ежегодно присуждать премию за выдающиеся достижения в области химии, медицины, физики, литературы и за вклад в дело мира.

Сколь бы сенсационными ни были первые доказательства проницаемости твердой материи при помощи новых лучей, больше всего впечатляют, конечно, снимки частей человеческого тела. Когда Вильгельм Конрад Рёнтген двадцать второго декабря 1895 года наконец посвящает Берту в свои тайны и в течение четверти часа облучает ее кисть, он эффектнейшим образом, без лишних слов доводит до ее понимания возможности его X-лучей, как он их теперь называет, позаимствовав у математиков универсальное обозначение неизвестной величины. X-лучи лишь смутно проявили на экране мускулы, кожу и нервные ткани руки Берты Рёнтген, но тем отчетливее отобразили структуру ее костей. Однако при виде собственного скелета к удивлению и восторгу человека невольно примешиваются и мысли о смерти.


Двадцать восьмого декабря Вильгельм Конрад Рёнтген передает секретарю Физико-медицинского общества университета Вюрцбурга первый научный отчет о своем самобытном кино в отрыве от его института. Отчет носит название «О новом виде лучей». Работа сразу идет в печать и рассылается девяноста коллегам по всей Европе. Газеты реагируют на новое открытие молниеносно. По всему миру, прежде всего в Англии и США, в первые недели после публикации вспыхивает форменная рентгеномания. Снимок скелета руки Берты побуждает необозримое множество медиков, физиков и предпринимателей к производству качественных рентгеновских снимков человеческих ладоней. Особенное внимание в эти первые недели нового 1896 года привлекает картинка из государственной Физической лаборатории в Гамбурге, на которой обручальное кольцо невесомо парит вокруг косточки безымянного пальца.

Двадцать четвертого января газета «Фрэнкише фольксблатт» сообщает о якобы первом практическом применении X-лучей в Англии. В лондонской больнице вот уже несколько месяцев лежит матрос, парализованный по необъяснимым причинам. Поскольку врачу и пациенту нечего терять, его позвоночник просвечивают X-лучами. При этом врач обнаруживает между двумя позвонками чужеродное тело, которое после извлечения оказывается обломленным кончиком ножа. Уже вскоре после этого матросу выпал случай принять живейшее участие в ближайшей драке. Такие сообщения будят фантазию и окрыляют дух предпринимательства. Так, знаменитый изобретатель лампочки накаливания Томас Альва Эдисон объявляет, что намерен просветить X-лучами мозг. Три недели его дом осаждают репортеры, и ему в конце концов приходится обескураженно признаться в неудаче. В одной американской газете кто-то призывает направить лучи Рёнтгена на мозг преступников, чтобы исцелить их от криминальных наклонностей. Один более безобидный — якобы! — вариант этой идеи и впрямь осуществляется, а именно: прекрасный пол подвергается облучению, чтобы избавиться от нежелательного роста волос над верхней губой, на родинках и икрах. Облучают в салонах красоты и в кабинетах врачей — во всю силу рентгеновских трубок. Эйфория пока велика.

Уже в середине января 1896 года зубной врач Отто Валькхофф в Брауншвейге вырезает из фотопластинки кружок, заворачивает его в светонепроницаемую бумагу и закрепляет его, «широко раскрыв рот, за обоими рядами зубов. Облучение ведется через щеку... Двадцать пять минут экспонирования были пыткой», — пишет неустрашимый пионер-рентгеновец, признавая на основании «снимка пульповых камер и корней, сидящих в костях, что эти лучи имеют в нашем деле большое значение».

Во Франции один физик тоже вдохновился на собственные опыты с X-лучами. Правда, он не просто повторил опыт Рёнтгена, а нашел новый подход, напрашивающийся сам собой. На январском заседании 1896 года членов Парижской академии наук под председательством знаменитого математика Анри Пуанкаре сильно впечатляет волнующий отчет со снимками из Вюрцбурга. Анри Беккерель, профессор физики парижской Политехнической школы, зачарован одной деталью. Источником X-лучей, должно быть, является — это подтвердил ему и Пуанкаре — светло-зеленое световое пятно на стенке стеклянной трубки, используемой Рёнтгеном. Беккерель уже давно знаком с люминесцирующими веществами. Эти вещества способны отдавать свет после того, как их подержали на солнце. Не удастся ли с этими своеобразными веществами, размышляет Беккерель, добиться сходных результатов с теми, что описывает Рёнтген. Он хотел бы выяснить, не смогут ли и они зачернить фотопластинку. Его отец Александр Эдмон Беккерель сконструировал чувствительный аппарат с фосфороскопом. Этот аппарат фиксирует малейшую способность свечения тел. Тем самым в распоряжении сына изобретателя был широкий спектр субстанций для его опытов. В тот же день он приступает к эксперименту и кладет на фотопластинки кристаллы, заведомо обладающие послесвечением. Фотопластинки, во избежание воздействия света, завернуты в черную бумагу или алюминиевую фольгу.

И вот в затемненной лаборатории Беккереля снова отдают поглощенный солнечный свет в оттенках различной интенсивности — зеленом, голубом, фиолетовом и оранжево-желтом — плавиковый шпат, редкие цианистые соединения платины, нафталинрот и пробы воды с замоченной в ней свежей корой конского каштана. Однако впечатляющее цветное кино не приносит ожидаемого успеха. Фотопластинки не темнеют, как от X-лучей, ни от одного из известных люминесцирующих веществ даже после недельной выдержки. В конце февраля Беккерель хочет провести опыты с кристаллами соли урана, известными своей сильной люминесценцией. Он выставляет их на солнечный свет, затем заворачивает в два слоя черной бумаги и кладет тонкую серебряную фольгу между препаратом и фотопластинкой. Через два часа экспозиции на пластинке впервые появляются темные пятна. Это однозначно очертания крошек урановой соли.

Когда Антуан Анри Беккерель докладывает о своем открытии Академии наук в Париже 24 февраля 1896 года, все члены академии уверены, что излучение урана объясняется его способностью к послесвечению. Мол, здесь, возможно, тоже присутствуют лучи Рёнтгена, проникающие сквозь светонепроницаемый материал. Уран и через сто лет после его открытия остается всего лишь популярным и надежным красящим средством для стекла и керамики. Вот только удивительно, что он оказался единственным металлом, испускающим лучи, которые не могут быть обычным светом.

Но подлинное потрясение Беккерель испытывает лишь несколько дней спустя. Поскольку небо над Парижем в эти последние дни февраля никак не хочет проясняться, облучить солнечным светом очередные пробы урановой соли нет надежды. Поэтому Беккерель пока что откладывает в долгий ящик упакованную в фольгу фотопластинку, положив на нее сверху обломок урана. Пару дней спустя — солнце так и не показалось — он снова извлекает их оттуда. То ли его подвигло нетерпение, то ли внезапное наитие, что уран мог испускать остаточную люминесценцию, — это навсегда останется тайной. Беккерель проявляет пластинку, озадаченно обнаруживая и здесь уже знакомый фотографический эффект: очертания кристалла урана тенью отобразились на фотопластинке. Лихорадочные контрольные испытания со всеми доступными соединениями урана, даже со слабо, а то и вовсе не люминесцирующими препаратами, все приводят к тому же результату: излучение урана вызвано однозначно не солнечным светом. Оно не имеет ничего общего с явлением люминесценции. Даже месяцами хранившиеся в темноте урановые соли непрерывно испускают проникающее излучение.

Это поистине знаменательное свойство так называемых «лучей Беккереля» публикуется Парижской академией наук 2 марта 1896 года. Прошло всего четыре месяца со времени открытия лучей Рёнтгена, а к спектру электромагнитного излучения добавился второй неизвестный вид лучей. Однако новые научные выводы Беккереля поначалу беззвучно и бесславно тонут в шуме глобального восторга, вызванного лучами Рёнтгена. Физики слишком заняты постепенным усовершенствованием метода светокопии по Рёнтгену, чтобы обратить серьезное внимание на известия из Парижа, не говоря уже о том, чтоб повторить опыты Беккереля. Они в упоении фотографируют «черепа» и кости рук своих детей и жен, не задумываясь о продолжительности экспозиции, либо вместе с медиками уже работают над концепциями лучевой терапии.

Хотя урановые лучи и могут проникать сквозь металлическую фольгу и вызывать довольно-таки заметный фотоэффект, это не в силах изменить предвзятое мнение в головах коллег. Они не хотят извлечь из работы Беккереля должные выводы, что имеют дело с новым свойством материи. Они усматривают в этом лишь слабый вариант лучей Рёнтгена. Лучам Беккереля требуются целые сутки, чтобы оставить на фотоэмульсии мало-мальский отпечаток. Они не могут даже близко создать нечто подобное тем эффектным картинкам, какие производят лучи Рёнтгена, проходя сквозь материю. Что такое смутная тень комочка урана по сравнению с видом сверкающей пули внутри ствола охотничьего ружья Вильгельма Рёнтгена? Лучи Рёнтгена позволяют отчетливо видеть пули, застрявшие в лопатках и большеберцовых костях ветеранов войны, сломанные кости рук и ног, проглоченные и теперь, казалось, невесомо парящие внутри таза монеты. Американские энтузиасты X-лучей могут за полдоллара купить радиографию почки; если с камнями в почках — то за 75 центов.

Те немногие коллеги, которые потом все же вникли в тезисы Беккереля, высказываются с оговорками. Дескать, слишком фантастично звучит утверждение, что какая-то незначительная составная часть красителя для фарфора может без воздействия света или электричества проявлять проникающие свойства, сходные с X-лучами. И совсем уж ни в какие ворота не лезет допущение, будто уран может и вовсе «спонтанно», то есть на основе собственного излучения, отображаться на фотопластинке. Такие нелепые представления никак не умещаются в физическую картину мира конца XIX века. Мол, серьезной науке уже приходится идти окольными путями — через грушевидные, откачанные и заполненные газом стеклянные трубки, ток высокого напряжения и световой экран, как это продемонстрировал Рёнтген.

Учителя вольфенбюттельской гимназии Юлиус Эльстер и Ганс Гейтель относятся к числу немногих исследователей, которые уже в апреле 1896 года повторили опыт Беккереля, подтвердили по всем пунктам его результаты и послали протокол своей работы скептику Вильгельму Рёнтгену. Который, надо отдать ему должное, показал, что верная наблюдательность северогерманской пары исследователей произвела на него впечатление. Однако в своем ответном письме от двадцать третьего февраля 1897 года, спустя ровно год после первой публикации Беккереля, он пишет: «...я должен признаться, что не вполне в это верю...» И в другом месте он приходит к такому заключению: «Правда, это не умещается у меня в голове...». К этому времени опубликовано уже более тысячи статей и пятьдесят книг об X-лучах. На фоне такой бумажной лавины вряд ли кто принимает во внимание публикацию Беккереля. За исключением одной тридцатилетней женщины-химика польского происхождения. Она как раз подыскивает тему для диссертации и прочитала все статьи об излучении урана, которые Беккерель опубликовал до середины 1897 года. Другой литературы на эту тему, судя по всему, нет, а она как раз находит эту тему в высшей степени интересной. Но именно это обстоятельство и подстегивает ее, поскольку дает простор для самостоятельных исследований. И поэтому она решает писать свою диссертацию об излучении урана.


Свое свадебное платье Мария Склодовская получает в подарок от родственницы. Она попросила себе черное и скромное, чтобы потом можно было носить его вместо лабораторного халата. Ведь на темной ткани не так заметна угольная пыль, которую постоянно задувает со двора. Молодая женщина из Варшавы работала за гроши служанкой и гувернанткой у богатых людей в польской провинции, отрекшись от своих интеллектуальных способностей. Однако благодаря самодисциплине и упорству все же поступила в конце концов в Сорбонну. Она изучает физику, математику и химию и знакомится там с Пьером Кюри, который сразу влюбляется в хрупкую, честолюбивую женщину с печальным взглядом.

Кюри преподает в Школе промышленной физики и химии в Париже и зарабатывает немногим больше рабочего. Но это не заботит Марию. Она привыкла к безденежью и знает, как обойтись малыми средствами. На свадьбу молодая пара отказывает себе даже в такой роскоши, как обручальные кольца. Мадам и мсье Кюри попросили дарить им деньги и исполняют свою мечту: купив новые велосипеды, они совершают длительные загородные прогулки. Даже летом 1897 года, на восьмом месяце беременности Мария садится на велосипед, чтобы сопровождать своего Пьера в Брест. Однако через несколько километров она понимает, что такая суровая гимнастика не для беременных.

Их дочери Ирен исполнилось всего три месяца, и в декабре 1897 года Мария Кюри приступает к первым исследованиям лучей Беккереля. Но даже в либеральном Париже профессорам и руководителям институтов непонятно, откуда у молодой матери, которая должна бы в первую очередь печься о младенце, столько честолюбия, что она вместо этого пишет диссертацию. До сих пор еще ни один европейский университет не присваивал женщине титул доктора наук. Начальник Пьера предоставляет ей для мастерской маленькое застекленное помещение на первом этаже здания школы. Здесь хоть и сыро, и сквозит, но на такие мелочи невзыскательная докторантка не жалуется.

Для начала она повторяет опыты Беккереля и подтверждает его результаты. Он ведь тем временем обнаружил еще одно важное свойство соединений урана: исходящие из них лучи делают окружающий воздух электропроводным. При помощи изобретенного Пьером аппарата, специального электрометра, она замеряет наэлектризованный воздух над различными урановыми пробами и может из этого делать опосредованное заключение об интенсивности их излучения. Так она нашла простую меру — силу тока — для определения интенсивности излучения своих урановых препаратов. Внешние обстоятельства — такие, как сильные температурные колебания в рабочем помещении Марии, влажность воздуха, равно как и освещение, искусственное или естественное, — не оказывают никакого влияния на степень интенсивности излучения. Самый сильный ток, с большим отрывом от остальных, она замеряет над пробами смоляной обманки из саксонского Йоханнгеоргенштадта, за ними вплотную идут образцы из богемского Санкт-Йоахимсталя.

Ее внимание привлекает еще одно важное наблюдение. При измерении излучения не играет роли, подвергает ли она вещества экстремальному нагреву или охлаждению, исследует ли она уран в виде оксида, соли или фосфата в водном растворе, в виде комочков или в форме порошка. Следовательно, оно не может быть свойством того или иного соединения, а должно быть связано напрямую с элементом ураном. Ибо чем больше доля урана в веществе, тем интенсивнее излучение. И его ничем не устранишь. Ни агрессивными химикалиями, ни мощными электрическими разрядами. Теперь Мария намерена действовать упорядоченно и исследовать все известные химические элементы периодической системы. Для этого она первым делом опустошает коллекцию минералов в школе Пьера. При этом она обнаруживает, что и соединения, содержащие элемент торий, тоже дают излучение и электризуют воздух. Чтобы впредь иметь общее обозначение для силы излучения урана и тория, Мария вводит понятие «радиоактивность».

После этого значительного открытия весной 1898 года она наталкивается на странное обстоятельство, измеряя два урановых минерала. Излучение смоляной обманки в четыре раза превосходит излучение чистого урана. И хоть она не спешит делать из этого выводы, ей остаётся в конце концов лишь одно-единственное заключение: в самородных, необработанных урановых минералах, должно быть, скрыто еще одно вещество, которое излучает сильнее урана и тория. Но поскольку мадам Кюри уже исследовала при помощи аппарата Пьера все известные на тот момент элементы на предмет излучения, это скрытое вещество может быть только новым химическим элементом.

Летом революционного 1789 года Клапрот в Берлине выделил из смоляной обманки новый элемент и назвал его именем самой удаленной от Солнца планеты Уран. Он придает столовому стеклу, флаконам и вазам в преуспевающем ныне стиле модерн типичные желто-зеленые тона всех оттенков — от насыщенного янтарно-желтого до темного яблочно-зеленого. И вот, по прошествии более чем ста лет, Мария Кюри явно выходит на след еще одного неизвестного элемента в смоляной обманке. Какой триумф после четырех месяцев работы. Она пока не может предъявить его в виде материальной субстанции, ибо его существование в этой горной породе мимолётнее, чем дуновение ветра. Но она уверена, что скоро и эта материя, видимая и весомая, захрустит в ее лабораторной ступке.

Вот она стоит в лаборатории вместе со своим мужем. Пьер Кюри приостановил свою работу над кристаллами, чтобы помочь Марии в поисках нового элемента. С оптимизмом пионеров они жертвенно отнимают от сокровища смоляной обманки несметные сто граммов для кропотливого дела растворения, выделения и очистки минерала. Семь недель спустя Мария Кюри уже умеет отделять свою гипотетическую материю от всех прочих веществ, содержащихся в смоляной обманке. Под конец опытов они с Пьером так наловчились применять огонь и сероводород, что проба излучала в триста раз сильнее, чем уран. И с каждой следующей степенью очистки радиоактивность продолжала нарастать. Тут были отринуты последние сомнения.

Восемнадцатого июля 1898 года Академия наук в Париже получает статью супружеской пары Кюри под заголовком «О новом радиоактивном веществе, содержащемся в смоляной обманке». В тридцать один год Мария Кюри считает новый химический элемент самым значительным открытием своей жизни и называет его в честь своей родины «полонием». Но смоляная обманка припасла для нее еще больший сюрприз, чреватый далеко идущими последствиями. После выделения полония у нее осталось небольшое количество легкого металла бария. И он тоже проявляет значительное радиоактивное излучение. Значит, в тускло-сером веществе должна быть скрыта еще одна неведомая радиоактивная субстанция.

А супруги Кюри что-то стали необъяснимо быстро уставать, работая с лучистыми веществами, и им приходится бороться со странной летаргией. Кроме того, Пьер жалуется с некоторых пор на боли в конечностях. Эти боли он принимает за ревматизм, тогда как Марии причиняют муки потрескавшиеся, воспаленные кончики пальцев. Они оба явно нуждаются в перерыве для отдыха. И их лабораторные журналы остаются нераскрытыми до одиннадцатого ноября. Видный химик Эжен Демарсе помогает им до Рождества сделать так называемую спектроскопию нового вещества. Каждому химическому элементу соответствует собственная характерная спектральная линия. Она представляет собой свет, который исходит от разогретых атомов этого элемента, и является, так сказать, неповторимым отпечатком пальца этого особого изотопа. Вот над этим однозначным доказательством существования нового элемента и работает Демарсе. Он наносит крошечную пробу вещества на электроды, через которые пропускает электрическую искру. Так ему удается сфотографировать спектр искры вещества. На этой фотографии он находит спектральную линию, которую нельзя отнести ни к одному из известных элементов. После каждого последующего шага очистки неизвестная спектральная линия видна все отчетливее.

И таким образом удачливое трио двадцать шестого декабря представляет академии очередную работу. В ней они называют новый радиоактивный элемент «радием». Он излучает в девятьсот раз сильнее, чем уран, но, кажется, обладает еще гораздо большим потенциалом радиоактивности. Правда, дальнейшая очистка и рафинирование радия невозможна, поскольку Кюри без остатка израсходовали весь свой запас смоляной обманки. Благодаря хорошим отношениям с венским геологом профессором Эдуардом Зюсом им перепадает сто килограммов смоляной обманки, которую предоставляет государственная урановая фабрика в богемском Санкт-Йоахимстале, щедро не выставив за нее счета.

Лучший из чуланов, в котором до сих пор работала исследовательская пара, новым требованиям отвечать уже не может. Им нужно больше места, и они получают разрешение использовать бывший анатомический зал школы. Мария Кюри так описывает свой сарай: «Стеклянная крыша протекала во время дождя. Летом часто бывало жарко и душно; зимой раскаленная печь приносила одно разочарование. У самой печи было нестерпимо жарко, а в нескольких шагах от нее можно было замерзнуть». Дочь Ева рассказывает о собственноручно помеченных местах на рабочем столе и на полу, куда сквозь худую крышу попадал дождь. На эти места нельзя было ставить аппаратуру. Из-за «вредных газов», которые из чулана невозможно было выветрить, большая часть работ и без того проводилась в маленьком внутреннем дворике. Знаменитый химик Вильгельм Оствальд, однажды посетив лабораторию, принял все это за дурную шутку — «помесь хлева с картофельным подвалом».

Вот мадам Кюри стоит перед своим чугунным чаном и стоически перемешивает дымящуюся жидкость железной палкой, длиной с ее собственный рост. В продолжительной череде всегда одних и тех же действий она измельчает материал, растворяет его в теплой соляной кислоте и сероводороде, тщетно пытаясь уклониться от ядовитых паров, фильтрует, очищает и кристаллизует лучистый бульон. Это еще и борьба с угольной и железной пылью, постоянно задувающей со двора, которая все равно то и дело загрязняет тщательно оберегаемые на столах сосуды для кристаллизации, губя тем самым работу многих часов, а то и дней. К этому времени Мария и Пьер Кюри уже знают, что и ста килограммов смоляной обманки в качестве исходного материала слишком мало, чтобы выделить достаточное количество радия для определения его атомного веса. Приходится мыслить в промышленных масштабах. В процесс кристаллизации надо ввести самое меньшее тонну. Они находят промышленного партнера — Научный центр химической продукции, который готов взять на себя тяжелую работу сепарации. В качестве ответной услуги парижская химическая фабрика просит во временное пользование лишь капельку радия, чтобы представить его на Всемирной выставке 1900 года в Париже.

Некогда славный своим изобилием серебра богемский горняцкий город Санкт-Йоахимсталь теперь принадлежит к двуглаво-орлиной Австро-Венгерской монархии. Урановая фабрика вот уже пятьдесят лет обогащает смоляную обманку, которая до открытия Клапрота шла в отвал. Теперь из измельченной руды здесь выделяют все соединения урана и перерабатывают в красители для местных стекольных фабрик и фарфоровых мануфактур. Лишенные урана отходы, считающиеся пустыми, в свою очередь, десятилетиями сбрасываются в протекающую мимо фабрики речку. С недавнего времени, однако, эти так называемые хвосты стали копить в сосновом лесу за территорией фабрики — к счастью для Кюри, поскольку, с их точки зрения, эта куча отвала на краю леса — настоящее лучистое сокровище, которое содержит радий и полоний. Помимо того, йоахимстальцы считали трудоемкий процесс выделения урана уже пропащим делом. Поэтому 150 франков за тонну плюс транспортные расходы — приемлемая цена. Тяжелые мешки, которые вскоре выгрузят во дворе Школы физики в Париже, содержат коричневый порошок, из которого сплошь торчат сосновые шишки и хвоя.

Времена своей первопроходческой работы по очистке радия в неприглядной и пронизанной сквозняками лаборатории Мария Кюри воспринимает как счастливую пору. Иногда, не желая прерывать важный опыт, она даже варит обед в своей облученной кухне. А радий в составе твердых солей излучает в пять миллионов раз сильнее, чем уран. И уж разумеется, супруги Кюри совсем не принимали во внимание то, что все лабораторные предметы, с которыми соприкасался высокоактивный радий, тоже становились радиоактивными и оставляли на фотопластинках, свои тени сквозь черную бумагу. «Пыль, комнатный воздух, одежда — всё радиоактивно. ...Бедствие настолько обострилось, что мы больше не можем держать в изолированном состоянии ни один прибор». Когда лаборатория облучена до такой степени, измерения становятся недостоверными и их приходится проводить где-то в другом месте.

Но оба умеют извлечь из этого эффекта и нечто позитивное. Ведь чем больше радий приближается к своей чистой форме, тем сильнее становится его спонтанное свечение. И вскоре это становится любимым «развлечением» пары, по выражению Марии. Поздним вечером еще раз заглянуть в лабораторию, чтобы побаловать себя фантастическим зрелищем: «Повсюду виднелись слабо светящиеся очертания пробирок и мешочков, в которых находились наши препараты. Вид и впрямь был великолепный, всякий раз он казался нам новым. Тлеющие трубки походили на волшебные огоньки».

Научный мир Германии почти не принял к сведению работу Кюри даже по прошествии года с открытия радия. Лишь некоторые одиночки — такие, как Юлиус Эльстер и Ганс Гейтель, — идут по следам Кюри. Они принимают участие и в рассуждениях о причинах излучения. Так, Мария Кюри летом 1898 года подозревает, что радиоактивные элементы единственные в периодической системе могут абсорбировать космические лучи из Вселенной и превращать их в наблюдаемое излучение. Для проверки этой теории так называемого вторичного излучения Эльстер и Гейтель спускаются в шахту под Клаусталем в Гарце на глубину 850 метров, имея при себе урановый препарат. Они исходят из того, что слои земли и горных пород должны абсорбировать космическое излучение, так что на такой глубине оно уже не будет поддаваться измерению. Однако они обнаруживают, что и там уран излучает с такой же силой, как у входа в шахту. Так они приходят к заключению, что космические лучи в качестве причины радиоактивности «в высшей степени неправдоподобны». Сама Мария Кюри тоже принимает во внимание эксперимент немцев и оценивает его как опровержение теории вторичного космического излучения.

В начале 1899 года истинное решение уже носится в воздухе. На одном заседании Брауншвейгского общества естественных наук 19 января 1899 года Эльстер и Гейтель докладывают о своих исследованиях в области радиоактивности и становятся на следующую — удивительную — точку зрения: «...приходится делать вывод, что источник энергии заключен скорее в самих атомах этих элементов. Мысль близка к тому, что атом радиоактивного элемента переходит из нестабильной связи в стабильное состояние путем отдачи энергии». При этом они впервые указывают не только на атомарный источник излучения, но и на возможность распада атома в качестве объяснения излучения. Эта теза вскоре будет точно разработана Эрнестом Резерфордом и Фредериком Содди в Монреале. К кругу исследователей в земле Брауншвейг принадлежит и зубной врач Отто Валькхофф, который уже через две недели после новаторской публикации Рёнтгена сделал снимки своих челюстей при помощи X-лучей, тем самым впервые продемонстрировав терапевтическое использование новооткрытого излучения в стоматологии. Однако в центре внимания, без сомнения, оказывается профессор Фридрих Гизель, ведущий химик Брауншвейгской хининовой фабрики Бухлера. Он разрабатывает хитрый метод отделения радия, который ведет к успеху гораздо быстрее, чем метод очистки Марии Кюри. Гизель оживленно переписывается с супружеской парой парижских ученых. Они посылают друг другу по почте препараты высокой радиоактивности и обмениваются результатами исследований. Для своей фирмы он специализируется на коммерческом производстве препаратов радия, чтобы удовлетворить спрос, постепенно растущий в лабораториях.

Уже в 1896 году, когда весь мир бросился к X-лучам, а открытие Беккереля игнорировалось, Гизель использовал собственное излучение урановой руды, чтобы запечатлеть на фотопластинке изображение лягушки. Сходство отображающей способности лучей Рёнтгена и Беккереля наводит его на вопрос, а не сопоставимо ли и физиологическое действие обоих видов лучей. Имея дело с лучами Рёнтгена четыре года, радиологи и конструкторы аппаратов уже знают об опасности передозировки для здоровья. Они работают над мерами защиты, чтобы уменьшить силу лучей. Ведь случаи затяжных недугов, а то и вовсе тяжелых ожогов со смертельными последствиями заметно поубавили рентгеновскую эйфорию среди физиков и медиков. Никто не знает точно, какая доза облучения может считаться допустимой.

Неустрашимый зубной врач Отто Валькхофф тоже, конечно, осведомлен о вредном воздействии рентгеновских лучей, когда осенью 1900 года отваживается на первый задокументированный опыт с радиоактивностью на себе самом. Для этого Гизель предоставляет в его распоряжение 0,2 грамма своего препарата радия. Может быть, надеялся Валькхофф, этот способ облучения тоже пригодится в терапии. Он кладет препарат, заключив его в целлулоидную капсулу, на свое предплечье и дважды облучает его по 20 минут, после чего его кожа воспаляется. Фридрих Гизель, который каждый день соприкасается в лаборатории с радием, недоумевает, однако принимает вызов Валькхоффа и повторяет опыт, слегка повысив дозу. Чтобы действовать наверняка, он дает капсуле пролежать на внутренней поверхности плеча сразу два часа. Через две недели он получает «очень сильное воспаление кожи с пигментацией на упомянутом, точно очерченном месте; за воспалением последовало образование пузырей и отторжение верхнего слоя кожи, как при ожоге, после чего наступило заживление». Полтора года спустя на этом месте все еще виден шрам. И волосы на этом месте больше не растут. Этот феномен должен был бы вообще-то напомнить ему о собственных ранних опытах с X-лучами, когда он страстно добивался лучшего изображения на рентгеновских снимках, и у его девятилетнего сына Фрица выпали волосы после бессчетных просвечиваний черепа.

В Париже отчеты Валькхоффа и Гизеля воспринимаются с воодушевлением и тут же со спортивным азартом побиваются более сильными козырями. Если Гизель положил себе два часа облучения, то Пьер Кюри не станет мелочиться и взвинтит свой рекорд до испепеляющих десяти часов. С возникшей после этого раной пришлось повозиться гораздо больше, чем со сравнительно безобидным ожогом немца. Пострадавшая поверхность кожи тщательно обмеряется, дням воспаления ведется счет, в дело идут перевязки, а рана, похоже, въелась глубоко в мякоть, поскольку «приобретает серый оттенок», что с удовлетворением отмечает Кюри. Вскоре и Анри Беккерель описывает собственный опыт со сходными ожогами кожи после того, как слишком долго носил в кармане пиджака капсулу с радием. Раны демонстрируются с известной гордостью экспериментаторов — поскольку оптимизм пока что перевешивает опасения: исследователи надеются, что наблюдаемый эффект однажды приведет к лучевой терапии рака и кожных лишаев.

Гизель уже превратился в радийного дервиша до такой степени, что обрыскал в поисках жертвы весь дом и сад. Комнатные растения его жены после короткого облучения радием приобретают осенние цвета и гибнут. Он разрушает — именем науки — всхожесть цветочных семян и целенаправленно истребляет хлорофилл всех зеленых организмов, какие попадаются на пути ему и его капсуле радия.

Беззаботное обращение и ежедневный контакт со все более чистым и все сильнее излучающим препаратом радия превращают пионеров в живые источники излучения. Всё, к чему они прикасаются, становится радиоактивным. Записные книжки Марии и Пьера Кюри и в XXI веке всё еще заражены радиоактивностью так сильно, что их приходится держать в свинцовом ящике. Также в письма и документы из наследия Гизеля можно заглянуть лишь с соблюдением противолучевых защитных предписаний. Летом 1904 года немецкий знаток радия предоставляет самого себя в качестве подопытной персоны для одного очень специфического опыта своих друзей Эльстера и Гейтеля. Экспериментаторы исходят из следующих соображений: поскольку радий непрерывно испускает радиоактивный инертный газ радон, Гизель после шести лет работы со своими препаратами должен был настолько пропитаться радоном, что его дыхание могло стать электропроводным и поддающимся на сей счет измерению. Они велят ему надышать воздуха под колокол аппарата, и тот действительно показывает наличие электрического заряда, намного превышающего средние значения. Одну щекотливую деталь их испытания Эльстер и Гейтель стыдливо спроваживают в мелкий шрифт сноски: «И моча подопытного (220 куб. см), если пропускать через нее воздух, отдавала ему такое количество эманации, что его электропроводность в семь раз превышала нормальную».

Ладони Фридриха Гизеля теперь постоянно воспалены. На коже образуются чешуйки, а кончики пальцев затвердевают. Неумеренные опыты над собой проводятся из научного любопытства и в осознании того, что пионерам приходится и рисковать. Мария и Пьер Кюри поначалу тоже не думают о вредном воздействии полученного облучения. Весной 1903 года Мария работает в лучистом сарае ничуть не меньше обычного, хотя она снова беременна. Даже после выкидыша ей все еще невдомек, что гибель ее дочери с высокой степенью вероятности связана с радиационным облучением. Ведь оно с легкостью разрушает как раз клетки в процессе деления — а это клеточное состояние естественно для эмбриона.


Глава 2. Атомное ядро

Сенсационные обстоятельства добычи радия, сообщения о магическом свечении нового элемента и не в последнюю очередь вручение Нобелевской премии 1903 года по физике Анри Беккерелю и супружеской паре Кюри выносят славу парижских ученых, исследующих радиоактивность, далеко за рамки специализированных научных журналов. Однако в сообществе физиков бурно обсуждается в первую очередь одно весьма специфическое, необъяснимое свойство радия. Кусок угля за короткое время сжигает всю свою тепловую энергию. Остается лишь щепотка остывшей золы. И динамит или порох выпрастывают свою энергию в одном сильном взрыве, не оставляя никакого отхода, пригодного для использования. У радия все иначе. С его излучением явно связано постоянное тепловыделение. Оно в двадцать тысяч раз превышает энергию, которая выделяется с теплотой химической реакции при молекулярных превращениях. Вот уже три года Фридрих Гизель, будучи единственным производителем радия, снабжает из Брауншвейга ученых всего мира пробами бромида радия в количествах, подходящих для лабораторных исследований. К радости ученых он не использует свою мировую монополию для получения выгоды. Он щедро дает препараты напрокат, а то и просто дарит. Все это время французы, немцы, англичане и американцы в один голос подтверждают, что излучение высокорадиоактивного элемента не убывает. Он отдает свою энергию непрерывно и равномерно, одними и теми же порциями изо дня в день, из года в год. И конца этому не видно. Пьер и Мария Кюри хотя и принимают излучение за атомарное свойство, но не могут объяснить источник энергии, загадочно дремлющей в глубине материи.

В канадском Монреале — параллельно с работой супругов Кюри — физик новозеландского происхождения Эрнест Резерфорд уже занят основательной инвентаризацией еще молодой области исследований. Вместе со своим английским ассистентом Фредериком Содди он разработал теорию, которая удовлетворительно объясняет все известные явления излучения. По их утверждению, происходит постепенное превращение атомов радиоактивного вещества. Уран, радий и торий превращаются — через несколько промежуточных ступеней — в атомы других элементов. Превращение сопровождается высокоэнергичным излучением. Высвобождаемая при этом процессе энергия истекает непосредственно из атомов. Неиссякаемым этот источник энергии, конечно, отнюдь не является. Ведь одновременно с излучением энергии атомы теряют также часть своего материального вещества. То есть происходит распад атомов, который после определенного, хоть порой и весьма продолжительного времени снова прекращается. После этого превращение закончено, атомы конечного продукта снова стабильны и больше не дают излучения. Источник энергии исчерпан. И поэтому радиоактивные процессы ни в коем случае не нарушают священный закон сохранения энергии. Никакая энергия не исчезает, никакая дополнительная энергия не производится. То есть излучение энергии стоит в прямой пропорции к уменьшению массы в атоме.

Резерфорд и Содди оценивают свои данные статистически и выясняют, что распад всех известных радиоактивных веществ и их промежуточных продуктов подчиняется некой математической закономерности. Каждому элементу требуется точно установленное время, чтобы превратить половину своих атомов в атомы другого элемента. Этот временной промежуток они назвали периодом полураспада. Химически едва уловимые продукты превращения тоже подлежат — по крайней мере, математически — этой закономерности. Поначалу это лишь приблизительные расчеты. Постепенно они уточняются, и период полураспада радия стабилизируется на отметке 1620 лет. Теперь и двум пионерам излучения становится понятно, почему до сих пор ни один из наблюдателей во всем мире не заметил изменения активности распада радия и его энергоотдачи. Из 30 миллиграммов радия, имеющегося в распоряжении Содди, через 1620 лет останется всего 15 миллиграммов, через 3240 лет — 7,5 и через 4860 лет — 3,75 миллиграмма.

Резерфорд и Содди с удивлением обнаруживают, что атомы урана распадаются невообразимо медленнее радия. Период их полураспада растягивается более чем на четыре с половиной миллиарда лет. Тем самым ученые невзначай попали в такие разряды величин, которые даже геологи с их богатой фантазией до сих пор не связывали с возрастом земной материи. Любому ученому в начале XX века не по себе от таких огромных цифр. Некоторые же продукты превращения урана, напротив, теряют половину своего вещества и излучения уже через несколько микросекунд, часов или дней. Например, газ радон, возникающий непосредственно из распада радия, имеет период полураспада всего четыре дня. И хотя утверждения Резерфорда и Содди согласуются с лабораторными данными, на третьем году XX века они своей теорией распада и превращения элементов все же приводят в колебание оплот химии, а именно учение о неразрушимости химических элементов. Приписывать безжизненной материи способность к превращению — это подозрительно напоминает алхимическую мечту о трансмутации материи. После этой неслыханной атаки на химическую догму Резерфорд и Содди должны были приготовиться к тому, что их обзовут еретиками.

Фредерик Содди еще раз исследует свойства радия, которые Мария Кюри уже описала. В своих публичных докладах о феномене радиоактивности он не скрывает, что больше всего зачарован полной независимостью процесса распада от внешних воздействий. Подвергает ли он свои пробы радия экстремальному охлаждению при помощи самого современного лабораторного оборудования, разогревает ли их до 2500 градусов Цельсия, сжимает ли их в стальном баллоне под давлением в 1000 атмосфер, доводя до «взрыва», или воздействует на них агрессивными кислотами — излучение радия всегда остается постоянным. Даже сильнейшие электрические разряды, магнитные поля и центробежные силы не могут изменить скорость распада радия, а тем более остановить его. Содди остается роль бессильного наблюдателя, чьи попытки вмешаться в атомарный процесс превращения смехотворно бездейственны.

Он поневоле вспоминает один космический феномен, который тоже ставит его в положение удивленного зрителя. Не так ли и непрерывно горящий с древних времен костер солнца ускользает от всякого человеческого контроля? Потому и кажутся ему исчезающе малые зернышки радия в капсуле — этот бесценный дистиллят из смоляно-черной породы Рудных гор — миниатюрным солнцем на его ладони, свет и тепло которого он может ощущать, но не может на него воздействовать. Взволнованный этой игрой мысли, он делает простой расчет и приходит к поразительному результату. Его радий, препарированный Фридрихом Гизелем, излучает, относительно своей массы, больше энергии, чем наше центральное светило или любая другая звезда в наблюдаемой Вселенной. Если бы масса нашего Солнца состояла из чистого радия, то оно испускало бы в миллион раз больше света и тепла.

При более точных исследованиях радиоактивных веществ Эрнест Резерфорд делает важное открытие. Он идентифицирует два вида излучения, которые пронизывают материю с разным успехом. Он называет их альфа- и бета-лучами. Движение альфа-лучей, начавшееся со скоростью 20 000 километров в секунду, заканчивается уже через несколько сантиметров. Эта лучи поглощаются воздухом. Одного листа бумаги достаточно, чтобы полностью заэкранировать радиоактивный источник. А бета-лучи летят со скоростью света, но застревают в алюминиевом листе толщиной пять миллиметров. Это препятствие — не проблема для открытых французом Полем Вилларом гамма-лучей. Но конец их пути наступает через пять миллиметров свинца.

Несмотря на слабость проникновения альфа-лучей, большая часть теплоты, возникающей при радиоактивном распаде, идет именно на их счет. Кроме того, они вызывают электризацию воздуха — достаточное основание для того, чтобы заняться ими подробнее. Теперь Резерфорду удается доказать, что альфа-лучи в действительности являются атомами гелия. Их выбрасывает из радиоактивного источника. Так радиоактивное вещество теряет часть своей массы — событие, которое, в свою очередь, приводит в действие химическое превращение. Полегчавший остаток атома становится атомом нового вещества, которое опять-таки нестабильно и подлежит дальнейшим химическим изменениям, а те вновь сопровождаются излучением альфа-частиц.

Фридрих Гизель тем временем разработал оригинальный флюоресцентный экран нового типа. Он состоит из кристаллического соединения цинка и серы с добавкой небольшого количества меди. Это вещество оказалось подходящим для того, чтобы сделать видимыми альфа-лучи. Когда Гизель в темном помещении подносит свои препараты радия к сернисто-цинковому экрану, тот озаряется оживленным зелено-голубым светом. Что означает, что до него долетели альфа-частицы, они же атомы гелия. Ганс Гейтель и Юлиус Эльстер делают по образцу Гизеля экран, и его импозантные световые явления зачаровывают их. Но в ярких отсветах они не могут разглядеть детали. Для их целей гораздо лучше подходит сильно разбавленное радиоактивное вещество. Им удается чрезвычайно тонко спроектировать лучистую материю на сернистоцинковый экран. Он светится так слабо, что им приходится прибегнуть к лупе. Однако то, что они затем видят, завораживает их. Экран озарён неравномерно — свет, казавшийся сплошным, лучится с разной интенсивностью. Повсюду с высокой скоростью вспыхивают маленькие световые точки и тотчас снова исчезают. У Эльстера и Гейтеля складывается впечатление, что они смотрят на «туманное пятно на небе, которое на самом деле представляет собой звездное облако... если смотреть на него через телескоп с большой силой увеличения».

Теперь становится возможным систематический подсчет вспышек альфа-частиц на флюоресцентном экране, так называемых сцинтилляций. Разумеется, надежно зарегистрировать общее количество всех вспышек не удастся ни одному человеку. Но есть очень хорошо зарекомендовавший себя метод последовательных приближений. Наблюдатель направляет микроскоп на квадратный миллиметр экрана и несколько раз с большой точностью считает точки, вспыхивающие в течение часа, чтобы потом вычислить старое доброе среднее значение. Эльстер и Гейтель вдохновенно демонстрируют свои наглядные и элегантные сцинтилляции как доказательство существования атомов. Если до сих пор типичный аргумент атомных скептиков гласил, что никто пока еще не видел атом, то теперь каждый мог взглянуть на сернистоцинковый экран Гизеля и во вспышках альфа-частиц увидеть отдельные атомы гелия в их движении. Видеть атомы! Это уже маленькая сенсация. Таким образом, эффектно подтверждается учение об атомах, некоторыми учеными так до сих пор и не признанное, уверяет пара исследователей. Но на финишной прямой в состязании за первую публикацию их опережает английский химик и физик сэр Уильям Крукс, который открыл метод сцинтилляций одновременно с немцами.

Вскоре сернистоцинковый экран установлен и в Физическом институте Венского университета на Тюркенштрассе. Физику и философу Эрнсту Маху, известному главным образом по параметру скорости звука, названному его именем, и ожесточенному противнику идеи атомов достаточно было одного-единственного удивленного взгляда на экран, чтобы увлечься. Да и людей с глубоко донаучными представлениями вспышки атомов гелия просвещают на месте. Рассказывают, что Луиджи Пьяви, патриарх Иерусалима, тоже однажды взглянул на венский флюоресцентный экран и тут же решил одну основную философскую проблему. Он якобы понял теперь, что библейское восклицание о сотворении мира «Да будет свет!» больше не противоречит тому факту, что небесные светила — Солнце, Луна и звезды — были сотворены лишь позднее.


В сентябре 1904 года в рамках Всемирной выставки в американском Сент-Луисе состоится мероприятие Международного конгресса искусства и науки. Резерфорд приглашен с докладом. В помпезных выставочных павильонах с электрическим освещением посетители могут подивиться на беспроводной телеграф, электрические локомотивы и новейшие автомобили, в том числе на знаменитую спортивную машину «Спайкер» со сказочными восемьюдесятью лошадиными силами. Яркие дирижабли над территорией выставки своими смелыми маневрами напоминают о прошлогоднем историческом моторном полете братьев Райт, и уж совсем особый аттракцион — автоматы, из которых можно получить орешки и жевательную резинку. Но самый большой хит — это съедобные фунтики из вафельного теста для мороженого. И в этой атмосфере как значительных, так и пустяковых инноваций Резерфорд излагает международному собранию ведущих ученых и людей искусства свою революционную идею радиоактивного распада. Многие из присутствующих физиков и химиков до сих пор не имели случая познакомиться с представлениями о трансформации радиоактивной материи. Большинство английских профессоров химии воспринимает гипотезу атомарного распада как неслыханную наглость: «Уж не хочет ли Резерфорд внушить нам, что атомы страдают неизлечимой навязчивой идеей самоубийства?» — усмехается один коллега. Восьмидесятилетний Уильям Томсон, более известный как лорд Кельвин — живая легенда, почти уже вознесенный на научный Олимп и сидящий одесную Ньютона, — возглавляет группу скептиков. Он отградуировал шкалу температур и навсегда связал со своим именем самую холодную точку универсума. И он убежден — отстав на целых пять лет от теоретических дискуссий, — что радий не сам излучает энергию из атома, а принимает ее из космоса: абсорбируя эфирные волны. Ведущий английский физик рассчитал, с какой скоростью распространяется теплота в горных породах, определил точку их плавления и вывел отсюда зависимость их тепловых свойств при затвердевании. По этим расчетам выходило, что Земля не может быть старше нескольких миллионов лет. И теперь, когда Резерфорд выражает время распада урана цифрой в несколько миллиардов лет, в универсуме лорда Кельвина это уже граничит с ересью.

И не Резерфорд ли с Содди, еще одним зеленым юнцом, без зазрения совести раструбили по всему миру о трансмутации элементов? А ведь это изменнический язык алхимиков. Священный Грааль которых теперь, судя по всему, сокрыт в глухой, мрачной руде, которая тем самым анонсирована в качестве философского камня, призванного превращать неблагородный металл в золото. Притом мистическое сокровище этих новоявленных алхимиков не что иное, как краска для стекла — то канареечно-желтого, то ядовито-зеленого цвета. Так что если уж признавать хоть какое-то рациональное зерно в теории этого тридцатитрехлетнего нахала, то придется признать в каком-то смысле и некий минимум жизни в урановом минерале. Может, эти камни, отбивающие такт, полуразумны? Умные камни? Философские камни? А может, этот высокоодаренный Резерфорд, это самобытное дитя природы с другого края света — всего лишь пронырливый современный алхимик, и здесь, на Всемирной выставке, в ярмарочной атмосфере этого типично американского балаганного волшебства он ставит на кон столь опасной игры добрую славу английской королевской физики?

Опасения лорда Кельвина, что алхимические идеи вернутся в лаборатории недавно зародившегося XX века, необоснованны. Резерфорд и Содди — выдающиеся современные ученые, однако они, разумеется, знакомы с историей идей алхимии и осознают, что параллели их теории превращения элементов путем радиоактивного распада с диковинными представлениями алхимиков о трансмутации просто бросаются в глаза. Минувшим летом в Париже Эрнест Резерфорд провел памятный вечер, когда он и его жена Мэй с супругами Кюри и еще несколькими друзьями праздновали сданный Марией Кюри экзамен на докторскую степень. Они сидели в саду, и, когда стемнело, Пьер Кюри достал из кармана пиджака пузырек с почти чистым радием и поставил его на стол. Даже сам Резерфорд благоговейно замер, залюбовавшись ярко светящимся веществом. Столь сильного препарата ему еще не приходилось видеть. Если алхимики лишь грезили о splendor solis — солнечном сиянии, скрытом в substantia nigra — темной материи, то здесь, в саду у великих магистров радия, эта древняя алхимическая пара противоположностей совершенно естественно сбылась в радии, извлеченном из смоляной обманки.

Если отвлечься от сомнительных добытчиков золота в среде алхимиков, то для серьезных адептов этого учения разложение земных веществ в очистительном огне их плавильных тиглей есть лишь символ необходимости самим бесстрашно погрузиться во тьму своей души и добиться очищения духа. Речь идет не о чем ином, как о тайне смерти, возрождения и трансценденции, равно как и о прискорбной нужде деятельно вмешаться в этот процесс. На уровне космических наблюдений медленный распад материи означает неотвратимый уклон в хаос. Картина будущих гибельных событий завершается в конце концов уничтожением Земли. Очищение мира в глобальном огне приближает надежду на последующий «золотой век». В этом состоит одно из многих «истинных» значений алхимического превращения неблагородных металлов в золото.

Нездоровой притягательности этого алхимического бреда Резерфорд и Содди явно не сумели избежать, тем более что потенциальная разрушительная сила энергии урана не осталась для них тайной. В первую очередь Содди в своих научно-популярных докладах выражает беспокойство по поводу высвобождения атомарной энергии. Он поднимает вверх флакончик с диоксидом урана и оглашает содержание энергии этой дозы, выраженное через теплотворную способность каменного угля: она равна двумстам тоннам. Ведь уран имеет невообразимо долгий запас времени, сопоставимый с предполагаемым возрастом Земли, чтобы отдать обильную энергию. Чтобы подключиться к ней для непосредственного использования, размышляет Содди, надо бы найти возможность искусственно ускорить распад урана. Что запустило бы саму трансмутацию. И на этом стыке, по мнению Содди, алхимия и современная наука, скорее всего, и найдут примирение: «В ногу с трансмутацией элементов шествует возможность высвободить энергию, заключенную в материи».

Однако понимание масштаба высвобождения энергии из урана внушает ему форменный страх, потому что эта энергия впервые выдвигает пророчества о конце света в область реальности. Овладев атомной энергией, человек вступает в обладание «оружием, которым можно при желании разрушить Землю». Он заклинает своих слушателей «уповать вместе с ним на то, что природа убережет свои тайны». Эрнест Резерфорд считает возможным использование атомной энергии в военных целях: «Если бы нашелся подходящий детонатор, можно было бы представить, что волна атомного распада взрывообразно распространится на всю материю, пока вся масса земного шара не превратится в гелиевые отходы». Изречение Резерфорда о придурковатом лаборанте, который может по недосмотру взорвать весь мир, становится крылатой фразой. Может быть, он вспоминал при этом о первом неудачном эксперименте своего детства. Используя полый гардеробный крюк в качестве пушечного ствола и пригоршню пороха, десятилетний мальчишка в родительском саду хотел выстрелить камешком по мишени. Детскую пушку разворотило взрывом, а камешек упал на землю.

Теперь Резерфорд хорошо разбирается во взрывах. Они парадоксальным образом совершаются беззвучно и невидимо и являются частью его лабораторных будней. В 1908 году Резерфорд при вручении ему самой желанной в мире премии по химии шведского динамитного магната продуманно описывает радиоактивные процессы как бризантные события, напоминающие ему взрывы: «Частица атома радия становится нестабильной и лопается со взрывной силой». И об инертном газе радоне, исходящем из радия: «Атомы этого вещества существенно неустойчивее, чем атомы радия, и снова взрываются...», а то и вовсе: «...во время этого атомарного взрыва выбрасывается единственный атом гелия».


Общее собрание Германского Бунзеновского общества прикладной и физической химии десятого мая 1907 года в Гамбурге грозит закончиться столпотворением. Девиз заседания гласит: «Радиоактивность и гипотеза атомного распада» и очень подходит для того, чтобы разделить всех присутствующих на сторонников и непримиримых противников теории. Главным образом старшие господа настроены почти враждебно против этой новой ветви физической химии. Революция вселяет в них неуверенность. В конце концов фундамент химии, учение о неизменности и непроницаемости элементов, основательно поколеблен самим существованием радиоактивных веществ. Скептики не хотят признавать радий в качестве самостоятельного химического элемента и отвергают статус радона как инертного газа. И соответственно, они с раздражением реагируют на совсем еще молодых, но прекрасно информированных и убедительно аргументирующих сторонников теории распада Резерфорда и Содди.

В центре бурных дебатов стоит двадцативосьмилетний доктор химии, чье заявление на получение доцентуры в качестве приват-доцента как раз рассматривается. Он страстно защищает новейший накопленный опыт международных исследований. Он может рассказать впечатляющие детали об экспериментах, которые по всем правилам химического искусства доказали, что радон не поддается вступлению ни во временные, ни в прочные соединения. Что однозначно доказывает его природу инертного газа. Как-никак молодой человек обучался в Лондоне у Уильяма Рамсея, открывшего инертные газы аргон, криптон и ксенон. Некоторым профессорам старшего поколения в голосе ученика Рамсея чудится самонадеянность и непочтительность. Его прямодушные возражения они воспринимают как дерзость. Да кто он такой, негодует один из присутствующих. «Это такой англизированный берлинец», — насмешливо говорит другой, ведь слово «англизированный» может означать и подрезанный хвост лошади, а слово «берлинец» тем более многозначно: от пончика до дорожного узелка.

Правда, родился Отто Ган, этот англизированный берлинец, во Франкфурте-на-Майне. Начиная изучать химию в Марбурге, младший сын состоятельного стекольного фабриканта проявляет мало рвения и честолюбия. После первой огорчительной лекции по математике этот предмет для него умер. С куда большей выносливостью он справляется с комплексными задачами по выпивке. Долгое время его отец на вопросы об успехах отпрыска без всяких церемоний отвечает, что основной интерес Отто сосредоточен на пиве. Тем не менее тот выдерживает докторский экзамен с оценкой «magna cum laude» («с большим почетом»). Хотя призвания к исследовательским занятиям в себе не чувствует. Ему видится скорее должность промышленного химика. Научный руководитель его докторской диссертации советует ему пожить за границей, чтобы он смог за счет знания иностранных языков повысить шансы своей карьеры в бурно расширяющейся химической отрасли Германии. Так в октябре 1904 года Отто Ган попадает в институт Уильяма Рамсея в Университетском колледже Лондона. Со странной пассивностью он просит у Рамсея о задании. Тот сразу швыряет его в холодную воду. Радиоактивность? Нет, об этом Гану не приходилось слышать во время его учебы в Марбурге и Мюнхене.

А Рамсею незадолго до этого доставили пять центнеров высокорадиоактивного минерала торианита, содержащего торий, и эти пять центнеров с тех пор сократились до 100 граммов соли бария. И вот Рамсей дает своему немецкому ассистенту задание выделить из этого вещества приблизительно подсчитанные 10 миллиграммов радия. Послушник Отто Ган основательно готовится к своему испытанию, штудирует тогда еще обозримую литературу по этому предмету, слушает лекции Рамсея и затем приступает к работе с тщанием и острой наблюдательностью, которая в будущем станет его отличительной чертой. Толковым везет, и ему с самого начала сопутствует удача. Уже скоро он маневрирует на тех же путях познания, какими шла Мария Кюри, у которой смоляная обманка после отделения урана все еще продолжала излучать, благодаря чему был открыт новый элемент. После того как Отто Ган выделил из эссенции торианита радий, остатки продолжают проявлять радиоактивность. Интенсивность излучения, однако, не сопоставима ни с одним из известных в то время радиоактивных элементов. Когда после повторений опыта и перестраховки он смог исключить ложный вывод, обусловленный неопытностью, новый радиоактивный элемент назван им с заслуженной гордостью открывателя радиотором. Он излучает в 250 000 раз сильнее тория. Гана не подвело верное чутье и смелость рук ремесленника. Руководитель института Рамсей обрадован и объявляет об открытии Гана на заседании Королевского общества шестнадцатого марта 1905 года.

Ган набрался в Лондоне достаточной уверенности в себе. Свой следующий практикум он выполняет у Эрнеста Резерфорда в Монреале. У него он учится импровизировать, мастерить из табакерок, баллонов из-под масла и консервных банок действующие аппараты для проверки радиоактивных веществ. Но и в лаборатории Резерфорда, фонтанирующего энергией и воодушевлением, давно уже облучены все инструменты и оборудование, так что измерения слабых по природе излучений приходится проводить в других помещениях. Как и Гизель и супруги Кюри, Резерфорд сам уже стал радиоактивным источником. Однажды он чинит сломанный электрометр на рабочем столе Гана. Прибор после починки хоть и заработал, но зато теперь излучает. Методом сцинтилляций Ган исследует альфа-излучение «своего» радиотора и погружается в чарующие световые явления сернистоцинкового экрана. И в Монреале он тоже открывает сразу два новых элемента, так что мастер на прощанье выдает ему свидетельство на совершенно особый нюх.


Химический институт Берлинского университета возглавляет Эмиль Фишер, нобелевский лауреат 1902 года. По возвращении из Канады в октябре 1906 года Гану разрешено оборудовать под лабораторию пустующую столярную мастерскую на первом этаже. Правда, на признание и уважение коллег он рассчитывать не может. Профессия радиохимика все еще не принимается всерьез, а некоторые органические химики ее органически не переносят. Когда на факультете вывешивают его заявление на получение доцентуры, на листке вскоре появляются пренебрежительные замечания. «Надо же, кто только не претендует нынче на доцентуру», — гласит комментарий одного сотрудника. Однако Гана не смущают предвзятые коллеги. В марте 1907 года он подтверждает в препарате тория присутствие «исходного вещества» своего радиотора и называет его мезотор.

Ведущие исследователи радия Кюри, Беккерель и Гизель демонстрировали вредное воздействие радия на человеческий организм на собственных телах с глубокими и плохо заживающими язвами. Пьер Кюри в своей нобелевской речи даже предостерегал от слишком легкомысленного обращения с высокорадиоактивными веществами. Говорил, что это может привести к потере двигательной способности и в конце концов стать смертельным. Он знал, о чем говорил. К тому времени ему было уже трудно удерживать пальцами пробирку. Однако когда австрийский физик Штефан Майер выясняет, что вода слывущих целебными термальных источников в Бад-Гаштайне радиоактивна, никто больше не хочет слышать никаких предостережений.

Не заставило себя ждать и то, что медики, встрепенувшись от радиационного бума, стали пристально приглядываться к урановым рудникам Санкт-Йоахимсталя. Якобы шахтеры там никогда не страдают ревматизмом, подагрой и невралгиями, чему причиной может быть постоянное испарение радона из радия — продукта распада урана. Мол, здесь радиоактивный воздух явно оказывает такое же воздействие, что в Бад-Гаштайне исходит от легендарной воды. Как раз в это время шахтные воды были официально признаны радиоактивными. Это грунтовая вода, постоянно сочащаяся в штольни сквозь щели и трещинки в налегающих породах. Одного предприимчивого йоахимстальского булочника Куна эта хорошая новость навела на коммерческую идею. С разрешения властей он нанял людей таскать ему в дом рудничную воду из шахт в деревянных дежах и стал предлагать ревматическим больным ванны, якобы облегчающие недуг. Разлитая в бутылки для питья, эта целебная вода конечно же должна была прописываться врачом, но исцеляла и без врача, продаваемая из-под прилавка, принося булочнику изрядный побочный доход. Пока четыре кабинки с ваннами, установленные рядом с пекарней в плачевных гигиенических условиях, еще только становятся зародышем будущей модной радийной водолечебницы Санкт-Йоахимсталь, курорт Бад-Гаштайн в земле Зальцбург, упоённый своим радиоактивным источником молодости, совершенно официально рекламирует себя стихами:

Чудодейственный источник Бад-Гаштайн.
Я сама купаюсь в ванне, полной тайн.
В излучающем бульоне поварюсь,
Снова девочкой-подростком обернусь. 

В аптеках теперь можно купить кожаные мешочки, в которые расфасовано по 62 грамма смоляной обманки с содержанием оксида урана 43 %. Если носить такой мешочек на теле, то препарат своим излучением изведет ревматические заболевания. В пансионах и отелях расцветающих радийных курортов Санкт-Йоахимсталя каждый день подают к столу свежий хлеб, выпечку и даже пиво с добавлением радона. Одно фармацевтическое предприятие рекламирует свой продукт такой надписью на упаковке: «Доказательством биологического воздействия может служить тот факт, что полуминутное или минутное облучение уже вызывает покраснение кожи». И австрийская фабрика радия Нойленгбах продает свои радиоактивные грязи в виде порошка в мешках по пять килограммов для домашних ванн и обещает: «При длительном применении — поразительно стойкий эффект».


При таких коммерческих выгодах и беспечном увлечении новой терапией снабжение науки радием перекрывается. Когда Эрнест Резерфорд в 1907 году переезжает из Монреаля в Манчестер, он с трудом, всякими правдами и неправдами добывает приемлемое количество радия для особой серии опытов, которую намеревается поставить. В конце концов ему удается договориться с Венской академией наук. Он получает в длительное пользование 0,4 грамма хлорида радия — щедрость, которая творит историю. Ибо тут крохотное количество светоносной материи, освобожденной от многих тонн тяжелой, черной, как смола, породы, встречается с неповторимой силой воображения гения. И этой необычной встрече в нужный момент времени сообщество физиков обязано первым значительным прорывом во внутреннюю структуру атома.

Резерфорд чуть было не прозевал идеального сотрудника для своего прорывного эксперимента, ибо Ганс Вильгельм Гейгер, двадцатипятилетний докторант из Нойштадта, что стоит на «винодельческой дороге», только что окончил свою годичную стажировку в Физическом институте Манчестерского университета и уже укладывает чемодан для возвращения в Германию. Разговорившись с ним и увидев его выдающиеся способности экспериментатора, энергичный Резерфорд предлагает ему стать его ассистентом. Первым делом Резерфорду нужно усовершенствовать подсчет альфа-частиц, которые испускает радиоактивное вещество. Это должен взять на себя электрический прибор, разгрузив человеческий глаз. Вдохновившись идеями шефа, Гейгер разрабатывает опытную установку, из которой в конечном итоге получается так называемый «счетчик заряженных частиц», прототип счетчика Гейгера. При помощи нового прибора Резерфорд и Гейгер фиксируют, что один грамм радия испускает 34 000 000 000 альфа-частиц в секунду.

Альфа-магистру понятно, что они с Гансом Гейгером установили тем самым первый международный стандарт радиоактивности. После этого он осуществляет свою давно лелеемую мечту и покупает автомобиль «уолслей» с четырьмя сиденьями и пятнадцатью лошадиными силами. Машину пригоняет с завода шофер, который потом три дня живет у Резерфорда и дает хозяину уроки вождения. Но автомобильными прогулками наслаждаются не только его жена Мэй и дочь Айлин. Руководитель института регулярно приглашает и двадцать своих сотрудников из Японии, России, Германии, Америки и Англии группами по три человека на моторизованные вылазки на природу с отчаянной скоростью сорок километров в час. Хаим Вейцман, будущий президент Израиля, а в то время биохимик Манчестерского университета, описывает Резерфорда как «молодого, энергичного, неукротимого... Не было под солнцем ничего такого, о чем бы он не поддержал оживленного разговора, зачастую ничего в этом не понимая. Когда я шел обедать в столовую, по всем коридорам разносился его добродушный, громкий голос». Резерфорд явно замечал эту собственную черту характера и в других людях. Об одном своем закадычном друге он пишет: «Целый день лорд Кельвин рассуждал о радии, и меня восхищает самоуверенность, с какой он говорит на тему, в которой ровно ничего не смыслит». Один из его студентов видит в нем «вождя племени», который с каждым пошутит, шагая по лаборатории, сияющий, румяный и голубоглазый, и воодушевит своих студентов — не хорошо, но громко исполняемым — церковным гимном «Вперед, солдаты христианства».

В период между 1910 и 1912 годами Эрнест Резерфорд снова посвящает себя давней проблеме, которой он уже занимался в Монреале: взаимодействию излучения высокой энергии с материей. Луч из альфа-частиц, пройдя сквозь тонкую металлическую фольгу, становится нечетким. Несколько альфа-частиц явно отклонились на пути сквозь атомы металла. Что позволяет сделать заключение об огромных электрических силах внутри атома. Гансу Гейгеру и двадцатиоднолетнему студенту Эрнесту Марсдену поручено присмотреться к этому феномену. В их опытной установке им приходится опять вернуться к традиционным наблюдениям за световыми вспышками, поскольку искомое рассеяние не поддается автоматическому учету. На то и человеческий мозг, чтобы регистрировать отклонения. Лупу первых опытов Эльстера и Гейтеля уже давно заменил микроскоп с 70-кратным увеличением, на выходе которого закреплен сернистоцинковый экран. Этим привинченным экраном микроскоп заглублён в вакуумную камеру, где натянута тонкая золотая фольга, позади которой стоит источник радона.

Два физика пустились в трудоемкое дело. Они должны зрительно отсчитать 80 000 прямолинейно мчащихся сквозь атомы золота альфа-частиц, чтобы засечь пригоршню тех корпускул, которые отклонились в сторону. Время от времени они регистрируют рассеяние и под таким углом, который больше похож на возврат альфа-частиц к своему радоновому источнику. Этот феномен можно было заметить лишь при таком тщательном наблюдении за световыми вспышками, и он остается загадкой для Резерфорда и его ассистентов. Он ставит под сомнение все сложившиеся представления о структуре атома. Эти данные исключают равномерное распределение массы атома. Впоследствии Резерфорд сформулировал это так: «Это почти так же невероятно, как если бы швырнуть фанату на лист шелковой бумаги — и она рикошетом попала бы в тебя самого».

Результаты измерений Гейгера и долговременная статистика допускают такой вывод, что внутри атома золота вся его масса сконцентрирована в минимальном пространстве. Когда альфа-частица со скоростью 20 000 километров в секунду натыкается на это внутреннее ядро, она стопорится на лету сильным электрическим зарядом ядра и с ускорением отдачи отбрасывается назад к своему источнику. Все остальные альфа-частицы, пролетающие мимо ядра, более или менее сильно отклоняются от своей прямолинейной траектории. Но если почти все 80 000 альфа-лучей беспрепятственно пролетают сквозь золотую фольгу, то атом должен по большей части состоять из пустоты. И поскольку это ядро, nucleus, как нарекает гипотетическое образование Резерфорд, так редко задевается, оно должно быть невообразимо мало. Простой расчет соотношения приводит Резерфорда, Гейгера и Марсдена к поразительным выводам о размерности атомов. Если сам атом не больше чем стомиллионная доля сантиметра, то ядро должно быть еще меньше на 10 000 порядков.

Здесь, в Физическом институте Манчестерского университета как раз и формируется совершенно новое, хоть еще и несколько смутное представление о структуре атома. По мнению Резерфорда, ядро объединяет в себе почти всю массу атома. Оно положительно заряжено, тогда как электроны образуют наружную оболочку атома и заряжены отрицательно. Где еще, как не в этом крошечном ядре атома, мог бы происходить распад у радиоактивных элементов? Где еще, если не там, должна быть скрыта могучая атомарная энергия? Судя по всему, радиохимия на глазах превращается в «нуклеарную» науку, а именно в учение об атомном ядре.

Отто Ган принадлежит к числу первых ученых, которые узнали о волнующе новом представлении об атоме непосредственно из уст бывшего учителя. Они встречаются в Париже, в марте 1912 года как участники конференции Международной комиссии по радию. Мария Кюри демонстрирует там 22 миллиграмма высокочистого радия, запаянного в стеклянную трубку, в качестве международного стандарта радия. Как эталон он должен теперь храниться в Севре близ Парижа в Международной палате мер и весов. Тридцатитрехлетний профессор Ган считается между тем одним из ведущих радиохимиков мира. Год назад он во время поездки на пароходе в Штеттинской бухте [1] познакомился со своей невестой Эдит Юнгханс, на которой собирается вскоре жениться. Может быть, хоть тогда, как он надеется, прекратятся слухи, которые ходят в институте у него за спиной. Ибо Ган с конца 1907 года работает вместе с женщиной, австрийской «фройляйн доктор».

Лиза Мейтнер, дочь еврейского адвоката, стала второй женщиной, получившей ученую степень доктора в Венском университете. Вообще-то директор Эмиль Фишер в принципе отвергает преподавательниц в своем институте. Такая установка согласуется с прусскими законами о высшем образовании, которые практически не дают возможности женщине сделать академическую карьеру. Однако для Лизы Мейтнер Фишер делает исключение. До тех пор пока она знает свое место в столярной мастерской Гана и не кажет носа в студенческих аудиториях и лабораториях, ей можно работать в Химическом институте. Разумеется, лишь в качестве вольной посетительницы и на собственный кошт. Ган и Мейтнер явно находят общий язык. Тут же возникают слухи и пересуды. Воспоминания Гана об этом периоде жизни звучат почти как запоздалое опровержение: «О нашем общении между собой вне стен института не могло быть и речи. Лиза Мейтнер к тому же и воспитана была как дитя высшего света, она была очень сдержанна, почти нелюдима... За многие годы я ни разу даже не обедал вместе с Лизой Мейтнер за пределами института. Мы никогда не прогуливались вместе. Лиза Мейтнер шла домой, и я шел домой. При этом мы все-таки были сердечными друзьями». Ган при этом человек общительный, в свободное время регулярно встречается с коллегами для обмена мыслями и... он поет. Сподвигнутый песнями, которые напевает Лиза в долгие часы их совместных измерений — а это Брамс, Шуман и Вольф, — он вливается в университетский певческий кружок «Хриплый фазан», в котором преобладают дамы. Гану грезится амурная атмосфера. Однако замыслил он — тем более что теперь он обручен — совсем другое, ведь здесь поют «племянницы Планка, дочери Гарнака... Дамы хорошего круга, а быть принятым в их семьях не так легко».

В 1911 году, по инициативе теолога Адольфа фон Гарнака, отца трех певучих дочерей из «Хриплого фазана», учреждается Общество кайзера Вильгельма — для содействия фундаментальным научным исследованиям. В октябре 1912 года открывают первое научное учреждение этого общества: Химический институт кайзера Вильгельма в берлинском Далеме с Эмилем Фишером во главе. Отто Ган должен руководить там отделом радиоактивности. Лиза Мейтнер приглашена и далее работать с Ганом в новом здании института. В это переломное для науки время в столице Германии распространяются и первые сообщения одной из новых многообещающих теорий, которую, по слухам, создал Фредерик Содди. Она неожиданно убедительно объясняет некоторые непонятные свойства радиоактивных веществ. К 1911 году найдено более двадцати новых радиоактивных элементов, в таком множестве они уже не помещаются в периодической системе, которая оказалась им тесновата, как слишком узкий корсет.

Новая идея проясняет некоторые прежние расхождения. Содди исходит из того, что все радиоактивные элементы — такие, как уран, радий и торий, — имеют разные сорта атомов, которые впоследствии будут названы «изотопами». Они хоть и обладают одинаковыми химическими свойствами, но совершенно различаются по физической структуре. Если следовать теории Содди, то Отто Ган в 1905 году у Рамсея в Лондоне открыл не новый элемент радиотор, а лишь доселе неизвестный дополнительный изотоп тория. И другое открытие Гана — мезотор — тогда тоже не новый элемент, а всего лишь другой изотоп радия. Для всех изотопов радия характерно следующее: у них разные физические свойства — индивидуальный вид распада, собственный период полураспада и атомный вес. Тогда как в отношении химических свойств они не отличаются от элементарного радия. Отто Ган сожалеет, что сам не опубликовал аналогичную догадку, добытую в многолетних кропотливых трудах. «А ведь Содди наверняка сделал не так много негативных опытов отделения, как я, — ропщет Ган на самого себя, но все же справляется с завистью: — ...но у него было больше мужества». Резерфордовская модель атома и соддиевская теория изотопов еще не завершены, но оба исследователя — в который раз — на верном пути к лучшему пониманию атома.

На торжественное открытие Химического института кайзера Вильгельма двадцать третьего октября 1912 года кайзер вознамерился прибыть собственной персоной. Надо бы устроить для него нечто особенное, и Гану выпадает сомнительная честь сыграть роль чужеземца и продемонстрировать его величеству эффект свечения мезотора. Накануне открытия прибыл, бряцая волочащейся саблей, императорский флигель-адъютант, чтобы проинспектировать здание и местность. Офицеру необходимо точно знать торжественную программу в ее последовательности. Ган предполагает показать 300 миллиграммов мезотора — поистине царское количество — в красивой коробочке на бархатной подушечке. От свинцового экрана наплевательски решили отказаться из эстетических соображений. Чтобы подобающе инсценировать эффект самосвечения препарата, комната, естественно, должна быть хорошо затемнена. Что флигель-адъютант, однако, решительно отверг: «Исключено, мы не можем направить его величество в совершенно темную комнату».

Призванный для содействия шеф института Эмиль Фишер выторговал компромисс. Путь императору в темноте будет указывать маленькая красная лампочка. Однако в день торжественного открытия выясняется, что Вильгельм II темноты не боится. Он отказывается от красной лампочки. Ган демонстрирует ему эффект свечения, а выделяющийся из препарата радиоактивный газ полыхает по сернистоцинковому экрану изумрудными волнами.


В то время как Мария и Пьер Кюри в Париже в месяцы до и после смены века изучают радий в богемской смоляной обманке, немецкий физик Макс Планк в Берлине занят излучением так называемого абсолютно черного тела. В качестве экспериментального приближения к этому представлению можно, пожалуй что, представить полость разогретой самодувной печи в лаборатории Мартина Генриха Клапрота. По законам классической физики невозможно увидеть излучаемый печью световой спектр — от светло-желтого через красный и голубовато-белый до вошедшего в поговорку цвета белого каления. Более того, при постоянно нарастающем жаре в раскаленных стенках печи должно преобладать коротковолновое излучение, так что вскоре отдаваться будет только свет ультрафиолетовой области. К тому же в неограниченном количестве. Если уютно примоститься у такой коротковолновой печки, то будешь ощущать тепло, но свет огня видеть не сможешь, потому что доминирующий ультрафиолетовый свет невидим. К счастью, такой печи не бывает, ибо в физической реальности нет бесконечной энергетической ценности. Однако основанная на ньютоновской механике теория теплового излучения требует в конечном счете именно бесконечной энергетической ценности. На этом основании классическая теория не может быть верной.

Макс Планк, профессор теоретической физики Берлинского университета, работал над решением этой проблемы в течение трех лет, пока четырнадцатого декабря 1900 года не выдвинул наконец поистине революционную гипотезу ради того, чтобы непротиворечиво описать фактический спектр электромагнитного излучения. По этой гипотезе тепловое излучение нагретых тел не может быть непрерывным процессом, при котором энергетические уровни плавно, без скачков становятся сколь угодно малы. Вместо этого энергообмен между горячими стенками печи и излученным светом идет — чтобы не нарушать картину — дискретно, долями, ступенчато отделенными друг от друга. Здесь больше нет плавных переходов, а есть скачки. Минимальную порцию энергии, которую можно испустить или поглотить, Планк называет квантом. Энергия одного кванта — произведение частоты излучения и природной константы, которую сам Планк поначалу называет элементарным квантом действия, но которую вскоре в его честь назовут постоянной Планка. Ее размерность — исчезающее малое количество энергии, умноженное на время, — самое малое допустимое в природе действие. Это невообразимо малое число, а именно нуль, за которым после запятой следуют еще 34 нуля, прежде чем появится наконец пара значащих цифр. Бесспорное указание на то, что речь идет об атомарных порядках величин.

Не пройдет и недели после презентации его гипотезы, как другие ученые подтвердят своими вычислениями справедливость решения Планка: их экспериментальные данные согласуются с его теорией. Никто, даже сам Планк, не понимает, почему именно неполноценные «затычки», получившие определение квантов, создают помехи ультрафиолетовым печам. Но они вряд ли могут что-то значить в реальном мире, полагает первооткрыватель. Они могут представлять собой не более чем гениальную математическую уловку — таково единодушное мнение сообщества физиков. Англичане говорят о типично немецком изобретении, которое элегантно устраняет бесконечные величины.

Макс Планк безоговорочно поддерживает оценку своих коллег. Он чуть ли не оправдывается за свою искусную уловку, даже называет ее «актом отчаяния». Мол, он хотел «любой ценой, даже удвоенной» найти решение и рассматривает кванты лишь как временное средство. Не сам ли он обозначил свою константу буквой «Н», которая происходит от слова «вспомогательная величина» (Hilfsgr"osse)? Мол, уже в ближайшее время его работа подвергнется пересмотру и тогда станет понятен краткосрочный характер этих беспокойных переходов энергии. Ведь нет ничего более чуждого ему, закоренелому консерватору, чем ставить этим дискретным квантом под сомнение Лейбница, который не допускал в природе никаких скачков. Без сомнения, мол, в обозримом времени эта вынужденная конструкция отыщет вход в более объемлющую теорию, которая не будет так нахально противоречить классической физике. Естественно, в этих утешительных мыслях о предстоящем примирении между ньютоновской традицией и своей, в корне новой, концепцией Макс Планк не мог брать в расчет одного молодого изобретательного физика.


Родившийся в Ульме, выросший в Мюнхене и в семнадцать лет добровольно отрекшийся от немецкого подданства, чтобы избежать солдатской службы, этот не имеющий гражданства выпускник Цюрихского политехникума с дипломом преподавателя физики и математики колесит по Швейцарии в поисках работы. Даже и по окончании учебы он по-настоящему старается держаться в курсе последних разработок в области теоретической физики. Несколько недель в качестве подменяющего учителя в Винтертуре, потом ничтожная работа частного учителя в Шафхаузене, чтобы подготовить абитуриента к экзаменам, скандал с семейством ученика и изгнание с треском, потому что он находит нестерпимыми разговоры за обедом и с обезоруживающей самонадеянностью требует, чтобы по этой причине его еду, оплаченную, разумеется, работодателем, он мог забирать с собой в гостиницу. На все его заявления о должности ассистента «у всех профессоров от Северного моря до самой южной точки Италии» он получает иногда уведомления о получении письма, но никогда не получает личного ответа. Да, несколько иначе представлял себе начало своей научной карьеры двадцатитрехлетний Альберт Эйнштейн. К тому же его подруга сербского происхождения беременна. И обе родительские пары против этого союза.

Но позднее, летом 1902 года, фортуна, похоже, повернулась к нему лицом. Отец друга способствует злосчастному выпускнику в получении должности технического эксперта III класса в Швейцарской государственной службе интеллектуальной собственности в Берне. Швейцарское гражданство, необходимое для работы в патентном бюро, ему уже предоставлено. Сорокавосьмичасовая рабочая неделя в качестве «батрака патентов», как он сам называл себя, не удерживает его от того, чтобы давать еще и частные уроки и регулярно писать статьи для «Анналов физики», самого значительного в мире специального журнала. Весной 1905 года он формулирует свою «квантовую гипотезу света». Она идет еще на шаг дальше революции Планка. Альберт Эйнштейн размышляет о так называемом фотоэлектрическом эффекте. Там все дело во взаимодействии света и материи. Когда луч коротковолнового света попадает на поверхность металла, энергия света выбивает электроны из атома металла. Доступная при этом энергия не зависит ни от интенсивности, ни от яркости света, как того требует классическая теория, а лишь от его частоты. Ибо экспериментальные данные однозначно показывают: чем выше частота, тем больше энергии свет передает электронам. И тут вдруг извлекается на свет божий формула Планка, в которой энергия как раз и определяется частотой света.

Чтобы лучше понять эти обстоятельства, Эйнштейн предлагает пересмотреть классическую концепцию исключительно волновой природы света. Если свет отражается от зеркала или преломляется поверхностью воды, его можно рассматривать как волну. Но если свет обменивается энергией с атомами металла, его нужно понимать как частицы. И эти частицы света вроде как идентичны квантам Планка, этим четко ограниченным долям энергии, они якобы являются «квантами света», которые — пусть и вопреки собственным представлениям Планка — на самом деле обладают физической реальностью. Они носятся в пространстве как невообразимо маленькие ракеты и обладают силой выбивать электроны из атомов металла. В итоге квантовая гипотеза света пошатнула теоретическое здание классической физики. То, что Планк лишь робко надпилил — с глубоким сожалением и с надеждой на будущее выздоровление, — служащий Бернского патентного бюро, доросший до технического эксперта II класса, теперь обрушивает прямо-таки с наслаждением и с большим шумом. Его необычайное утверждение гласит: свет может быть как волной, так и частицей.

Из математической уловки Планка, из его всего лишь вспомогательного коэффициента h становится атомарной реальностью. Хоть на нее поначалу и дивились лишь как на блестящую идею в обширном заповеднике синапсов импульсивного Эйнштейна. Ибо мало у кого хватило храбрости поддержать отчаянную точку зрения, сформулированную этим независимым умником из Берна. Даже сам изобретатель кванта Макс Планк поначалу воздерживается бросать в воздух шляпу. Это кажется парадоксальным, ведь как-никак в эйнштейновском толковании фотоэлектрического эффекта совершенно недвусмысленно всплывает планковская формула энергии E=h

Наш сайт является помещением библиотеки. На основании Федерального закона Российской федерации "Об авторском и смежных правах" (в ред. Федеральных законов от 19.07.1995 N 110-ФЗ, от 20.07.2004 N 72-ФЗ) копирование, сохранение на жестком диске или иной способ сохранения произведений размещенных на данной библиотеке категорически запрешен. Все материалы представлены исключительно в ознакомительных целях.

Copyright © UniversalInternetLibrary.ru - читать книги бесплатно