Электронная библиотека
Форум - Здоровый образ жизни
Акупунктура, Аюрведа Ароматерапия и эфирные масла,
Консультации специалистов:
Рэйки; Гомеопатия; Народная медицина; Йога; Лекарственные травы; Нетрадиционная медицина; Дыхательные практики; Гороскоп; Правильное питание Эзотерика


Эволюция Вселенной и происхождение жизни
Предисловие

Золотой нитью сквозь историю человечества и даже сквозь его предысторию, когда еще не было письменности, проходит наше неутолимое желание понять. Мы написали эту книгу для каждого, кто заинтересован в поиске новых знаний или же хочет разобраться в основных идеях науки, изменившей наше представление о мире. Родившись в обществе, наполненном практическими плодами науки и техники, мы часто считаем это вполне естественным и не думаем о тех этапах, которые остались в прошлом и были пройдены еще до появления нашего сегодняшнего мира.

Мы приглашаем читателя в путешествие от сокровищ прошлого к рубежам современной науки, включая физику, космологию и астробиологию. Мы разделили наш рассказ на четыре части, соответствующие четырем основным этапам научного поиска — от прошлого до настоящего.

Первый этап, Расширяя границы познания, начавшийся в Античности и возродившийся в конце Средневековья, основывался на визуальном восприятии мира. Довольно многого удалось достичь тогда на основе наблюдений невооруженным глазом и с помощью простых приборов и рассуждений. Птолемей и даже Коперник жили в эту длительную эпоху. Около 1600 года, когда родилось и начало распространяться представление о гелиоцентрическом строении мира и был изобретен телескоп, Галилей и его последователи начали все глубже и глубже вглядываться в пространство. Кроме всего прочего, это привело к определению расстояний до Солнца и других звезд, тускло мерцающих на небе. В XX веке добрались и до далеких галактик, а для астрономических наблюдений помимо оптического окна открылись и новые спектральные окна. Параллельный этап, который мы назвали Физические законы природы, был отмечен экспериментальными и математическими достижениями физики. Начиная с того же Галилея и получив мощный импульс в работах Ньютона, физика достигла современного уровня. Этот этап знакомит нас с миром атомов и элементарных частиц и вместе с происходившими параллельно астрономическими работами в конце концов приводит к современному этапу исследования Вселенной, от самых ранних процессов ее рождения и расширения из сверхплотного состояния 14 млрд лет назад до современной Вселенной галактик.

В наше время, когда человечество научилось запускать аппараты и даже людей в космическое пространство, зародилось интереснейшее направление исследований, которое мы называем поиском Жизни во Вселенной. Здесь можно вспомнить слова Циолковского «планета есть колыбель разума, но нельзя вечно жить в колыбели». До сих пор человек посетил только Луну, но многочисленные космические зонды обеспечивают нас обширной информацией о планетах, астероидах и кометах Солнечной системы и о самом Солнце. Стремительно развивается новая междисциплинарная наука — астробиология. Получив возможность исследовать широкий диапазон условий в пределах нашей планетной системы, мы может проверить, где помимо Земли могла бы возникнуть жизнь. В то же время благодаря усовершенствованию телескопов астрономы смогли обнаружить внесолнечные планеты, число которых сейчас исчисляется сотнями. Эти открытия позволяют судить о роли жизни и человечества во Вселенной.

Двадцать лет назад двое из авторов (П. Т. и М. В.) написали книгу на финском языке, опубликованную Астрономической ассоциацией «Медведица» (Ursa Astronomical Association) под названием «Космос — эволюция представлений о мире». Нынешняя книга унаследовала основную линию и дух того издания, но ее содержание отразило разнообразные интересы авторов и то новое, революционное, что произошло в развитии космологии, в исследованиях космоса и в астробиологии за прошедшие годы.

Работая над этой книгой, мы имели в виду широкий диапазон читателей — от просто любителей науки до студентов университетов, причем как гуманитарных, так и естественнонаучных специальностей. Даже профессиональные физики и астрономы могут заинтересоваться исторической частью и астробиологией, тогда как для биологов может оказаться полезным знакомство с соседними областями науки. Мы пытались писать доступным языком, избегая математических формул и чрезмерной детализации. Но все равно некоторые вопросы современной физики, космологии и биологии очень сложны, и их трудно объяснить простым языком. Такие темы мы либо пропускали, либо давали описание, требующее внимательного чтения. В конце некоторых глав мы кратко рассказываем о новых интересных направлениях исследований, чтобы читатель смог почувствовать, чем особенно интересуются сегодня ученые (странные явления микромира, многомерные пространства, темная энергия в космосе, зарождение жизни, парниковый эффект и т. д.).

Наконец, эта книга может быть полезна учителям, преподающим в старших классах, особенно тем, кто понимает, насколько тесно связаны традиционные области науки, а также тем, кто чувствует взаимосвязь между гуманитарными и естественными науками. С этой целью мы подготовили список адресов полезных интернет-сайтов по каждому из разделов книги, а также тестовые вопросы с выбором ответа, сгруппированные по темам: http://bama.ua.edu/-byrd/ Evolving_UniverseWeb.doc.

Мы благодарны коллегам, прочитавшим некоторые части рукописи или каким-то иным образом помогавшим нам в этой работе, например предоставившим свои иллюстрации. Нашу особую признательность заслужили: Юрий Барышев, Андрей Бердюгин, Светлана Бердюгина, Люк Виатур, Иро Вилья, Петри Вяйсянен, Андреа Габриэлли, Дженифер Голдман, Измаэль Гоньярд, Майкл Джойс, Ханну Картгунен, Пертту Кейнянен, Билл Кил, Тапио Корхонен, Джон Лану, Жан-Пьер Люмине, Сеппо Маттила, Сеппо Миккола, Крис Михос, Марку Муйнонен, Сами Ниеми, Кари Нилссон, Паси Нурми, Юри Нярянен, Жорж Патурель, Сол Перлматтер, Лаура Портинари, Луциано Пьетронеро, Рами Рекола, Трэвис Ректор, Шейн Д. Росс, Джон Рул, Маркку Саримаа, Аймо Силланпяа, Франческо Силос Лабини, Аллан Сэндидж, Лео Такало, Мален Тиссен, Жиль Тюре, Энтони Фэйралл, Сезан Ховард, Пекка Хейнямяки, Яанне Холопай-нен, Том Яарретт, Андреас Яунсен.

Мы признательны Харри Блому, Дженни Волковицки и Кристоферу Кулину из издательства «Шпрингер» в Нью-Йорке за очень полезное сотрудничество и терпение при подготовке этой книги.

Мы также благодарим Прасада Сетумадавана из SPi Technologies в Индии.

Август 2008 Авторы

ЧАСТЬ I РАСШИРЯЯ ГРАНИЦЫ ПОЗНАНИЯ
Глава 1 Рождение науки

Томас Генри Хаксли (устар. Гекели), известный британский биолог XIX века, однажды написал: «Для каждого человека мир так же молод, как и в первый день». Эта мысль прекрасно отражает общность наших интересов с интересами древних людей. Все тот же мир удивляет нас и сейчас, хотя с помощью современных наземных и космических телескопов мы способны видеть на расстояния в миллиарды световых лет, а микроскопы и ускорители частиц позволяют нам проникать в невероятно малый микромир. Эти исследовательские возможности и наши нынешние знания о процессах во Вселенной возникли в результате длиной цепи научных изысканий, начиная с доисторических времен, когда единственным прибором служил невооруженный глаз, а окружающая среда была ближе к природе.

Доисторическая астрономия: наука о горизонте.

Древние египтяне отмечали звезды, видимые на небе при появлении Солнца утром на востоке. В разные сезоны это были разные звезды. Особенно интересовала египтян одна звезда — Сириус, самая яркая на ночном небе, расположенная в созвездии Большой Пес. В те времена, в третьем тысячелетии до нашей эры, эта «Собачья звезда» была видна каждое лето в восточной части неба перед рассветом. Тот день в году, когда она впервые появлялась над горизонтом в лучах восходящего Солнца, день ее гелиакического восхода, считался началом календарного года в Египте. Это важнейшее событие возвещало о начале разлива Нила, от которого зависело сельское хозяйство и вся жизнь египтян.

Древних людей буквально зачаровывал горизонт. Он казался им чем-то вроде границы мира. Наш «горизонт» происходит от греческого слова со значением «разграничивать». На финском языке эта линия носит романтическое название — «берег неба» (taivaanranta). Помимо ежедневного движения Солнца по небу, точки его восхода и захода на горизонте медленно смещаются в течение года. При переходе от зимы к лету эти точки передвигаются вдоль горизонта с юга на север. Солнце дольше остается на небе и к середине дня поднимается все выше и выше. Тот день, когда точки восхода и захода максимально смещаются к северу, а Солнце поднимается в полдень к наивысшей точке на небе, называют днем летнего солнцестояния. Существует и день зимнего солнцестояния, когда светлое время суток самое короткое и Солнце восходит и заходит в самых близких к югу точках. Эти и другие точки горизонта имеют как практическое, так и ритуальное значение. Например, древние люди из племени Хопи, живущие в своих поселениях на Амазонке, использовали и до сих пор используют горизонт с его пиками и впадинами как удобный сельскохозяйственный и церемониальный календарь. Например, положение восходящего Солнца указывает им время сева зерновых.

По всему миру археологические находки, датируемые прошлыми тысячелетиями, говорят о том, что предназначались они для поклонения, обозрения или предсказания некоторых небесных явлений. Пирамиды Египта могли быть построены как символ Бога Солнца, ежедневно возрождающегося в восточной части горизонта, в том месте, которое древние египтяне называли «ахет». Каждый из нас слышал о Стоунхендже, одном из чудес бронзового века, расположенном на равнине Солсбери, в сотне километров от современного Лондона (рис. 1.1). Он содержит концентрические круги из камней и ямок. Самая молодая часть этого сооружения с камнем высотой 6,5 метра датируется примерно 2000 годом до нашей эры. Этот довольно сложный комплекс окружен неглубоким круглым рвом диаметром 104 метра.

Рис. 1.1. Стоунхендж, впечатляющий памятник бронзового века, демонстрирующий интерес к небесным явлениям, наблюдаемым у горизонта. Фото: Harry Lehto.

Ось Стоунхенджа указывает направление на точку восхода Солнца утром в середине лета. Человеку, вставшему в центре этого сооружения, диск Солнца виден поднимающимся прямо над так называемым пяточным камнем на расстоянии 60 метров. Стоунхендж мог служить и для других астрономических целей. Вначале был сооружен его большой круг, и он мог быть связан с определенными точками горизонта. А поздние части, состоящие из больших камней, имели церемониальное значение и, возможно, также символизировали круг горизонта. Огромные усилия, которые требовались в то время для строительства Стоунхенджа, свидетельствуют о высоком значении горизонта.

Рис. 1.2. Схема большого круглого сооружения в местечке Госек (Германия). Возраст сооружения около 7000 лет. Двое южных ворот сориентированы так, что в день зимнего солнцестояния наблюдатель в центре круга мог видеть сквозь ворота восход и заход Солнца.

Несколько лет назад в Германии на пшеничном поле было найдено большое круглое образование, которое археологи определили как «обсерваторию горизонта» каменного века. В ту эпоху это 75-метровое сооружение имело трое ворот, одни из которых смотрели на север (рис. 1.2). Двое южных ворот были направлены так, что во время зимнего солнцестояния человек, стоящий в центре этого круга, видел в эти ворота восход и заход Солнца в самых южных точках горизонта. Это сооружение в местечке Госек (Goseck) имеет возраст около 7000 лет. Так что еще за 2000 лет до того, как начали строить Стоунхендж, люди на континенте сооружали круги, связанные с горизонтом.

Археоастрономы находят следы «науки о горизонте» по всему миру. Например, на острове Пасхи в середине Тихого океана знаменитые каменные истуканы, стоящие на огромной платформе, часто ориентированы в направлении астрономически значимых точек горизонта. Для коренных жителей этот остров был «глазом, смотрящим в небо». Повсюду люди восхищались регулярно повторяющимися небесными явлениями, терпеливо отслеживали их ритмы и даже согласовывали с ними свою жизнь. Таким образом наши предки прокладывали дорогу современной астрономии, современной науке и даже современной жизни.

Письмена на небосводе и на глиняных табличках.

В каждый момент истории человечество старалось преобразовать окружающий мир так, чтобы улучшить собственную жизнь. При изменении условий, например во время ледниковых периодов, люди находили новые возможности приспособиться. Иногда возникало что-то совершенно неожиданное. Пример этого дает образование плодородной области в дельте между реками Тигр и Евфрат, впадающими в Персидский залив. Когда закончился последний ледниковый период, уровень Персидского залива постепенно поднялся на десятки метров, течение этих двух рек замедлилось, и весь регион превратился в область, благоприятную для земледелия. Но когда примерно в 3500 году до н. э. климат стал суше, важное значение приобрели ирригационные сооружения, и все производительные силы стали концентрироваться в шумерских городах. Жизнь сосредоточилась вокруг храмов, посвященных богу каждого города. Храмы стали крупными административными и экономическими центрами, возглавляемыми духовенством. Политеистическую религию Шумера унаследовал Вавилон примерно в 1500 году до н. э.

Письменность была изобретена в Шумере примерно в 3000 году до н. э., в результате чего началась бурная и неожиданная культурная эволюция. Клинопись вначале была очень удобна для хранения информации в экономических центрах, храмах, но постепенно она нашла применение и в других областях жизни, включая и наблюдения неба. Движение небесных светил и в древности, и сегодня позволяет нам вести счет времени. Мы знаем, что шумерское духовенство следило за Луной для создания лунного календаря; все сведения записывались на глиняных табличках.

Однако его прямые потомки — вавилонские жрецы — интересовались только тем, какое будущее предвещают небеса их руководителям и государству. Для них небо было огромным экраном с «текстом», который мог интерпретировать только специалист. Так с развитием государства рождалась астрология. Интерес к туманному будущему был велик, и появлялись разные методы предсказаний, например по полету птиц. В отличие от нынешних дней, в те времена астрология была довольно рациональным изобретением: так как звезды считались богами или представителями богов, логично искать связь между небесными явлениями и событиями на Земле. Но постепенно выяснялись и реальные связи: в ту пору уже было известно, что смена сезонов определяется перемещением Солнца на фоне звезд, а приливы управляются Луной. Благодаря почти полному отсутствию искусственного света, мешающего ночным наблюдениям, древние люди были гораздо более внимательными наблюдателями неба, чем большинство наших современников.

В Месопотамии фазы Луны использовались для создания лунного календаря. Каждый месяц начинался вечером того дня, когда после захода Солнца впервые появлялся на небе растущий серп Луны. В наше время в своей повседневной жизни мы в основном пользуемся солнечным календарем, учитывающим сезонные изменения, но лунный календарь все еще сохранил свое значение в некоторых религиях.

Из-за годичного цикла Солнца в разные сезоны на вечернем небе видны разные созвездия. Вид ночного неба в наше время почти такой же, как и тысячи лет назад. Многие созвездия носят названия, присвоенные им в древности пастухами или мореплавателями. Фигуры из звезд на небе отождествлялись с изображениями реальных животных, богов и героев мифов. Но, кроме того, расположение созвездий создает карту, на которой можно определить место какого-либо интересного небесного явления. В современной астрономии небо поделено на 88 созвездий с четкими границами. Например, когда комета Галлея в последний раз появилась на нашем небе, в газетах можно было прочитать, что в декабре 1985 года комета окажется в созвездии Рыб, к югу от созвездия Пегас. При наличии такой информации комету легко было найти с помощью простого бинокля. Суточное вращение Земли служит причиной совместного перемещения кометы и созвездий по небесной сфере, но их относительное положение при этом не меняется.

Вавилонские астрологи прекрасно знали, что не все небесные объекты движутся вместе со звездами. Луна каждый день смещается относительно звезд на 13°, или на 26 собственных диаметров. Чтобы вернуться примерно на то же место среди звезд, Луне требуется немногим более 27 дней. И Солнце передвигается относительно звезд, хотя его сияние и затмевает их слабый блеск. Но в течение года разные созвездия видны сразу после захода и незадолго до восхода Солнца. Из этих наблюдений был сделан вывод, что перемещение Солнца в течение года происходит на фоне разных созвездий. Астрологи разделили путь Солнца, или эклиптику, на 12 равных частей, в каждой из которых Солнце проводит около месяца. По именам созвездий получили название и соответствующие знаки зодиака. Слово «эклиптика» означает путь Солнца, на котором случаются затмения (греч. ekleipsis — затмение).

Созвездия и знаки зодиака.

Примерно 2000 лет назад знаки зодиака (используемые и сегодня для составления гороскопов) и реальные созвездия на небе совпадали. Но сейчас это уже не так. По вашему гороскопу вы можете быть Овном, но это не значит, что Солнце было в созвездии Овен, когда вы родились! Весьма вероятно, что Солнце в это время было в созвездии Рыб. Причина такого расхождения в том, что при составлении гороскопов используются книги по астрологии, написанные астрономом Птолемеем примерно 2000 лет тому назад. Начальной точкой ряда знаков зодиака служит точка весеннего равноденствия. Это та точка, в которой Солнце пересекает 21 марта небесный экватор, переходя из южного полушария небесной сферы в северное. Но эта точка не стоит на месте, а медленно движется относительно звезд и созвездий. За прошедшие 2000 лет смещение произошло примерно на одно созвездие. Это движение завершает полный круг примерно за 26 000 лет, и открыл его путем наблюдений греческий астроном Гиппарх (около 190–120 до н. э.) Сегодня мы знаем, что смещение начальной точки обусловлено медленным изменением направления земной оси, которое вызвано гравитационным влиянием Луны и Солнца на слегка уплощенную Землю. Чтобы прочитать гороскоп, соответствующий вашему «сегодняшнему» знаку зодиака, просто прочитайте в газете на один знак выше того, с которым вы обычно консультируетесь. После этого можно выбрать, какой из них вам больше нравится.

Вавилоняне регулярно наблюдали планеты, которые всегда движутся недалеко от эклиптики. Они знали Венеру, Юпитер, Сатурн, Марс и Меркурий и интерпретировали их поведение как важный знак того, что случится на Земле. Переменчивое движение планет, их сближения друг с другом и с Луной, их исчезновение и появление, постепенное угасание и повышение яркости — все это служило пищей для интерпретаторов, не знающих о реальных причинах этих явлений (рис. 1.3). Вавилонские астрологи, которые тоже были жрецами в больших храмах, интересовались состоянием государственных дел, развитием экономики и сельского хозяйства, здоровьем государя, успехами в войне и т. д. Лишь позже, в Греции, появились личные гороскопы, основанные на дате рождения.

Рис. 1.3. Солнечная карета бронзового века в Дании, отражающая веру древних в то, что Солнце проезжает по небу каждый день. В это же верили, к примеру, и египтяне, и вавилоняне, хотя кареты у них были другими. Изготовленный более 3000 лет назад, этот экспонат хранится в Национальном музее Дании. Фото: с любезного разрешения Malene Thyssen.

Астрологи заметили, что планеты в основном следуют по пути Солнца по эклиптике, но они могут замедлить свое движение и даже остановиться и сделать несколько шагов назад, прежде чем продолжить свой обычный путь с запада на восток. Попятное движение планет и было тем явлением, которое требовалось объяснить и грекам, и позже Копернику при создании математической модели движения планет.

Для вавилонских астрологов прогноз попятного движения мог быть важным для предсказания будущих событий на Земле. Также было бы желательно предсказывать устрашающие затмения Луны и Солнца. Ассирийцы собрали точную статистику лунных затмений и нашли определенную закономерность в этом явлении. В Вавилоне искусство предсказания затмений продвинулось еще дальше. Было замечено, что лунные затмения имеют большой период, после которого они повторяются. Эта периодичность называется «саросом» и составляет немногим более 18 лет (18 лет И 11 1/3 суток). Это позволяет составить таблицы вероятных дат лунных затмений в далеком будущем. Астрологи обнаружили периодичность в движении планет и могли предсказывать положения планет в будущем искусными математическими методами.

Таким образом, древние наблюдатели неба учились не только интерпретировать происходящие небесные явления, но и предсказывать важнейшие явления на небе в будущем. Вавилонская астрология/астрономия достигла своего пика за несколько столетий до Рождества Христова. Когда библейские «мудрые люди с востока», возможно — вавилонские астрологи, прибыли поклониться новорожденному после того, как увидели его звезду, вавилонская культура была уже в упадке. Какими бы впечатляющими ни стали их предвидения, это собрание наблюдений не было научным в том смысле, какой мы вкладываем в это понятие сегодня. Не хватало нескольких основных элементов. Постановка вопроса и исследовательский взгляд, которые позднее были признаны источником настоящих знаний, в то время отсутствовали. Современные астрономы наблюдают небесные объекты и явления, чтобы понять, какова природа небесного тела и как оно рождается и развивается (рис. 1.4).

Рис. 1.4. Ярчайшая неподвижная звезда небосвода — Сириус из созвездия Большой Пес, расположенного рядом с Орионом, почитался древними египтянами. Появление «Собачьей звезды» на утреннем небе предвещало разлив Нила. На другой стороне полосы Млечного Пути находится Процион — ярчайшая звезда Малого Пса. Для современных наблюдателей неба эти светящиеся точки являются материальными объектами космоса, и нам интересно, насколько они далеки и что заставляет их светиться.

Образ мыслей ионийцев

Семена современной науки были посеяны на восточном побережье Малой Азии, где ионийские греки жили в своих процветающих колониях. В VII веке до н. э. ионические города, включая Милет и Эфес, были средоточием греческой культуры и экономики. В этих центрах торговли и обмена информацией рождался новый тип мышления, характеризующийся смелой индивидуальностью, в отличие от традиционных, практических поисков вавилонских жрецов. Для греков-ионийцев обдумывание и дискуссия были основным путем к пониманию природных явлений. Простые, но точные ежедневные наблюдения давали материал («данные») для дискуссии. Мы мало знаем о первых ионийских философах, которые не оставили никаких записей. Аристотель, живший на 250 лет позже, рассказывает, как эти мыслители начали поиск основополагающих принципов, то есть тех характеристик мира, которые объединяют совершенно разные вещи. Это дало бы возможность понять все разнообразие, существующее вокруг нас, и предсказывать явления, которые раньше считались подконтрольными лишь воле богов. Как писал Аристотель: «…это они считают элементом и началом вещей. И потому они полагают, что ничто не возникает и не исчезает, ибо такое естество всегда сохраняется…Относительно количества и вида такого начала не все учили одинаково. Фалес — основатель такого рода философии — утверждал, что начало — вода» (Аристотель. Соч. в 4 т. М.: Мысль, 1975. Т. 1. С. 71).

Мы видим, что эти первые философы уже тогда имели в виду сохранение материи, и это предшествовало важнейшим в современной физике законам сохранения. Они дискутировали и об основном элементе Аристотеля. Фалес (624–547 до н. э.) предполагал, что это вода, в то время как его друг Анаксимандр (611–546 до н. э.) думал, что основным элементом является нечто настолько далекое, что ничего из окружающего нас для этого не подходит. Немного позже Анаксимен (585–526 до н. э.) предположил, что этим элементом является воздух, но в более широком смысле, чем смесь газов, которым мы дышим. Он считал, что это среда, которая связывает весь мир. Она может иметь различную плотность, которая и объясняет возникновение различных форм материи. Ход его мыслей был шагом вперед к физике.

Эти ионийские философы не знали, что Земля имеет сферическую форму. Фалес и Анаксимен считали ее плоской и плавающей на основном элементе (воде или воздухе). Анаксимен предложил интересную идею. Согласно ей, Земля покоится в центре всего, в воздухе, и никуда не движется, поскольку нет преимущественного направления! В этой идее он использовал принцип изотропии, важнейший в современной космологии. Аристотель шутил, что это похоже на голодного человека, окруженного едой и вином и при этом голодающего, поскольку он не может решить, с какой стороны брать еду. Средневековым наследником этого бедняги стал Буриданов осел, страдающий от голода между двух огромных и вкусных стогов сена.

Насколько известно, Анаксимандр был первым, кто начал использовать модели и аналогии. Например, суточное движение Солнца он объяснял, используя механическую модель в виде полого кольца. Это кольцо было заполнено огнем, видным сквозь круглую дыру. Когда огромное кольцо вращается, светящаяся дыра (Солнце) движется вместе с ним. Анаксимандр считал, что Солнце в течение ночи передвигается под Землей, а не проползает от запада к востоку где-то неглубоко под горизонтом.

Анаксимен выдвинул идею о том, что звезды закреплены на сферическом небесном своде (или, по крайней мере, на полусфере). Это был блестящий пример мировоззрения ионийцев. Одна вращающаяся сфера могла объяснить суточное обращение тысяч звезд (рис. 1.5).

Рис. 1.5. Уже давно известно, что звезды кажутся вращающимися вокруг одной точки на небе — северного полюса мира. В Древней Греции это движение объясняли вращением гигантской сферы на поверхности, которой закреплены звезды. Это фото с экспозицией в несколько минут показывает северный полюс мира, который в наше время находится недалеко от Полярной звезды. На переднем плане башня телескопа в обсерватории Туорла (Финляндия). Фото: Aitno Sillanpaa и Perttu Keinanen.

Пифагор изобретает космос.

Пифагор Самосский (около 572–500 до н. э.) был влиятельной, но довольно темной фигурой в истории. Говорят, Фалес оказался так удивлен талантами молодого человека, что рекомендовал ему поехать в Египет для обучения у тамошних жрецов. Согласно другой легенде, Пифагор получил образование, будучи пленником в Вавилоне. В возрасте около 40 лет Пифагор переехал в Южную Италию, где вместе с женой Феано основал школу в греческой колонии Кротон. Школа была настоящей религиозной общиной, где под руководством учителя изучались математика, философия и другие предметы.

К кандидатам в первоосновы Пифагор добавил еще один объект — число. Космос, «упорядоченная Вселенная», управляется математикой. Эта идея имеет далеко идущие последствия, ощутимые даже в современной науке: разумное существо может судить о структуре Вселенной, не посещая каждый уголок этого мира. Приверженцы Пифагора рассматривали Землю как такую же сферу, как и звездное небо. Планеты, Солнце и Луна прикреплены каждый к своей сфере, вращающейся вокруг Земли. Разумеется, тогда уже были свидетельства сферичности Земли (например, путешественники знали, что вид звездного неба меняется при перемещении с севера на юг), но, вероятно, подобные эмпирические знания всего лишь усиливали веру в первичную природу совершенной, прекрасной сферической формы. Нужно отметить, что один из сторонников Пифагора Филолай (около 450 до н. э.) говорил, что Земля и другие космические тела обращаются вокруг огня, горящего в центре мира, причем этот огонь — не Солнце. Так что описанная Филолаем система не была гелиоцентрической. Но она показывает, что было возможно представить Землю движущейся в пространстве, хотя мы не можем чувствовать этого, находясь на Земле. Филолай полагал, что мы не видим центрального огня, поскольку Земля всегда повернута к нему одной и той же стороной (как Луна по отношению к Земле).

Пифагор создал теорию чисел и доказал знаменитую теорему' Пифагора о площадях прямоугольников, построенных на сторонах прямоугольного треугольника. Целые числа были основой пифагорейского видения мира. Пифагорейцы считали, что целые числа (или их отношения), которые были единственным типом чисел, известным в то время, могут измерить все что угодно во всем мире. Например, они думали, что линия состоит из большого числа точек, расположенных рядом, и поэтому отношение длин любых двух отрезков линии должно быть рациональным. И они были потрясены, обнаружив при использовании теоремы Пифагора, что отношение диагонали и стороны квадрата (= ?2) не может быть выражено целым числом. Наряду со старыми числами («рациональными») требовалось вводить новые числа («иррациональные»). В конце концов, это было необходимо для дальнейшего развития математики.

Иррациональные числа послужили полезным намеком на то, что мир не так прост, чтобы простейших математических понятий было достаточно для его описания и понимания. Тем не менее современные ученые с симпатией относятся к усилиям Пифагора рассматривать космос как гармоническое целое. Нам тоже хотелось бы верить, что в основе своей мир прост и постижим.

Примерно в 500 году до н. э. произошло нападение на Кротон: дом Пифагора был сожжен и некоторые члены общины убиты, а другие бежали. Сам Пифагор переехал в Тарент (Италия), но многие перебрались в города самой Греции, например в Афины, где начали возникать и развиваться новые идеи.

Глава 2 Наука в Афинах

В V веке до н. э. город-государство Афины, разбив Персидскую империю, стал центром греческой культуры и науки. Этот полис с населением от силы 300 ооо человек породил изумительно богатую культуру, влияние которой до сих пор сильно ощущается в жизни западных стран. Скульптура и архитектура процветали. Мастера трагедии Эсхил, Софокл и Еврипид создали драму. Фукидид основал критическую историографию. Сократ (469–399 ДО н. э.) бродил по улицам Афин и веселил или злил людей своими необычными вопросами.

Анаксагор делает небесные тела подобными земным.

Афины были центром новых идей, касающихся природы. Считается, что Анаксагор (около 500–428 до н. э.) перенес натуральную философию из Малой Азии в Афины. Возможно, первый ученый в современном значении этого слова, Анаксагор был рожден в городе Клазомен, он пожертвовал своим большим состоянием и посвятил жизнь науке. На вопрос, для чего рождаются люди, он отвечал, что для того, чтобы «изучать Солнце, Луну и небеса». Примерно в 40 лет Анаксагор прибыл в Афины. Здесь среди его друзей был политик Перикл, а автор трагедий Еврипид стал одним из его учеников.

Анаксагор придерживался тех же взглядов, что Анаксимен из Милета, считая, что Земля плавает в воздухе. Но это не мешало ему проводить важнейшие наблюдения небесных объектов. Он полагал, что источником лунного света служит Солнце, и правильно истолковывал лунные и солнечные затмения. Анаксагор считал, что можно объяснить небесные явления, если предположить, что небесные тела состоят из того же вещества, что и земные объекты. Поэтому он рассматривал Солнце как горячую светящуюся массу или же как горящий камень, а Луну с ее равнинами и оврагами считал похожей на Землю. Большое впечатление на Анаксагора произвел метеорный дождь, который он объяснял «землетрясением», произошедшим на некоем небесном теле. Большинству людей не были понятны такие идеи, ибо звезды и планеты обычно считались богами. Анаксагора обвинили в нечестивости. Перикл помог ему бежать из Афин в город Лампсак в Ионии. Там Анаксагор основал школу и до конца жизни пользовался большим уважением.

Другим знаменитым мыслителем того времени был Эмпедокл (около 494-34 до н. э.). В основном мы помним об этом человеке из Агригента (Южная Сицилия) благодаря теории четырех элементов. Огонь, воздух, вода и земля сохраняли свою роль в науке на протяжении двух тысячелетий. Эмпедокл первым сделал шаг к пониманию важности физических сил. В своих философских поэмах он использовал аллегорические имена Любви (филия) и Ненависти (нейкос) для противостоящих сил, поддерживающих равновесие в природных явлениях. В переводе на наш прозаический язык это были силы притяжения и отталкивания.

Древние идеи о том, почему элементы ведут себя определенным образом, образуя все окружающие нас предметы, фактически были качественной, описательной физикой. Но учение об атомах, впервые сформулированное примерно в это же время, не включало силы в свой теоретический арсенал. Чтобы объяснить формирование разных структур в мире, авторы этого учения пошли по другому пути.

Учение об атомах.

Одна из важнейших древних систем мышления — атомная теория — родилась в Малой Азии, в недрах ионийской натуральной философии (то есть естествознания). Основная идея этой теории звучала так: «В мире нет ничего кроме атомов и пустоты». Левкипп из Милета считается автором учения об атоме. Учение было развито Демокритом (около 460–370 до н. э.), родившимся в городе Абдер (Фракия), но долгое время жившим в Афинах.

Согласно теории атомов, основным элементом, который так усердно искали философы Малой Азии, была не какая-то всеобъемлющая материя, а крохотное неделимое и очень твердое тело — атом (от греч. «неделимый»). Каждый отдельный атом не обладает никакими свойствами. У него нет цвета, запаха, вкуса; но, собравшись вместе, атомы могут сформировать любое вещество. Левкипп предполагал, что космические тела, количество которых неограничено, рождаются, когда атомы из бесконечности падают в некоторую пустоту и, встречаясь друг с другом, образуют вихрь. И наша Земля тоже сформировалась в центре такого вихря.

Атомная теория кажется нам очень знакомой, и мы склонны рассматривать древних сторонников атомизма как соратников по духу современных ученых. Но важнее внешнего сходства то, что древние атомисты понимали — данный нам в ощущениях «макро»-мир можно объяснить при помощи невидимых атомов из «микро»-мира. Их способ перехода от видимого в невидимому очень похож на то, что происходит в современной науке (даже при том, что в деталях их рассуждения нередко были ошибочными). Хорошим примером объяснения атомистами видимых явлений служат их рассуждения о белье, вывешенном на дворе для просушки. Мокрое белье сохнет на солнце, но мы не видим сырость, покидающую белье, потому что она расщепляется на мельчайшие части, рассуждали атомисты.

Основной элемент атомной теории заключался в утверждении, что крупные тела образуются совершенно случайно из атомов, летящих сквозь пустоту. Этот процесс не имеет определенной цели и не управляется кем-либо. Бесконечное пространство и бесконечное время гарантируют, что рано или поздно атомы смогут собраться и сформировать целые миры, одним из которых является и наш мир. Это значит, что и люди состоят из атомов, и даже наша душа, отлетающая после смерти, тоже состоит из них. На основе этих материалистических идей Эпикур (341–270 до н. э.) с острова Самос создал теорию о мире и жизни, привлекшую многих последователей. Его страстный римский поклонник Лукреций (около 98–55 до н. э.) позже создал большую поэму De Regum Natura (О природе вещей), где описал эпикуреизм. Поэтическим языком в ней подробно рассказано о том, как были придуманы атомы для объяснения природных явлений и рождения человеческих чувств. В то же время поэма отражает энтузиазм, с которым некоторые люди воспринимают рациональное представление о природе, — показан путь рассеяния страха перед сверхъестественным.

Представления атомистов о мире отличались от взглядов Платона и Аристотеля, которые мы обсудим ниже. Для атомистов случайные столкновения атомов были единственным «законом природы». Как и Анаксагор, атомисты лишили небесные тела их божественной природы. Однако нужно сказать, что их успехи в астрономии оказались не столь впечатляющими. Например, Демокрит все еще верил, что Земля плоская, а Эпикур вообще не интересовался объяснением небесных явлений. Хоть это и удивительно, но важнейший шаг в превращении астрономии в точную науку сделал Платон, который верил в божественную природу небесных тел. А дело вот в чем: он считал, что регулярные движения небесных светил управляются высшим разумом и поэтому подаются рациональному объяснению.

Платон основывает Академию.

Великий мыслитель Платон (427–347 до н. э.) родился в богатой афинской семье. В юности он мечтал о карьере политика и стал последователем Сократа. Но после казни Сократа Платон отказался от своих планов и уехал за границу на десять лет. Он жил в Египте и в Италии, где познакомился с мировоззрением Пифагора.

После возвращения в Афины Платон основал общину талантливых учеников. Они собирались за пределами Афин, в священной роще, названной в честь мифического героя Академа. В этом тихом месте Платон вместе с учениками рассуждал о философии и науке. Здесь и родилась в 387 году до нашей эры Академия Платона, знаменитый центр образования, действовавший на протяжении девяти веков, пока император Юстиниан не закрыл его в 529 году н. э. Группа Платона обладала большим влиянием. Среди его учеников были философ и ученый Аристотель, а также математики Евдокс, Каллипп и Теэтет.

Особое значение философ Платон придавал не наблюдениям, а обдумыванию и рассуждениям в попытках объяснить неполную и неясную картину нашего мира. Для него истинной реальностью был мир идей. Это могло быть отражением взглядов пифагорейцев на реальность чисел (тоже весьма абстрактная концепция). Ясно, что эти два взгляда на мир отличались от материальной основы реальности, которая была у ионийцев и атомистов.

Достижения Платона в изучении природы проявились в астрономии. В диалоге «Государство» он представил образовательную программу, пригодную для философов его идеального города-государства. Цель этого учебного плана состояла в том, чтобы облегчить человеческому разуму путь к достижению объективного знания о неизменном мире идей. В диалогах Платона Сократ говорил о математике (арифметике, геометрии) как о способе изучения неизменной истины. Другим способом была астрономия, хотя в современном смысле это что-то далекое от нас.

Собеседник Сократа Главкон определенно признает астрономию полезной для сельского хозяйства и мореплавателей. Однако Сократ резко осуждает эту точку зрения как непригодную для философов. Затем Главкон с надеждой заявляет, что все астрономические явления заставляют душу взирать вверх, вдаль от вещей низменных. Но Сократ вновь не соглашается. Для него «вверх» означает «в направлении материального неба», а не в направлении царства идей, и выражено это такими словами: «Глядит ли кто, разинув рот, вверх или же, прищурившись, вниз, когда пытается с помощью ощущений что-либо распознать, все равно, утверждаю я, он никогда этого не постигнет, поскольку ни один из органов чувств не воспринимает знания, и душа человека при этом смотрит не вверх, а вниз, хотя бы он даже лежал лицом вверх на земле или плыл по морю на спине».

Главкон вынужден признать, что был неправ. Но он недоумевает: «Каким же способом, отличным от нынешнего, нужно изучать астрономию для наших целей?» Сократ допускает, что «вон те узоры на небе» более прекрасны и совершены, чем все, что мы видим, но все же они уступают вещам истинным с их перемещениями друг относительно друга, происходящими с подлинной быстротой или медлительностью, согласно истинному числу и во всевозможных истинных формах, по причинам, скрытым в них самих. Это постигается разумом и рассудком, но не зрением.

И Сократ продолжает объяснять свою мысль:

«Значит, небесным узором надо пользоваться как пособием для изучения подлинного бытия, подобно тому как если бы нам подвернулись чертежи Дедала или какого-нибудь иного мастера или художника, отлично и старательно вычерченные. Кто сведущ в геометрии, тот, взглянув на них, нашел бы прекрасным их выполнение, но было бы смешно их всерьез рассматривать как источник истинного познания равенства, удвоения или каких-либо иных отношений» (Платон. Государство, кн. 7).

Сократ и Платон считали, что регулярные движения небесных тел лишь приблизительно отражают законы идеального мира движений, подобно тому как вычерченные рукой геометрические фигуры лишь приблизительно согласуются с математическими законами, которым они подчиняются. Однако простое созерцание или даже внимательные наблюдения не приводят к настоящим знаниям по геометрии — это должно быть подтверждено вычислениями, в которых визуальное восприятие или измерение точного рисунка не может быть частью доказательства. Например, можно сделать много рисунков в разном масштабе для приближения к доказательству теоремы Пифагора, но нельзя быть уверенным в результате без строгих геометрических рассуждений (рис. 2.1).

Рис. 2.1. Теорема Пифагора. Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на катетах. Вы можете попробовать проверить эту древнюю теорему, для этого существует много способов.

Истинные космические движения живут в мире идей, таких как «истинная скорость» и «истинный период», и проявляются в наблюдаемых движениях небесных тел только как искаженное отражение в зеркале чувств. Наблюдая эти искаженные явления, вы не можете получить правильные знания, и «значит, мы будем изучать астрономию так же, как геометрию, с применением общих положений, а то, что на небе, оставим в стороне, если мы действительно хотим освоить астрономию». Современная астрономия, изучая удивительные открытия, сделанные путем наблюдений, вряд ли согласится с утверждениями Сократа. Возможно, Платон такие взгляды понимал не буквально. На самом деле, в своей более поздней космологической работе «Тимей» Платон благодарит наше зрение за то, что оно сделало доступным нашим чувствам небесные движения: «Это я считаю главным благом, полученным от зрения».

Необычная программа по астрономии, обрисованная Платоном, служит ясным напоминанием того, сколь долгий путь с той поры прошло наше представление о науке. Мы склоняемся к мысли, что законы природы не возникали независимо от природных явлений, даже если кто-то мог сформулировать их, используя точный язык математики. В любом случае, мы неспособны представить, что можно было открыть эти законы без наблюдений. Искажающие факторы и ненадежные наблюдения могут повлиять на точность окончательного результата, но это не смертельно. Платон стремился к непоколебимым знаниям о мире, используя метод чистого размышления. Мы же счастливы, получая приблизительные знания, извлекаемые при помощи наблюдений и опытов. Наш опыт, которого не было у древних людей, показывает, что это плодотворный путь для постепенного накопления знаний о законах природы, путь приближения к истине.

Говорят, что Платон давал своим ученикам задание определить, какого типа простые и равномерные движения могут объяснить видимые перемещения звезд и планет. Это задание вдохновило Евдокса на формулирование его знаменитой теории гомоцентрических сфер (обсудим это в следующей главе). Идея Евдокса подтолкнула и других людей к созданию моделей движения планет, что имело огромное значение для развития науки. Более важным, чем взгляды самого Плутона на правильные научные исследования, было то, что вокруг себя он собрал много талантливых учеников, которых стимулировала уникальная интеллектуальная атмосфера Академии Платона. Отношения между ними и другими важными фигурами древней науки приведены на рис. 2.2 и художественно изображены (с элементами фантазии) на рис. 2.3.

Рис. 2.2. Древние философы и ученые, расположенные на шкале времени. Города, где они жили, указаны сверху крупными буквами. Часто мы не знаем точных дат их жизни.

Вселенная Аристотеля.

Самым известным среди учеников Платона стал Аристотель (384–322 до н. э.). Он родился в городе Стагира в Македонии. Аристотель посещал лекции Платона два десятилетия, вплоть до смерти учителя. Затем он переехал сначала в Малую Азию, а позже — в Пеллу, столицу Македонии, где семь лет служил воспитателем королевского сына, в будущем — Александра Великого. Примерно в 50 лет Аристотель вернулся в Афины и основал там свою школу. У него была привычка гулять с учениками, обучая их и дискутируя с ними (отсюда и название — «школа прогуливающихся», перипатетиков). Интересно, что не так давно археологи нашли место в Афинах, где располагался знаменитый Лицей — школа Аристотеля.

Аристотель написал множество книг, но ни одна из них полностью не сохранилась. Все, что осталось, это «наброски лекций» и конспекты, но и они были потеряны на двести лет, пока их не нашли в погребе потомков одного из его учеников. Наша связь с прошлым очень слаба!

Аристотель был универсальным гением, мечтавшим создать систему знаний обо всем на свете. Он занимался многими вещами, в том числе разделил науку на отрасли, изучил природу научных знаний и стал основоположником логики. Как основатель зоологии, он был ревностным наблюдателем поведения животных и описал примерно 500 различных видов. В физике он был первым, создавшим теорию динамики, которая пыталась объяснить движение различных предметов вокруг нас. Его физика имела космологический масштаб. Она была тесно связана с его представлениями о Вселенной, которые оказывали огромное влияние на европейскую научную мысль вплоть до Средних веков.

Вселенная Аристотеля имела конечный размер, фактически это была конечная сфера, вне которой не имелось ничего, даже пустоты. Аристотель выдвигал несколько аргументов в пользу конечности против бесконечности. Например, он утверждал, что «каждое вращающееся тело обязательно конечно». Если бесконечное тело вращается, его огромная часть должна пройти за конечное время бесконечное расстояние, а это невозможно, утверждал Аристотель. И делал вывод, что, поскольку суточное вращение неба является космологическим свойством Вселенной, то она должна быть конечной. А тот факт, что тела стремятся упасть в точку, расположенную в центре Земли, приводил Аристотеля к мысли о сферичности Земли, и ему казалось, что в таком случае эта точка должна быть центром Вселенной. Аристотель утверждал, что только конечная Вселенная может иметь центр.

Аристотель соглашался с Эмпедоклом, что «здесь» мы имеем четыре элемента, одним из них является твердый материал, из которого состоит Земля. Основной мыслью динамики Аристотеля было утверждение, что движение тел определяется их стремлением к своему «естественному месту». Естественное положение элемента земля и есть центр Вселенной, и отсюда естественное движение «вниз». Огонь является противоположным земле, и его естественное движение — «вверх». Также вода и воздух стремятся разместиться на разных уровнях, и вода ниже, чем воздух.

Однако физика небесных объектов, по Аристотелю, не такова. Во-первых, небесные тела состоят из особого элемента — эфира. Он был предложен раньше как очень разреженная среда, заполняющая вакуум, но Аристотель поднял эфир на небеса и придал ему статус пятого элемента. Эфир вечен, поэтому звезды и планеты, состоящие из эфира, никогда не разрушатся. Во-вторых, Вселенная как целое неизменна и вечна, и это отражается в регулярных круговых движениях небесных тел. Круговые движения особенные: тело всегда возвращается в свое первоначальное положение, поэтому здесь видимые изменения или движения, как ни странно, свидетельствуют о постоянстве. В подлунном мире изменений естественными движениями являются «вверх» и «вниз», но на небе естественное движение круговое.

Динамика Аристотеля была основана на наблюдениях земной среды, которая может дать обманчивую картину того, чем управляется и поддерживается движение. Трение и сопротивление воздуха серьезно затрудняют построение правильной теории движения, но Аристотель не учитывал эти факторы. И хотя его идеи были ошибочными, они дали важный импульс средневековым мыслителям для построения теории движения.

Аристотель утверждал, что мы можем понять явление только в том случае, если знаем его причину. Это звучит вполне привычно, но Аристотель предполагал особую, окончательную причину, цель (telos). Это как если бы некая сила из будущего влияла на сегодняшнее событие. Мы знаем окончательную причину, когда можем сказать, почему происходит данное явление. Например, камень падает вниз потому, что его целью является его естественное место в центре Вселенной. Аристотель был специалистом в биологии, а там, на первый взгляд, окончательные или теологические мотивы кажутся естественным путем объяснения. Так почему же этого нельзя делать в любой другой области? Аристотель не знал других категорий причин, и окончательная причина была наиболее существенной для понимания природных явлений.

Современная наука считает другие причины важными для объяснения физических явлений, а окончательная причина перестала быть основной. Обусловленность заменила собой окончательность. Современная наука начинает свои объяснения с прошлого, с определенного начального состояния, и следует по цепи причин и следствий в попытке понять, что же произойдет в будущем. Когда мы задаем вопрос, почему что-то случилось, мы имеем в виду: какие условия и законы природы привели к этому явлению? Мы не задаем вопрос об их цели.

Поэтому неудивительно, что в этой первой теории динамики движение падения к центру Вселенной (Земли) было настолько важным. Теперь мы понимаем, что это явление (падение камня), которое кажется таким важным, есть лишь частное проявление универсального закона гравитации. И это случается вблизи любого небесного тела. Аристотель знал только один такой пример, нашу Землю.

Аристотель, «мозг Академии Платона», был уверен, что только он может получить надежные знания о мире. Вопреки тому, что говорил его учитель Платон, Аристотель подчеркивал важность наблюдений (рис. 2.3). Детально наблюдая природные явления, ученый может интуитивно прийти к фундаментальным понятиям науки, абсолютной истине. Из таких начальных истин, представляющих собой наивысший уровень знаний, можно путем логической индукции вывести другие истинные положения о мире, и это будут научные знания, основанные на строгих принципах.

Как для Аристотеля, так и для Платона истинные знания должны быть действительно верны и окончательны, что-то вроде математической истины. Однако вековой опыт показывает, что такие очень строгие требования делают невозможным применение науки. Вероятно, наука является приближением к истине, и в таком случае это делается путем «неполных истин» и временных допущений. Накопление научных знаний гораздо более сложный процесс, чем это мог представить Аристотель, и его надежность ограничена и временна. Тем не менее если взять точку зрения Аристотеля на науку, то можно увидеть проблеск двух основных процессов, являющихся основным инструментом любой современной науки: индукция, или открытие основных законов на основе наблюдений, и дедукция, или построение логических последовательностей, например для предсказания того, что произойдет в результате опыта.

Рис. 2.3. Фреска Рафаэля, изображающая философа Платона со своим самым знаменитым учеником Аристотелем во время дискуссии в Афинской Академии. Платон указывает пальцем вверх, на небо, а подход Аристотеля более приземлен. Гипатия (жившая несколькими веками позже), одетая в белое платье, стоит внизу слева, одна, повернувшись к зрителям, в окружении мужчин.

Глава 3 Сферы планет и размер Вселенной

Вавилонские наблюдатели неба знали о блуждающих небесных объектах (планетах; в то время это понятие было более широким, чем сейчас). Один из них, Солнце, всегда движется на фоне звезд по эклиптике к востоку. Это его годичный путь по зодиакальным созвездиям. Луна, не удаляясь значительно от эклиптики, делает один оборот по звездному небу примерно за месяц. Остальные планеты гоже большую часть времени медленно перемещаются к востоку, оставаясь недалеко от эклиптики. Требуется определенное время, чтобы планета сделала полный оборот от некоторого созвездия в зодиаке к тому же самому месту (ее сидерический период). Но, в отличие от Солнца и Луны, прочие планеты иногда замедляют движение, останавливаются и некоторое время движутся в обратном направлении, а затем вновь останавливаются и возвращаются к своему нормальному движению (рис. 3.1).

Рис. 3.1. Обратное движение Марса в 2003 году. Его синодический период в 780 суток отделяет одну петлю от другой, которые располагаются в разных эклиптикалъных созвездиях. Это было основньш явлением, которое древние ученые и позже (более успешно) Коперник пытались объяснить с помощью моделей движения. Рисунок: NASA/JPL–Caltech.

Существует определенная регулярность в этом необычном попятном движении. У каждой планеты свой синодический период — промежуток времени между двумя последовательными попятными петлями. Синодический период отличается от сидерического, и поэтому каждая следующая остановка происходит в ином созвездии зодиака. В табл. 3.1 приведены синодические и сидерические периоды планет (из которых Уран, Нептун и Плутон не были известны в древности).

Таблица 3.1. Синодический и сидерический периоды планет (включая планеты, открытые в недавнее время).

* Согласно современному определению, Плутон не является большой планетой: это карликовая планета. Обратите внимание, что с увеличением сидерического периода синодический период становится все ближе к нашему году (можете объяснить, почему?).

Теория концентрических сфер.

Греческие философы начали использовать новый подход, выходящий за рамки астрологии: они пытались рационально объяснить видимое движение планет. Их идеалом небесных движений были сферы и круговые движения (и этот идеал продержался два тысячелетия). Сфера и окружность как геометрические фигуры были хорошо изучены греческими математиками. Кроме того, при идеальном круговом движении точка всегда возвращается в исходное положение, а это, очевидно, подходит для небесных объектов, которые если и не божественные существа, то, по крайней мере, вечные; а небесная сфера, судя по наблюдениям, вращается совершенно равномерно.

Платон спрашивал своих учеников, какого типа простое движение может объяснить сложные движения планет. Евдокс (около 408–355 до н. э.) принял вызов. Среди прочих достижений Евдокса был метод вывода формулы для вычисления площадей и объемов, похожий на современное интегральное исчисление.

Теория Евдокса о сферах, концентрических по отношению к Земле, стала первой математической моделью, объясняющей некоторые детали небесных движений, включая и сбивающие с толку попятные движения. В этой модели рассматривались сферы, вращающиеся вокруг своей оси с различными, но постоянными скоростями. Ось каждой внутренней сферы упиралась в следующую сферу, и все они были наклонены друг к другу под определенным углом. За пределом всех планетных сфер располагалась небесная сфера неподвижных звезд, вращающаяся равномерно вокруг Земли с периодом в одни сутки. Мы надеемся, что наше краткое объяснение не ошеломило читателя! Ряд взаимосвязанных сфер обеспечивал каждой планете ее собственное особое движение. Довольно равномерное движение Солнца и Луны можно смоделировать всего лишь тремя сферами для каждого из объектов. Основная идея этой теории схематически представлена на рис. 3.2.

Рис. 3.2. Упрощенная диаграмма концентрических сфер Евдокса. Сферы вращаются вокруг своих осей с различными, но постоянными скоростями. Оси соединяют каждую внутреннюю сферу со следующей, внешней, и они наклонены друг к другу на определенные углы. Поэтому траектория планеты, видимая с Земли, не круговая, а более сложная.

Первая сфера вращается вокруг оси север-юг и дает суточное движение. Один полный поворот второй сферы, наклоненной к первой на угол наклона эклиптики к небесному экватору, обеспечивает сидерический период. Наконец, третья сфера моделирует вращение по орбите, наклоненной к эклиптике. В случае Луны и Солнца достаточно трех сфер (Евдокс ошибочно считал, что Солнце движется не точно по эклиптике). Планеты с обратными петлями — Меркурий, Венера, Марс, Юпитер и Сатурн — для объяснения их более сложного движения требуют наличия четырех сфер у каждой. Таким образом, полное количество сфер составляет (2 х 3) + (5 х 4) = 26, и все они концентрически вложены друг в друга.

С помощью своей модели Евдокс мог неплохо объяснить движения планет, известные в то время. Однако Марс оказался крепким орешком, и его движение было почти невозможно описать с помощью этой модели. Видимо, Евдокс рассматривал свою модель не как реальную физическую конструкцию, а как чисто математическое построение, где ряд сфер одной планеты никак не влияет на сферы другой, хотя все они вложены одна в другую.

Развитием модели Евдокса стала планетная модель Аристотеля, включавшая 56 сфер с Землею в центре. Возможно, Аристотель рассматривал сферы как физические объекты, типа небесного кристалла. Однако он отвергал идею Пифагора о музыке сфер. Наоборот, он рассматривал тишину небес как доказательство наличия сфер. Шума можно было бы ожидать, если бы небесные тела неслись сквозь какую-то среду. Число сфер возросло, поскольку Аристотель хотел соединить ряд сфер каждой планеты с дополнительными сферами, так чтобы основное суточное движение внешней сферы неподвижных звезд передавалось сверху вниз.

Теория эпициклов.

Планетная модель Евдокса не смогла объяснить некоторые наблюдательные данные, и это обнаружил Автолик из Питаны (около 360–290 до н. э.). Когда планеты делают петлю на западе, они ярче, чем в остальное время, что означает, что в этот момент они к нам ближе. В моделях, где центр сфер расположен на Земле, планеты всегда остаются на одном и том же расстоянии от Земли. Это несоответствие было устранено Аполлонием Пергским (около 265–176 до н. э.). Он работал в новом мировом научном центре — в Александрийском музее. Аполлоний был учеником Евклида и был известен своими исследованиями геометрических кривых — эллипса, гиперболы и параболы. Гораздо позже эти кривые сыграли важную роль в изучении планетных орбит. Аполлоний разработал новый, хотя и основанный на тех же идеальных окружностях, способ представления планетных движений.

В его модели планета не укреплена на своей сфере, а движется по маленькой окружности — эпициклу, центр которого закреплен на равномерно вращающейся главной сфере. Когда планета перемещается в обратном направлении по эпициклу, она находится в наиболее близком к нам положении, и этим объясняется ее поярчание при совершении обратной петли на небе (рис. 3.3). Движение по большому кругу — дифференту происходит с сидерическим периодом планеты, в то время как по эпициклу она вращается с синодическим периодом. Вращение в обоих случаях происходит с постоянной скоростью. Эпицикл объяснял изменение блеска каждой планеты и ее движение по небу, заменяя две сферы для обратного движения. Эта схема использовалась и совершенствовалась до конца Средневековья.

Рис. 3.3. Схематическое изображение модели эпициклов. Планета движется по малому кругу (эпициклу), центр которого движется по большому кругу (деференту), а в центре его расположена Земля.

Гиппарх обнаруживает медленное покачивание небесной сферы.

Мы практически ничего не знаем о жизни Гиппарха (около 190–120 до н. э.), и его труды почти полностью утеряны, но все же нет никаких сомнений, что это был великий астроном, живший на острове Родос и в других местах. Он разработал тригонометрию, необходимую для астрономии, где в вычислениях используются треугольники. Кроме того, он создал каталог звезд, включающий более 8оо светил, описание их положения на небе и их яркости, выраженной в звездных величинах, единицах, используемых до сих пор. Самым ярким звездам Гиппарх приписал первую величину. Для звезд, с трудом различимых на небе невооруженным глазом, была указана шестая звездная величина, а для остальных звезд диапазон звездных величин составил от 2 до 5.

Позже римский писатель Плиний Старший (23–79 н. э.) выразил свое восхищение каталогом Гиппарха: «Он сделал то, что было бы смело даже для богов, — он пересчитал звезды и созвездия, имея в виду будущие поколения, и дал им имена. Для этого он создал приборы и с их помощью определил положение и размер каждой звезды. Благодаря этому теперь будет легко узнать не только, рождаются ли звезды и умирают ли они, но и передвигаются ли они со своего места и становятся ли ярче или тусклее».

Каталоги звезд и других небесных объектов были и остаются очень важными для изучения Вселенной. Именно сравнивая свой каталог с измерениями двух александрийских астрономов, проделанными за полтора века до него, Гиппарх обнаружил медленное движение неба. Он использовал координаты для определения положения звезд. Это аналоги широты и долготы на сферической Земле. Для определения двух данных координат требуются основной круг, делящий сферу на две равные части, и фиксированная нулевая точка на нем. На Земле это экватор и его пересечение с меридианом (линия север-юг), проходящим через Гринвичскую обсерваторию близ Лондона. Например, долгота корабля на Земле равна числу градусов от Гринвича вдоль экватора до того места, где проходящая через корабль линия север-юг пересекает экватор. Широта корабля равна количеству градусов вдоль этого круга к северу или к югу от земного экватора.

За год Солнце обходит небесную сферу по эклиптике, наклоненной на 23° к небесному экватору, проходящему прямо над земным экватором. Поэтому Солнце пересекает небесный экватор дважды, в точках, разделенных на 180°. Один раз — весной, в момент весеннего равноденствия, переходя из южного полушария неба в северное; второй раз — осенью, в день осеннего равноденствия, при переходе с севера на юг. Гиппарх использовал эклиптику в качестве основного круга, от которого измеряется небесная широта к северу или югу. Он выбрал положение Солнца 21 марта как точку весеннего равноденствия и нулевую точку на эклиптике. Угол, отсчитываемый от этой нулевой точки к востоку, считается небесной долготой. Сравнивая старые координаты со своими измерениями, он обнаружил, что долгота звезд за прошедшие 150 лет уменьшилась на 2°, а широта не изменилась. Гиппарх понял, что точка весеннего равноденствия не остается неподвижной, а медленно перемещается по эклиптике к западу, в направлении, противоположном движению Солнца. Точки пересечения постепенно сдвигаются вдоль зодиака от одного созвездия к другому в течение тысяч лет.

Как позже объяснил Коперник, это медленное, но заметное явление (как мы упоминали в главе 1, заставляющее сдвигаться знаки зодиака) отражает медленное конусообразное качание земной оси с периодом 26 000 лет. Но в древности это считалось загадочным, особым движением небесной сферы. Оно приводит к интересному следствию, о котором знал Гиппарх, а именно — что существует два чуть-чуть различающихся определения года (см. врезку 3.1).

Врезка 3.1. Звездный и тропический годы.

Звездный, или сидерический, год — это интервал времени между двумя прохождениями Солнца через неподвижную точку на звездной сфере, скажем, через неподвижную звезду на эклиптике. Тропический год — это время от одного весеннего равноденствия до другого. Тропический год короче звездного, так как Солнце приходит в медленно перемещающуюся ему навстречу точку весеннего равноденствия на 20 минут раньше, чем «по расписанию». Звездный год — это истинный период обращения Земли вокруг Солнца (около 365,2564 суток). Тропический год, как следует из его названия, связан со сменой сезонов (определяемой положением Солнца относительно экватора); он равен приблизительно 365,2422 суток. В нашей повседневной жизни мы привыкли думать, что 365 дней составляют год (который иногда бывает високосным ц содержит 366 суток). Наш григорианский год, введенный в 1582 году папой Григорием XIII, содержит 365,2425 суток, тогда как использовавшийся до него юлианский год, введенный Юлием Цезарем в 46 году н. э., содержал 365 + 1/4 = 365,25 суток. Заметим: когда мы говорим, что нам столько-то лет, мы имеем в виду тропический, а не звездный год (хотя на самом деле различие между ними не имеет никакого значения для практической жизни).

Узнав о разных определениях года, вы можете поинтересоваться, а какой же год имеют в виду, когда говорят о световом годе, используемом для измерения расстояний?

В действительности астрономы не пользуются этой единицей для измерения космических расстояний; они употребляют парсек (см., например, врезку 8.1). Так что выбор длины года не столь уж важен. Наиболее удобной единицей измерения является юлианский год продолжительностью ровно 365,25 суток (каждые ровно по 86 400 секунд). Это приводит к световому году длиной 9 460 730 472 580,8 км (если принять современное значение скорости света равное 299792,458 км/с).

Здесь мы имеем пример очень медленно происходящих природных процессов, для выявления которых требуются долговременные точные наблюдения (и возможность записывать их!). Быстротечность человеческой жизни и наш ограниченный жизненный опыт не позволяют заметить колебания земной оси и многие другие важные явления.

Птолемей.

Последним великим астрономом Древней Греции был Клавдий Птолемей, живший в Александрии примерно в 100–178 годах н. э. Он собрал астрономические знания того времени в своей книге, известной по ее более позднему арабскому названию Альмагест (Великая Книга). Мусульманские астрономы сохранили этот труд до конца Средневековья, дополнив его своими результатами. Когда в Европе возродилась астрономия, книга была переведена с арабского на латынь, а перевод с греческого появился только в XV веке.

Птолемей усовершенствовал теорию эпициклов. Еще Гиппарх добавил в эту модель эксцентрические окружности: эпициклы равномерно движутся по большим окружностям деферентов, центры которых немного смещены относительно центра Земли. Это дополнение позволило ему достаточно точно описать наблюдаемое изменение скорости годичного движения Солнца. А Птолемей ввел следующее дополнение: эквант, точку внутри эксцентрической окружности. Центр эпицикла должен двигаться вдоль эксцентрической окружности с переменной скоростью, такой, чтобы для наблюдателя в экванте видимая угловая скорость оставалась постоянной. Эта уловка позволила в будущем лучше описывать движения планет. Однако она приводила к отказу от традиционного кругового движения. Позже Коперник, во всем остальном большой поклонник Птолемея, не мог признать эквант и остался верен идее равномерного кругового движения.

Размер сферической Земли.

Способы измерения астрономических расстояний своими корнями восходят к Фалесу, который, как утверждают, определял высоту пирамиды, дожидаясь момента, когда длина тени от вертикально стоящего шеста становилась равной длине самого шеста. В этот момент он измерял длину тени, отбрасываемой пирамидой. Это простая, но искусная процедура показывает, как сочетание наблюдений с математикой может привести к неожиданным результатам в изучении окружающего мира. Основы измерений космических расстояний были заложены в стране пирамид, в Александрии, где Эратосфен (около 275–195 до н. э.), хранитель библиотеки знаменитого Музея, измерил размер Земли, используя ее сферическую форму и, опять-таки, Солнце и тень.

Как географ, он собирался построить карту мира и нуждался в масштабе для ее координатной сетки. Его метод был очень прост: если известно расстояние между двумя точками, измеренное по искривленной поверхности Земли, и если известно угловое расстояние между ними, то можно прямо вычислить окружность Земли. Например, угловое расстояние от полюса до экватора равно одной четверти полной окружности, так что, умножив это расстояние на 4, мы получим длину окружности Земли.

Эратосфен взял две опорные точки: Александрию, где он жил, и Сиену (ныне Асуан), которые располагаются примерно на одной долготе (линия север-юг). Он знал, что в Сиене в день летнего солнцестояния в полдень исчезают тени, а значит, Солнце находится точно над головой. В это же время в Александрии Солнце расположено немного южнее зенита, поэтому тени видны. Угловое расстояние между этими двумя городами по его измерениям составляет около 7°, или 1/50 полной окружности в 360°. Следовательно, умножив линейное расстояние между Александрией и Сиеной 5 на 50, можно получить длину окружности Земли (схема измерений показана на рис. 3.4). Неизвестно, как Эратосфен определил расстояние 5, но он мог использовать время, которое требуется гонцу для преодоления этого пути. Так или иначе, он принял S = 5000 стадий и получил длину окружности Земли равную 250 000 стадий.

Рис. 3.4. (а) Схема измерения Эратосфена, где R — радиус Земли, S — расстояние от Александрии до Сиены, ? — угловое расстояние Солнца от зенита в Александрии, а также угол при центре Земли. Большой круг — окружность Земли, (б) Схема триангуляции, где R — расстояние от наблюдателя до объекта, а — угловой размер объекта. Большой круг радиуса R с центром в точке наблюдения.

Стадия использовалась в соревнованиях греческих атлетов, но в ходу было несколько единиц с этим названием и разной длины. Мы точно не знаем, какую из этих единиц использовал Эратосфен, когда говорил о 5000 стадий. Короткая единица длиной 157,5 м (часто употребляемая историками) дала бы немного меньшее значение окружности Земли, а длинная единица в 185 м переоценила бы размер Земли: ее окружность имела бы длину либо 39 375, либо 46 250 км. Современное значение окружности Земли равно 39 942 км (полярное) и 40 075 км (экваториальное). Впрочем, здесь важно то, что еще в Античности, задолго до Колумба, были известны форма и размер Земли[1]. Эратосфен показал, что можно измерить размер Земли, притом что увидеть ее целиком невозможно, используя измерения на поверхности и учитывая сферическую форму. Даже современные космологи применяют подобный способ для всей Вселенной.

Способ, которым Эратосфен измерил Землю, представляет собой частный случай триангуляции, использующий равнобедренный треугольник (с двумя равными сторонами). Как показано на врезке 3.2, в астрономии встречаются два подобных случая: когда базовой стороной треугольника служит размер далекого объекта, расстояние до которого мы определяем; либо когда базовая сторона находится «здесь», а далекий объект расположен в вершине треугольника.

Примером первого типа триангуляции может служить определение расстояния до Солнца, исходя из его углового размера (примерно полградуса). Если бы его истинный диаметр был бы известен, скажем, в километрах, можно было бы легко вычислить расстояние до него. Но даже в наше время мы не можем определить истинный размер с достаточной точностью, независимо от его расстояния. Не могли этого сделать и в древности. Анаксагор смело предположил, что Солнце — это светящийся камень размером с Пелопоннес (около 150 км). В этом случае метод триангуляции дает значение 17 000 км, тогда как правильное значение примерно в 10 000 раз больше (поскольку Солнце во много раз больше Пелопоннеса). Расстояние до Солнца никак не могли измерить в течение долгого времени, и только в XVII веке были сделаны довольно точные измерения.

Если базовая сторона «здесь», то она сама становится естественной единицей измерения, независимо от того, какова его длина в метрах или стадиях. С древности и до XVIII века радиус Земли служил основной единицей измерений в Солнечной системе. Как мы увидим ниже, расстояние Земля-Солнце используется как естественная база при измерении расстояний до ближайших звезд.

Врезка 3.2. Треугольники и расстояние.

Посмотрим на рис. 3.46. Если у нас равнобедренный треугольник (две стороны равны R), то, зная угол ? при его вершине, между двумя равными сторонами, и длину базовой стороны S, мы легко можем вычислить высоту треугольника.

При астрономической триангуляции обычно астроном может измерить угол ?, и, как правило, этот угол весьма мал, меньше нескольких градусов. Поэтому высота в треугольнике почти равна R.

Очертив воображаемую окружность радиусом R с центром в вершине треугольника, мы получим ту же картинку, что и Эратосфен, но в нашем случае R — это расстояние до объекта, а S — его физический размер. Длина воображаемой окружности равна S, деленной на ту часть, которую от 360° составляет угол ?.

Расстояние R равно длине окружности, деленной на 2?. Обычно встречается два характерных случая.

• Предположим, что базовая сторона является определяемым расстоянием до далекого объекта. Отметим, что объект может быть очень далеким, если он велик, но если он близок, то может быть и мал (когда вы смотрите на палец своей вытянутой руки, его угловая толщина равна угловому размеру Луны, но Луна гораздо больше и дальше вашего пальца!). Ясно, что для вычисления расстояния R по измеренному угловому размеру объекта на небе (угол ? в вершине треугольника) нам нужно знать размер этого объекта (S) в километрах. Но как вычислить его истинный размер, не зная расстояния до него? Это одна из самых трудных задач астрономии — найти «стандартный отрезок» для измерения больших расстояний за пределами нашей Галактики.

• Было бы легче, если бы базовая сторона была бы «здесь», у наблюдателя, а далекий объект находился бы в вершине треугольника. Подобно Эратосфену, мы бы измерили S и угол ? (каким-то иным методом), а затем вычислили бы расстояние R до объекта. В сущности, используя этот метод, Эратосфен вычислил расстояние до недостижимого центра Земли.

Аристарх Самосский — Коперник Античности, расширивший Вселенную.

Наряду с моделями мира, в центре которого расположена Земля, в древности были и «диссидентские» взгляды, выражавшие сомнения в некоторых базовых установках господствовавшей космологии. Гераклид Понтийский (388–315 до н. э.), ученик Платона, считал, что Земля вращается вокруг собственной оси, а суточное вращение неба — это всего лишь кажущееся явление для наблюдателя на вращающейся Земле. Гераклида чуть было не выбрали главой Академии после смерти Спевсиппа, преемника Платона, но выиграл Ксенократ с перевесом в несколько голосов. Можно предположить, что к вопросу о движении Земли отношение в Академии стало бы более внимательным, если бы выбрали Гераклида.

Аристарх Самосский (310–230 до н. э.) придумал способ определения размеров и расстояний Луны и Солнца. Он использовал Луну как промежуточный шаг к более далекому Солнцу. Сохранилась только одна его работа О размерах и расстояниях Солнца и Луны. В этой книге Аристарх объясняет, как можно измерить (а) отношение расстояний Солнца и Луны и (б) размеры Солнца и Луны, принимая радиус Земли как единицу длины. В основе метода (б) лежит затмение Луны (используется тень, отбрасываемая Землей). Требуется также знать отношение расстояний, которое определяется способом (а), по наблюдениям Луны в одной из четвертей.

В чем причина лунных фаз и лунных затмений, понял еще Анаксагор за два столетия до этого (и подробно объяснил Аристотель). Аристарх считал, что Луна — это сфера, светящаяся лишь отраженным солнечным светом. Поэтому в фазе первой или последней четверти, когда освещена половина лунного диска, Земля, Луна и Солнце составляют прямоугольный треугольник с Луной при прямом угле (рис. 3.5). Если в этот момент измерить угол между Луной и Солнцем, то можно узнать и величину оставшегося угла треугольника. После этого легко вычислить расстояние Земля-Солнце в единицах расстояния Луны от Земли. При наличии простейшего современного калькулятора вычисления не представляют никакой трудности, но для Аристарха они были трудны из-за скучных геометрических построений. Угол между Луной и Солнцем в его вычислениях был принят 87°, и он показал, что отношение расстояний до Солнца и до Луны больше чем 18:1, но меньше чем 20:1. Вычисления с помощью калькулятора дают около 19:1.

Аристарх оценил размер Луны в сравнении с Землей весьма изощренным методом, используя затмения Луны. Мы опишем его в упрощенном виде. Представим, что Солнце очень далеко; тогда за Землей образуется цилиндрическая тень, диаметр которой равен диаметру Земли. Во время затмения легко увидеть, что земная тень больше Луны, а по продолжительности затмения нетрудно вычислить относительный размер Луны и Земли. Аристарх определил, что размер Луны составлял 1/3 размера Земли. Современное значение ближе к 1/4. Солнце и Луна имеют примерно одинаковый угловой размер, равный 1/2°. Если Солнце в 19 раз дальше Луны, которая в три раза меньше Земли, то получается, что Солнце в 19/З ? 6 раз больше Земли. Современные данные дают другие значения: в 400 раз дальше и в 400/4 = 100 раз больше Земли.

Немного странно, что Аристарх не определил расстояние до Луны и Солнца, ведь их было бы легко вычислить в единицах радиуса Земли. Может быть, он это сделал в работе, которая не сохранилась. В таком случае, с теми данными, которые у него были, он должен был получить: (1) расстояние до Солнца равное 1500 радиусам Земли, (2) расстояние до Луны равное 80 земным радиусам. Правильные данные таковы: 23 500 и 60 земных радиусов соответственно. Математические расчеты Аристарха были верны, откуда же такое отличие? Угол Солнце-Луна во время четвертей Луны близок к 90° (89,85°), поэтому даже крошечная ошибка в измерениях дает большую погрешность в определении отношения расстояний.

Позже Гиппарх и Птолемей определили методом триангуляции расстояние до Луны в 60 земных радиусов. Таким образом, древние астрономы хорошо знали и размер спутника, и расстояние до Луны. Но расстояние до Солнца так и оставалось недооцененным до нынешней эпохи. Даже Коперник придерживался мнения, что расстояние до Солнца равно 1142 земным радиусам, ошибаясь при этом в 20 раз.

Рис. 3.5. Земля, Луна и Солнце образуют прямоугольный треугольник, когда Луна видна в фазе одной из четвертей.

Аристарх определил, что Солнце во много раз больше Земли. Вероятно, это привело его к предположению, что маленькая Земля обращается вокруг Солнца. Его собственный труд по этому вопросу потерян, но у нас есть надежный источник — его современник Архимед (287–212 до н. э.). После обучения в Александрии этот великий математик вернулся на свою родную Сицилию, где служил советником царя Гиеро II. Он понял, что если тяжелое тело помещено в сосуд, полный воды, то количество перелившейся через край воды равно объему тела. Поэтому вес тела, деленный на вес вылившейся воды, равен плотности вещества, из которого состоит тело. Не повредив изящную корону, он смог обнаружить мошенничество ювелира, использовавшего при ее изготовлении золото низкой пробы.

В книге Архимеда «Исчисление песчинок» упоминается о потерянной работе Аристарха, посвященной размеру Вселенной. Здесь Архимед представляет новую систему счисления, предназначенную для операций с большими числами[2]. В этой связи он предполагает, что диаметр Вселенной меньше чем 10 млрд стадий (что лишь немногим больше орбиты Юпитера). Архимед вычислил самое большое из возможных чисел — количество песчинок, которыми можно было бы заполнить всю Вселенную. В результате у него получилось 1063, то есть единица с 63 нулями.

Отметив «общее мнение», высказанное астрономами, Архимед переходит к тому, что он считает по-настоящему альтернативной точкой зрения:

«Но Аристарх опубликовал книгу, состоящую из определенных гипотез, которые содержат ряд предположений о том, что Вселенная во много раз больше рассмотренной нами «Вселенной». Он полагает, что неподвижные звезды и Солнце не меняют своего положения в пространстве, что Земля движется по окружности вокруг Солнца, находящегося в центре ее орбиты, и что центр сферы неподвижных звезд совпадает с центром Солнца, а размер этой сферы таков, что окружность, описываемая, по его предположению, Землей, находится к расстоянию неподвижных звезд в таком же отношении, в каком центр шара находится к его поверхности» (перевод по: Thomas Heath «Aristarchus of Samos»).

Даже при отсутствии деталей эта запись свидетельствует о том, что в потерянной работе Аристарха были предположения о гелиоцентрической системе. Мы не знаем, что думал Аристарх о других планетах. В приведенном выше отрывке упоминаются только Земля, Солнце и неподвижные звезды. Неизвестно, использовал ли он движение Земли для объяснения остановок и обратных движений планет, как это сделал Коперник (см. главу 5). Архимед упоминает, что, согласно Аристарху, сфера неподвижных звезд намного превышает расстояние до Солнца. Это объясняет, почему не наблюдается годичных изменений в положениях звезд (параллакс), чего можно было бы ожидать при обращении Земли вокруг Солнца.

Модель мира Аристарха была радикальной для своего времени. Теперь мы знаем, что она верна, но в то время еще не было возможности отстаивать свои взгляды, противоречащие общепринятой космологии. Только один ученый поддержал эту модель. Это был Селевк, живший в Вавилоне спустя сто лет. И это неудивительно, если учесть, насколько точные требуются наблюдения для того, чтобы убедиться в реальном движении Земли. Подобные эффекты (аберрация света, звездные параллаксы) настолько малы, что были обнаружены только через два тысячелетия.

Что касается «размера Вселенной», то есть расстояния до самой далекой звездной сферы, то в ту эпоху не было надежных способов его измерения. Птолемей ограничился минимумом, у него орбиты планет упакованы предельно плотно, между ними не оставлено никакого пространства, так что максимальное расстояние, на которое удалялась планета на своем эпицикле, было равно минимальному расстоянию до следующей планеты. Таким способом он определил расстояние до самой далекой планеты Сатурн, и оно получилось равным 19 865 земных радиусов (современное значение превышает 200 000). Таким же было и расстояние до загадочной звездной сферы, за которой ничего нет.

На пути к Солнечной системе.

Переход от плоской Земли к измерению нашей сферической планеты был радикальным шагом в мировоззрении. Это пример того, как локальными наблюдениями, подкрепленными математическими рассуждениями, можно в буквальном смысле охватить земной шар, измерить расстояние до Луны и определить ее размер. Мы также увидели первые попытки поместить Землю на ее истинное, подчиненное место в Солнечной системе.

Мы увидели, что некоторые античные астрономы рассматривали эпициклы и дифференты как вычислительный метод, а не реальный космический механизм. Главным для них было объяснить видимые движения планет как комбинацию идеальных равномерных круговых движений, а вовсе не понять их физическую природу, что для нас сейчас выглядит несколько странным. Но подход древних ученых к наблюдениям и позиции, с которых они исследовали мир, сильно отличались от современных. Не считая робких (и порой опасных) предположений, например о том, что Солнце — это раскаленный каменный шар или что Луна светит отраженным солнечным светом, рассуждения о физической природе планет и звезд и об их истинном движении оставались за пределами деятельности древних астрономов.

Глава 4 Средневековая космология

Великолепный Александрийский музей в Египте был основан примерно в 300 году до н. э. одним из генералов Александра Великого. В нем хранилось до полумиллиона рукописей (рулонов папируса), которыми пользовались ученые, занимавшиеся литературой, математикой, астрономией и медициной. Птолемей был последним великим ученым Александрии. Он жил, когда культурное наследие Греции уже пришло в упадок. В течение следующих нескольких столетий творческая активность затухала во всей разрушающейся Римской империи.

В 312 году н. э. Константин Великий принял христианство, которое и стало официальной религией империи. Церковь в первые века своего существования либо была равнодушна к науке, либо же выступала против нее. Имелись и экстремисты, противостоявшие классической культуре и нападавшие на Александрийскую библиотеку и ее сотрудников. При этом в 415 году н. э. была убита математик Гипатия, которая, как принято считать, наряду с другими работами помогала своему отцу Теону составлять комментарии к «Альмагесту». Многие ученые сочли, что безопаснее будет переехать на работу в Афинскую академию или же в Константинополь, который тогда был столицей Восточной Римской империи.

О том, когда была разрушена библиотека и кто ее разрушил, существуют разные мнения. Одна из причин, возможно, в том, что помимо основной библиотеки, в другой части города, в храме Сераписа, был ее «филиал». По рассказу римского историка Плутарха, основной фонд библиотеки сгорел, когда в городе возник пожар при завоевании Юлием Цезарем в 48 году до н. э. Но возможно, это случилось при нападении на город императора Аврелия в III веке н. э. Эдвард Гиббон в книге «Упадок и разрушение Римской империи» ссылается на источники, утверждающие, что патриарх Александрийский Феофил разрушил библиотеку, когда храм Сераписа был превращен в церковь в 391 году н. э. Наконец, последним, кого подозревают в уничтожении библиотеки, стал мусульманский халиф Омар, который, по словам епископа Григория (записанным спустя боо лет), сжег книги библиотеки для нагрева воды в многочисленных городских банях после завоевания им города в 642 году н. э. Таким образом, виноватыми могут быть и язычники, и христиане, и мусульмане. Ясно одно: когда сталкиваются идеологии, в защите нуждаются не только люди, но и книги. Однако после волны мусульманской экспансии, хлынувшей в Европу через ее «ворота» — Испанию, новая исламская империя стала хорошо относиться к классическим наукам.

Сокровища прошлого.

В 529 году н. э. император Юстиниан закрыл Академию Платона — самый долгоживущий институт высшего образования, действовавший девять веков. В Европе после вторжения гуннов рухнула Римская империя и настали темные времена. Шли века, а в науке не происходило ничего интересного. В бедности, при беспорядках и в отсутствие богатых культурных центров научная работа не может процветать.

В христианских монастырях монахи копировали классические тексты, но у большинства мыслителей возникали иные идеи. Святой Августин (354–430) был образованным человеком, ценившим достижения древней науки. Но в своей «Исповеди» он предостерегал от «болезни любопытства… которая толкает нас к попыткам открыть секреты природы, лежащие за пределами нашего понимания. Я уже не мечтаю о звездах». Он считал, что даже если кто-то способен что-то понять в природе физических явлений, то жизнь настолько коротка, что лучше посвятить ее углубленному поиску Бога. Сегодня у нас есть историческая перспектива: если с кем-то происходит худшее и он умирает, постижение законов природы не останавливается, а углубляется, хотя и медленно. Научные знания накапливаются, и каждое поколение может наслаждаться и дальше развивать это наследие и даже находить в этом цель своей жизни.

К счастью, империя Мухаммеда, процветавшая в 700-1200 годах, сделала очень много для сохранения сокровищ прошлого. К астрономии и медицине относились с большим уважением. Ученые, работавшие в роскошных дворцах мусульманских правителей, переводили на арабский язык греческие тексты, пережившие трудные времена. Например, в IX веке мусульмане в результате мирного договора с Византийской империей получили основную работу Птолемея, которую мы теперь знаем под ее арабским названием «Альмагест».

Космология Средних веков.

Темное Средневековье было долгим периодом, «мрачность» которого в разных областях культуры в Европе часто переоценивают. В разгар Высокого Средневековья, в XII веке, люди начали переводить греческие тексты на латынь, в основном с арабского языка. Работы Аристотеля и других были с энтузиазмом приняты учеными Европы. Астрономы начали постигать наследие Птолемея, сохраненное и развитое арабскими учеными. Слова Бернарда из Шартра, французского ученого XII века, передают впечатление, какой им открылся клад: «Мы карлики, поднявшиеся на плечи гигантов. Вот почему мы видим больше и дальше, чем они: не потому, что наше зрение острее или же мы выше, а потому, что они подняли нас ввысь своим гигантским ростом…» Спустя несколько веков Исаак Ньютон использовал похожие слова, чтобы отдать дань своим предшественникам.

Вначале церковь не была в восторге от рациональных взглядов Аристотеля на космос и законы природы, ибо они ставили под сомнение всесилие божественной воли. Их неоднократно запрещали преподавать в Парижском университете. Но затем работавший в этом университете святой Фома Аквинский (1225–1274) объединил Писание с классическими идеями. В результате была создана уникальная средневековая космология, которая властвовала и над учеными, и над мирянами. Она включала в себя Бога и Человека, Небеса и Землю. Это учение превратило физику и космологию Аристотеля в официальную доктрину, которая преподавалась в школах и университетах. Вселенная сфер уже не противоречила догмам католической церкви. Бог создал неподвижную Землю, и все остальное обращается вокруг Человека, грешного, но все же венца Творения.

В своей «Божественной комедии» Данте Алигьери (1265–1321) изобразил впечатляющую картину средневековой космологии. Он написал поэму, когда по политическим мотивам был изгнан из родного города Флоренции. Он описывает визит в ад, чистилище и рай. Ад представляет собой конус, простирающийся вниз к центру Земли. Чистилище — это коническая гора с противоположной стороны. Посетив не очень приятные места (где он обнаружил своих политических противников!), Данте наконец поднимается в рай и через все более приятные уровни (планетные сферы) достигает Эмпиреев, места обитания Бога. Прямо под этими благословенными местами находится сфера Primum Mobile, или «перводвигатель». Эту новую часть к небесному механизму добавили арабские астрономы для объяснения медленного колебания восьмой сферы неподвижных звезд (движение точки весеннего равноденствия обсуждалось в предыдущей главе).

Небесный мир резко отличается от земного, поэтому смертные там жить не могут. Но если кто-то как-то сможет вырваться за его пределы, то увидит изменение физической реальности, пространство и время потеряют свои привычные свойства. Данте представляет, что «расстояние не может мгновенно уменьшиться и не увеличиться в том мире, которым управляет Бог, но там этот закон Природы не действует».

Данте не интересовался эпициклами и прочими математическими подробностями, которые изучают астрономы. Для него был важен смысл общей структуры Вселенной в связи с человеком. У человечества всегда было два конкурирующих естественных направления движения. Баланс между материальной и духовной составляющими человека определяет, попадет ли он в Ад или вознесется на Небеса. Это единение науки с верой вело к укреплению позиций гуманизма, приобретающего космическое значение, и кое-что из этого было потеряно в период коперниканской революции (рис. 4.1).

Рис. 4.1. Средневековый космос был ограничен сферой Primum Mobile, перводвигателя. Эта сфера располагалась сразу же за сферой неподвижных звезд.

Схоластика — средневековая наука.

Наука Средневековья, схоластика, больше интересовалась мнениями и взглядами, чем самим физическим миром. Поэтому последнее слово всегда было за Аристотелем. В попытке что-либо понять люди обращались к созданной Аристотелем логике. Например, главной проблемой той эпохи был вопрос, являются ли классы предметов, такие как кошки или звезды, сами по себе реальными предметами или всего лишь названиями, придуманными человеком (что привело к жестокой борьбе между «реалистами» и «номиналистами»).

Сухой анализ — пресловутая схоластика — привел к обсуждению вопросов о физической доктрине. В XIV веке в Парижском университете Жан Буридан (около 1297–1358) и его ученик Николай Орем (он же Орезмский) критически изучили понятие силы Аристотеля, «все, что в движении, должно чем-то двигаться». Стрела летит вперед, толкаемая воздухом. Но во всем этом была интересная загадка, и Буридан предположил, что нечто, названное им impetus, присоединяется к телу, когда оно запущено на свою траекторию, и поддерживает движение тела. Импетус стал предтечей теории о сохранении импульса, столь важного в современной физике. В XV веке теория импетуса заменила механику Аристотеля и стала основной точкой зрения на физику движения.

Удивительно, что Буридан применил прозаическую теорию импетуса к вращающимся небесным сферам. Принято было считать, как в «Божественной комедии» Данте, что ангелы вращают внешние звездные сферы. Гигантские планетные сферы вращались под действием силы, исходящей от движимой ангелами сферы звезд. Однако, — рассуждал Буридан, — Библия ничего об этом не говорит. Возможно, Бог привел сферы в движение при творении. Сохраняя свой импетус, они вращаются до сегодняшнего дня. Это равномерное движение происходит без трения, что позволяет нам наблюдать импетус в чистом виде — и днем, и ночью прямо над головой. Этот замечательный шаг продемонстрировал близость перемен, когда будет обнаружено, что небеса следуют тем же физическим законам, которые действуют на Земле.

Если движение не нуждается в подталкивающей силе, то, возможно, мы можем двигаться, не осознавая этого? Может быть, и Земля вращается? Николай Орем (около 1320–1382) не поверил доказательствам Аристотеля о неподвижности Земли. Он возражал, что всякое движение относительно. Земля может вращаться вокруг своей оси (как уже предполагал Гераклид), создавая впечатление, что вращается небо, «как человек на плывущем корабле думает, что это деревья на берегу движутся». Аристотель знал об этой альтернативе, но выступал против, указывая, что камень, подброшенный прямо вверх, падает вниз в ту же точку. По мнению Аристотеля, если бы Земля вращалась, то место, из которого был брошен камень, должно было бы сместиться к моменту возвращения камня. А Орезм видел в этом работу импетуса: камень сохраняет свою долю импетуса, которая поворачивает его вместе с Землей. Поэтому и камень, и поверхность вращающейся Земли сдвигаются одинаково при возвращении камня на землю.

Может показаться странным, что после таких рассуждений Буридан и Орем пришли к выводу, что Земля неподвижна. Как настоящие схоласты они считали, что истину можно отстаивать только неотразимыми аргументами. Но теперь мы понимаем, что их анализ идей Аристотеля о физическом движении немного приблизил их к современной точке зрения на покой, равномерное движение и относительность.

Труды Аристотеля подтолкнули к размышлениям о том, что же такое наука. Вспомним, что его наука начинается с абсолютно верных аксиом, от которых в результате логических рассуждений можно прийти к новым истинам. Но как найти первые правильные аксиомы? Аристотель говорил, что нужно наблюдать природные явления и пользоваться интуицией. Роберт Гроссетест (около 1168–1253) и его ученик Роджер Бэкон (около 1214–1292), изучавшие в Оксфорде философию и богословие, думали о способах решения этой проблемы. Они предположили, что прежде, чем принять любое утверждение и объяснение, полученное с помощью наблюдения природных явлений, его нужно проверить. Например, могут быть два различных объяснения одного явления, но с помощью эксперимента можно отбросить неправильное или найти подтверждение для правильного. В этом рассуждении можно заметить зерна современной экспериментальной науки, расцвет которой спустя четыре века пришелся на времена Галилея.

Говорят, что авторитет Аристотеля замедлил развитие науки в Европе. Но эта точка зрения выглядит весьма узкой, если учесть, что в целом научная активность веками оставалась «на задворках». Она возродилась вместе с текстами Аристотеля и других классиков. Разумеется, Аристотель не виноват, что последователи читали его книги как истину в последней инстанции, не понимая, что наука — это деятельность, способная к самоорганизации, которая изменяет смысл таких книг. Идеи Аристотеля, даже ошибочные, стимулировали независимое мышление. Постепенно люди начали готовиться к чтению «книги природы» вместо древних книг.

Бесконечность там, где центр везде…

Конечная сферическая Вселенная, которая была популярна и во времена Античности, и в Средневековье, имела центральную точку и, поскольку была окружена гигантской внешней сферой, обладала некоторой степенью локальной изотропии: расстояние от центра до сферы было одинаковым во всех направлениях. Но на практике измерить расстояние до сферы было невозможно, поэтому вывод о нашем расположении в центре мог быть сделан лишь на основе видимого вращения небесных тел вокруг нас. Вспомним: Анаксимандр утверждал, что Земля неподвижно находится в центре мира, где нет предпочтительных направлений. И Аристотель тоже утверждал (см. главу 2), что вращение свидетельствует о том, что размер мира конечен, иначе его бесконечно далекие части двигались бы с невероятной, бесконечной скоростью. Таким образом, космическое вращение, наличие центра и конечный размер Вселенной были взаимосвязаны.

Еще в III веке «неоплатоник» Плотин (205–270) описал свою духовную космологию в книге «Эннеады». В разделе «Вращение небес» он писал: «Небеса по своей природе могут быть неподвижными или вращаться». И затем следуют удивительные слова: «Центр круга определенно является неподвижной точкой: если бы внешняя окружность не двигалась, Вселенная была бы не чем иным, как безбрежным центром». Другими словами, если бы не было всемирного вращения, то не было бы абсолютного центра, и Вселенная могла бы быть беспредельно большой.

По прошествии более чем двенадцати столетий, около 1440 года, немецкий кардинал Николай Кузанский (1401–1464) написал примерно то же самое в своем философском трактате «Ученое незнание»: «Вселенная — это сфера, центр которой везде, а окружность — нигде». Он пришел к этому космологическому принципу, пытаясь охарактеризовать непостижимость беспредельного Бога. Любопытно, что в контексте этого утверждения была относительность движения, тема, постоянно всплывающая в истории физики. Николай Кузанский утверждал, что, поскольку абсолютного покоя не может быть вне Бога, то даже Земля должна каким-то образом двигаться: «Каждому человеку, будь он на Земле, на Солнце или на другой планете, всегда будет казаться, что все остальные предметы движутся, а сам он находится в неподвижном центре». Поэтому «окажется, что машина мира будет как бы иметь повсюду центр и нигде окружность, ибо ее окружность и центр есть Бог, который повсюду и нигде».

На современном языке мы могли бы сказать, что каждый равномерно движущийся наблюдатель во Вселенной может считать себя неподвижным, а всех прочих — движущимися. В этом смысле равномерно движущийся наблюдатель может приписать себе особый статус: быть в покое, быть в центре. Однако для Николая Кузанского круговое движение было естественным (в отличие от прямолинейного), поэтому даже вращающийся наблюдатель, не ощущая вращения, мог чувствовать себя находящимся неподвижно в центре. Этот центр определяется видимым вращательным движением вокруг этого наблюдателя.

Говоря, что Вселенная — это сфера, центр которой везде, мы переходим от конечного сферического мира к такому миру, где из каждой точки наблюдатель в любом направлении видит одинаковую картину (изотропия). Сегодня, будучи знакомы с неевклидовой геометрией, мы знаем, что даже такой мир может быть конечным и безграничным. Но средневековые мыслители, разумеется, имели в виду бесконечный мир. Сам Николай Кузанский (рис. 4.2) отстаивал истинную, абсолютную бесконечность только Бога и писал: «Хотя мир и не бесконечен, его нельзя представлять как конечный, ибо у него нет границ, в которые он заключен».

Рис. 4.2. Николай Кузанский (слева) и Джордано Бруно, полагавшие, что мир бесконечен, и предвидевшие современный космологический принцип, согласно которому «центр везде».

Хотя Николай Кузанский не предлагал детальную модель мира, он освободил Вселенную от абсолютного центра. Он утверждал, что число звезд, одной из которых является Земля, бесконечно. Он считал естественным наличие жизни и жителей на этих звездах, но добавлял, что мы не знаем, на кого они похожи. Он утешал тех, кто боялся, что существа, живущие на звездах крупнее Земли, знатнее нас, говоря, что самое главное — это уровень интеллекта.

…Или там, где нет центра.

Джордано Бруно (1548–1600) в юности ушел в доминиканский монастырь. Но оригинальность мышления привела его к противостоянию с настоятелем, который заподозрил, что юноша из Нолы (ныне Неаполь) — сторонник еретических идей. В возрасте 28 лет Бруно бежал и несколько лет скитался по Европе, преподавая философию в университетах, и все время его обвиняли в богохульстве и ереси.

В 1591 году Бруно принял роковое решение вернуться в родную Италию. Его пригласил молодой аристократ, который, как казалось, страстно хотел изучать философию, но на самом деле гнался за экзотикой. Разочарованный ученик сдал Бруно в руки инквизиции. Бруно арестовали и обвинили в ереси. Он не только заявил, что господствующая точка зрения на Вселенную ошибочна, но — и это более важно! — что он считает Бога пантеистическим духом (попросту — что Природа и Бог едины) и отрицает такие основные доктрины церкви, как пресуществление и непорочное зачатие. После семилетнего тюремного заключения в феврале 1600 года Бруно сожгли на костре в Риме на площади Цветов (Campo dei Fiori).

Хотя Бруно жил после Коперника и полностью был с ним согласен в том, что Земля не является центром Вселенной, мы считаем, что должны рассказать о его идеях, поскольку они возникали у него на фоне средневекового мышления. Бруно был знаком с трудами Николая Кузанского. Помимо представления о том, что Бог присутствует как творческий дух во всех элементах Вселенной, Бруно утверждал — и это сделало его знаменитым, — что безграничная сила Бога воплощается в бесконечности Вселенной.

Джордано Бруно совершил гигантский интеллектуальный прорыв к новой крупномасштабной картине космоса. За несколько десятилетий до этого Коперник поместил Солнце в центр Вселенной, но он — как и все до Джордано Бруно — считал, что Вселенная ограничена хрустальной сферой с неподвижными звездами. Единственным исключением был английский астроном Томас Диггес (1543–1595)» опубликовавший в 1576 году карту Вселенной, где звезды были отделены от сферы и рассыпаны в пространстве. Но Диггес все же оставил в центре бесконечной звездной Вселенной особое место для Солнца. Бруно стал первым, кто придал звездам физический статус далеких солнц. Возможно, он был первым, кто доказывал, что звезды, эти слабые пятнышки на небе, на самом деле являются такими же большими и яркими, как наше Солнце.

Интересно, что корни наших нынешних споров о том, что считать планетой (будет обсуждаться во врезке 31.1), уходят к Бруно, который ясно определил, в чем отличие планеты от звезды: звезда светит собственным светом, а планета — отраженным светом своего солнца.

В соответствии со своей космологической теорией Бруно описывал Вселенную такими словами: «Во Вселенной нет ни центра, ни границы, но центр присутствует везде». Это напоминает нам Николая Кузанского и означает, что все области Вселенной равноправны. Это полностью противоречит старой космологии, где был центр, занятый Землей. В современной космологии отсутствие какого-либо предпочтительного центра служит естественной отправной точкой.

Еще одним космологическим принципом Бруно считал универсальность земных законов и то, что небесная материя похожа на земную. Он писал, что звезды, похожие на Солнце, разбросаны по бесконечному пространству: «Поскольку Вселенная бесконечна… можно предположить, что там бесчисленное количество солнц, многие из которых видны нам в виде маленьких тел; и многие из них могут быть видны нам как маленькие звезды». Бруно считал, что Земля не может быть единственной планетой с живыми существами, так как это поставило бы ее в особое положение, этакий центр Вселенной. Нам эта мысль кажется естественной теперь, когда современная астробиология работает над универсальными законами, управляющими как живой, так и неживой материей в природе.

В своей книге «О бесконечности, Вселенной и мирах» Бруно мечтал о временах, когда появится возможность исследовать глубины Вселенной: «Откроются для нас врата, сквозь которые мы сможем взглянуть на бесчисленные, повсюду схожие звездные миры». Всего через несколько лет после гибели Бруно Галилей «открыл эти врата», направив свой телескоп на звездное небо.

Хотя Бруно не был астрономом, он понимал, какие трудности встают при наблюдении далеких небесных тел. Звезды — это те же солнца, но они так далеки, что выглядят тусклыми пятнышками света. Рядом со звездами тоже есть планеты, но они недоступны нашему зрению. К тому же Бруно считал, что и в Солнечной системе могут быть планеты, которые мы не видим, поскольку они очень далеки, или же очень малого размера, или слабо отражают солнечный свет. Строя свою космологию на скудных наблюдениях, Бруно говорил, что отсутствие прямых доказательств для его выводов есть лишь результат ограниченных наблюдательных возможностей. Еще и сегодня эти проблемы мешают астрономам поглубже заглянуть в космическое пространство.

Но так ли важны для науки представления о мире Николая Кузанского или Джордано Бруно, не опиравшиеся на современные наблюдения? Да, важны, поскольку наука опирается не только на наблюдения, но и на концепции. Иногда новая идея побуждает к пересмотру старых наблюдений, открывает их новый смысл. Это ясно видно на примере Коперника, о чем мы поговорим в следующей главе.

Средневековье закончилось Возрождением, расцвет которого пришелся на XV и XVI века. В искусстве и в других областях культуры повеяло свежим ветром, когда люди вновь обратили свой пытливый взгляд на классическую литературу, философию и науку. Исследователи физической и духовной природы человека, путешественники, проникающие в неизведанные края, стали символом гуманизма и Возрождения. Такие художники, как универсальный гений Леонардо да Винчи (1452–1519), начали изображать человека более реалистично, чем это делали их предшественники в эпоху жесткой схоластики. Диапазон их интересов простирался от полета птиц до Луны (рис. 4.3). В глазах художников, изобретателей и ученых Природа приобрела новый, более важный смысл.

Прогресс науки зависит не только от размышлений и наблюдений. Уже неоднократно в своем рассказе мы жаловались на потерю важных работ. Отчасти это случилось потому, что даже в эпоху их создания изготавливалось мало экземпляров этих трудов. Немецкий ювелир и печатник Иоганн Гутенберг (около 1396–1468) произвел революцию в деле распространения знаний, изобретя подвижную литеру. Первой книгой, напечатанной этим способом в Майнце в 1451 году, была латинская грамматика. И хотя процесс печатания был медленным (примерно 15 страниц в час), он оказался гораздо быстрее ручного многомесячного копирования 200-страничной книги. Всего за несколько десятилетий изобретение Гутенберга значительно ускорило распространение научных знаний в Европе.

Рис. 4.3. Леонардо да Винчи описал детали поверхности Луны и верно объяснил причину, по которой мы видим «пепельный свет» между кончиками лунного серпа: это свет от освещенной Солнцем Земли, слабо отражающийся от лунной поверхности. Обратите внимание на огромную разницу в яркости между освещенной Солнцем частью Луны и той ее частью, где едва заметен пепельный свет. Фото: Harry Lehto.

Глава 5 Корни коперниканской революции

Ренессанс ворвался в научную жизнь вместе с работой Николая Коперника. Он родился в 1473 году в городе Торунь, в центре Польши, и был младшим среди четырех детей купеческой семьи. Когда Копернику исполнилось 9 лет, его отец умер, и мальчика взял к себе дядя со стороны матери — Лука Ватцельроде, священнослужитель, ставший впоследствии епископом Вармийской епархии.

Знаменитый Краковский университет был основан в 1365 году, а в 1491 году в нем стал учиться юный Коперник. Университет принимал студентов со всей Европы, где латинский язык был языком преподавания и науки. Учебный план был составлен по средневековому образцу семи гуманитарных наук. Тривиум состоял из латыни, риторики и диалектики, тогда как следующий за ним квадривиум содержал арифметику, геометрию, астрономию и музыку.

Годы, проведенные под солнцем Италии.

После трех лет обучения в Кракове Коперник продолжил свое образование в Италии, где в течение нескольких лет в Болонском университете изучал церковное право, а также греческий язык и астрономию. В 1501 году он вернулся к своей работе церковного администратора во Фрауенбурге (ныне Фромборк в Польше). Но вскоре он опять направился в Италию и на этот раз занялся изучением медицины в университете Падуи. Степень доктора права он получил в университете Феррары. Когда в 1506 году Коперник вернулся на родину, ему было уже 33 года, он провел в Италии 9 лет и стал «человеком Возрождения» со знаниями во многих областях науки.

Этот тихий и застенчивый служитель католической церкви был также решительным и трудолюбивым, пишущим на разные темы, включая денежную реформу. Кроме того, до конца своей жизни он давал медицинские консультации. Но за этой публичной личностью скрывалась тикающая бомба, взорвавшая науку того времени. Постепенно даже за пределами Фрауенбурга и даже в кругах, никак не связанных с астрономией, стали распространяться слухи, что священник из Фрауенбурга выдвигает странную идею о том, что Земля движется, в то время как Солнце и звезды остаются неподвижными.

Коперник умалчивал об источнике его мыслей о Вселенной, в центре которой Солнце. Неизвестно, насколько сильно повлияли на него более ранние астрономические идеи о центральном положении Солнца. «И хотя это мнение казалось нелепым, — писал Коперник, — однако, зная, что и до меня другим была предоставлена свобода изобретать какие угодно круги для объяснения явлений звездного мира, я полагал, что и мне можно попробовать (предположив какое-нибудь движение Земли) найти более надежное объяснение для вращения небесных сфер». Эти нелепые идеи наделе оказались астрономическим кладом (рис. 5.1).

Рис. 5.1. Коперник и его вселенная. Она ограничена снаружи сферой неподвижных звезд, которая сама «immobilis», неподвижна. Это рисунок из книги «De Revolutionibus».

Мысли Коперника о космосе, в центре которого неподвижно располагается Солнце, могли возникнуть еще в Италии. Но начал он писать свою великую книгу «De Revolutionibus Orbitum Coelestium» (О вращениях небесных сфер), видимо, уже после возвращения из Италии в 1506 году. Рукопись могла быть завершена в 1530 году. До этого Коперник написал конспект, который стал циркулировать среди астрономов, одним из них был юный математик Ретик (1514–1576) из университета в Виттенберге. Он приехал к Копернику, желая убедить его опубликовать работу целиком. Этот визит затянулся почти на два года! Благодаря стараниям Ретика и еще одного друга Коперника — епископа Тидемана Гизе, Коперник согласился опубликовать свою работу. Другим представителем католической церкви, который несколькими годами ранее просил Коперника сделать это, был Николас Шёнберг, кардинал Капуи. Есть мнение, что Шёнберг действовал по настоянию самого папы Клемента VII, большого поклонника астрономии.

De Revolutionibus опубликована: миссия завершена.

Рассказывают, что, когда 70-летнему Копернику доставили только что напечатанный экземпляр его книги, он был уже смертельно болен и не смог ее прочитать. Это уберегло его от знакомства с предисловием «К читателю, о гипотезе, представленной в этой книге», которое добавили без его ведома. Неподписанное, оно было сочинено другом Ретика, теологом Озиандером, который следил за печатанием книги, пока Ретик был занят другими делами. Озиандер, видимо, боялся, что противники книги попытаются исказить идеи Коперника. Поэтому он подчеркивал, что теория Коперника — не что иное, как новый метод вычисления положений планет на небе, и что его теория не утверждает, будто Солнце находится в центре космоса. Прежде чем сурово осудить Озиандера, мы должны вспомнить, что его можно рассматривать как приверженца традиции, о которой мы упоминали в конце главы 3. Согласно этой традиции, математическая астрономия отделялась от реальных физических движений небесных тел. Средневековые последователи Аристотеля не придавали настоящего значения эпициклам. Ретик был зол на Озиандера за навязанное им предисловие, но собственное предисловие Коперника к «De Revolutionibus» однозначно показывало, что он предлагает новую физическую модель мира, в которой Земля действительно движется в пространстве.

Почему отказались от Старого доброго мира? Почему Коперник и почему в XVI веке?

Новая система в некотором отношении была не намного проще старой. Она все еще базировалась на многочисленных кругах и эпициклах и, в принципе, предсказывала положения планет на небе ненамного точнее старого геоцентрического механизма. Но, с точки зрения математического мышления, такого как у Ретика, она была очень привлекательна, поскольку могла объяснить просто и естественно основные движения на небе. Даже Птолемей писал «хорошая идея объяснить явления наиболее простой гипотезой, поскольку ничего в наблюдениях не обещает серьезных препятствий этой процедуре». Коперник придавал главное значение тому, что если в центр системы помещено Солнце, то «одного движения достаточно для объяснения большого число видимых изменений». Теперь перечислим основные небесные движения и их отношение к тому, как, когда и почему возникла теория Коперника.

• Суточное движение звездного неба.

• Ежегодное движение Солнца по небу и наличие сезонов года (рис. 5.2).

• Наиболее важные, регулярно повторяющиеся обратные петли планет без эпициклов (рис. 5.4).

Рис. 5.2. Сезоны и изменение высоты Солнца в течение года стали понятны как результат наклона оси вращения Земли, притом что направление оси в пространстве не изменяется. Об этом простом, но глубоком объяснении не всегда помнят. Часто ошибочно считают, что летом Земля ближе к горячему Солнцу (на самом деле летом Северное полушарие гораздо дальше от Солнца!)

Что касается суточного вращения всех небесных объектов, то Коперник подчеркивал, что легче представить вращение маленькой Земли вокруг своей оси с периодом в сутки, чем вращение огромной небесной сферы с ошеломляющей скоростью: 9000 км/с для звезд на экваторе, если радиус небесной сферы равен 20 000 радиусов Земли по предположению Птолемея. Такое быстрое движение могло бы стать причиной разлета сферы на части! Это сильный физический аргумент, если отвлечься от вопроса о точности гелиоцентрической системы по сравнению с геоцентрической. Годичное движение Земли вокруг Солнца очень просто объясняет годичное перемещению Солнца по небу вдоль эклиптики. И не нужно заставлять Солнце крутиться вокруг Земли.

Историк науки Томас Кун (1922–1996) считает коперниканскую революцию важнейшим примером своей концепции «смены парадигм», утверждающей, что развитие науки в спокойные длительные периоды «нормальной науки» разделено научными революциями. В период революции рушится парадигма, грубо говоря, основание науки своего времени. В астрономии Птолемея основанием служило центральное положение Земли и принцип равномерного кругового движения, ведущий к увеличению числа эпициклов. Кун считал, что к XVI веку старая система пришла к кризису. Получился чудовищно сложный «монстр», слишком неуклюжий, чтобы оставаться жизнеспособным. Как раз в это время для развития религии и философии перенос Солнца в центр мира мог быть только на пользу.

Рисунок 5.3 показывает, в какую эпоху творил Коперник, рядом с какими выдающимися фигурами Возрождения.

Рис. 5.3. Время жизни знаменитых личностей Возрождения.

Однако финский математик и историк науки Раймо Лехти считает, что в XVI веке не было никакого кризиса в космологии. Систему Птолемея не считали такой сложной конструкцией, какой мы видим ее сегодня. Признание идей Коперника скорее было вызвано интересными особенностями модели, которая обещала новое объяснение раздражающих обратных движений планет. Как утверждалось в «Альмагесте» Птолемея, планеты, в отличие от Солнца и Луны, временами имеют обратное (с востока на запад) движение. Меркурий и Венера показывают обратное движение, когда они видны в том же направлении, что и Солнце, а Марс и другие планеты — когда Солнце в противоположной стороне неба. Хотя система геоцентрическая, создается впечатление, что Солнце управляет танцем планет. Вполне вероятно, что Коперник начал думать о центральном положении Солнца, исходя из этих явлений, которые традиционно рассматривались как чудо, сотворенное Господом. В старой геоцентрической системе каждому обратному Движению требовался индивидуально подобранный небольшой эпицикл, прикрепленный к большому деференту каждой планеты. В гелиоцентрической модели они стали простым следствием движения Земли (см. рис. 5.4).

Рис. 5.4. Через регулярные интервалы времени планета демонстрирует петли на фоне неподвижных звезд. В модели мира Птолемея этот танец планет описывается подходящими эпициклами, тогда как в модели Коперника это ключевое явление естественно вытекает из движения Земли и других планет вокруг Солнца.


Обратное движение получается, когда Меркурий и Венера проходят между Солнцем и Землей. Оно возникает также и в том случае, когда Земля проходит между Солнцем и остальными планетами. Таким образом, гелиоцентрическая модель ликвидировала эпицикл и специальную «настройку» у каждой планеты — а это большое упрощение.

Старое и новое.

Модель мира Коперника все еще основывалась на старом принципе равномерного кругового движения и сохраняла сложный механизм деферентов и эпициклов для объяснения нерегулярностей, накладывающихся на основные попятные движения. Она содержала и внешнюю сферу с прикрепленными к ней звездами. Но теперь эта сфера была неподвижной и образовывала гигантский «экран», на фоне которого становились заметными любые движения.

Как уже говорилось, Коперник ввел два вида движения Земли: орбитальное движение вокруг Солнца и вращение Земли вокруг оси. Сезоны года объясняются отклонением земной оси на 23° от перпендикуляра к плоскости земной орбиты. Подобно острию детской юлы, земная ось в процессе годичного движения постоянно направлена в одну сторону. Тот факт, что ось вращения Земли сохраняет свое направление в пространстве, следует из закона сохранения момента импульса в рамках механики Ньютона. Но Коперник не знал законов движения Ньютона. По его мнению, было бы нормально, если бы в ходе орбитального движения земная ось сохраняла свое направление относительно Солнца (то есть была бы всегда направлена к Солнцу либо от Солнца), но тогда не было бы сезонов. Поэтому Коперник ввел третье движение Земли, заставляющее ее сохранять ориентацию относительно плоскости орбиты в течение года. После этого оставался лишь маленький шаг до того, чтобы включить в это движение и смещение точки весеннего равноденствия, сделав это третье движение чуть более медленным, чем требуется для поддержания неизменной ориентации земной оси в пространстве. Заметим: до Коперника считалось, что сдвиг точки весеннего равноденствия вызван медленным движением небесной сферы. В Средние века была добавлена еще одна внешняя сфера для управления этим дополнительным движением.

Таким образом, Коперник был вынужден ввести в свою модель весьма сложное «очень медленное» третье движение. Разумеется, это заметили и даже высмеяли противники новой системы: раньше Земля была неподвижной, а теперь ей требуется целых три движения — одно суточное и два годичных. В популярном тогда стишке говорилось о «тех клириках, которые думают (думают — какая нелепая шутка), что небеса и звезды вообще не вращаются […], и о том [Коперник], который, чтобы объяснить видимую картину звезд, придал Земле тройное движение».

Последователи Коперника, Кеплер и Галилей, указывали, что годичная часть третьего движения совершенно не нужна. В своем Диалоге (1632) Галилей сравнивает Землю с шаром, плавающим в сосуде с водой. Когда вы начинаете вращаться «на цыпочках», держа в руках сосуд, кажется, что шар вращается в обратную сторону относительно сосуда. Но что же происходит на самом деле? Галилео отмечал, что шар без всяких усилий со своей стороны остается неподвижным относительно своего окружения. Галилео видел в поведении Земли инерцию — понятие, введенное Ньютоном и неизвестное Копернику.

Орбита Земли иллюстрирует, насколько сложно в модели Коперника учесть наблюдаемые вариации в движении Солнца по эклиптике. Центральная точка этой круговой орбиты вращается с постоянной скоростью по маленькому кругу, центр которого вращается вокруг Солнца. Эти три круговых движения необходимы для учета изменений в годичном движении Солнца. Для объяснения всех наблюдаемых движений в Солнечной системе Копернику понадобилось более 30 окружностей, что сделало его систему такой же сложной, как и система Птолемея. Как бы то ни было, эти математические сложности, вызванные использованием равномерных круговых движений, не смогли изменить того факта, что эта модель стала прорывом к правильным законам движения планет, которые Кеплер открыл через семьдесят лет.

Масштаб и строение Солнечной системы.

Астрономия в значительной степени — наука о космических расстояниях; с этой точки зрения модель Коперника в сравнении со старой моделью имела большие преимущества. Стало возможным из наблюдений установить порядок планет и определить их относительные расстояния от Солнца. Эти расстояния можно было определить в единицах расстояния от Земли до Солнца и этой новой естественной единицей (астрономическая единица) заменить радиус Земли.

В системе Птолемея расстояние до планеты определяется довольно произвольно: важно только установить размер эпицикла относительно деферента, так чтобы видимое движение планеты соответствовало наблюдаемому. Но в гелиоцентрической модели, напротив, порядок планет и их расстояния до Солнца становятся четко определенными. Не вдаваясь в детали, заметим, что расстояние Солнце-планета можно определить в момент, когда треугольник, образованный Землей, Солнцем и планетой, становится прямоугольным.

Коперник выделил Луну из группы планет и сделал ее спутником Земли. Он определил порядок и расстояния планет, как показано в табл. 5.1 (единицей служит среднее расстояние Солнце-Земля, астрономическая единица, или а. е,). Следует подчеркнуть, что, после того как круги и эпициклы совпали с наблюдениями, Коперник не обнаружил, что планеты имеют круговые орбиты. Он вычислил минимальное, среднее и максимальное расстояние каждой планеты от Солнца. Таблица показывает, что теперь максимальное расстояние «нижележащей» планеты не равно минимальному расстоянию следующей за ней «вышележащей» планеты. В отличие от того, что предполагал Птолемей, теперь между планетными орбитами было много пустого места. В системе Коперника сфера неподвижных звезд оказалась просто гигантской, поэтому годичное движение Земли никак не могло стать причиной смещения положений звезд на небе. И так оставалось вплоть до XIX века, пока эти смещения не были наконец открыты. В табл. 5.1 следует также подчеркнуть большие значения отношений максимального к минимальному расстояний для Меркурия и Марса. Это отражает сильную вытянутость их орбит, которая позднее позволит Кеплеру сделать вывод о том, что в действительности Марс движется по эллипсу. В противоположность этому, расстояния Венеры и Земли от Солнца меняются очень мало.

Мы, как и Коперник, можем заметить, что его система была менее произвольной, чем система Птолемея. Уже только это делало гелиоцентрическую систему более привлекательной. Но еще важнее, что будущие наблюдения могли проверить предсказанный порядок планет и их расстояния.

Таблица 5.1. Значения Коперника для минимального, среднего и максимального расстояния между Солнцем и планетами.

Принцип Коперника.

Имя Коперника связано с двумя идеями. Говоря о коперниканской революции, мы обычно имеем в виду рождение гелиоцентрической модели в 1543 году. Естественно, что процесс окончательного установления этой новой астрономической картины Солнечной системы длился в течение двух столетий. Потребовалось много наблюдений и теоретических работ, пока движение Земли не стало восприниматься столь же естественно, как ее неподвижность — в древние времена.

Но коперниканская революция породила еще и космологический принцип Коперника, утверждающий, что мы не находимся в особом или предпочтительном положении во Вселенной. Правда, сам Коперник думал, что Солнце расположено в центре Вселенной или рядом с ним, что никак не соответствует Принципу Отсутствия Центра, провозглашенному Бруно. Тем не менее изгнание из центрального неподвижного положения Земли, получившей статус обычной планеты, стало настолько крутым изменением, что оно оправдывает название «Принцип Коперника». Космолог из родного Копернику Краковского университета Кондрад Рудницки сформулировал это более современным языком: «Вселенная, наблюдаемая с любой планеты, выглядит одинаково». Сегодня мы можем заменить слова «с любой планеты» словами «из любой галактики».

Коперник не рассуждал о мире, лежащем позади далекой материальной сферы звезд. Но он придал мощный импульс новому взгляду на звезды. Диггес родился через несколько лет после смерти Коперника, а Бруно еще позже. И они поняли, что звезды не прикреплены к сфере, а распределены в бесконечном пространстве.

Книга Коперника «De Revolutionibus» не шла нарасхват и сразу не обратила на себя большое внимание. Некоторый энтузиазм проявили те математики, кто смог продраться сквозь трудный текст. Вначале католическая церковь оставалась довольно равнодушна; возможно, это в какой то мере было обусловлено предисловием Озиан-дера, и, как мы уже упоминали, некоторые должностные лица даже поддерживали опубликование новой теории. Православная церковь считала, что движение Земли как планеты не имеет никакого значения. Первые протесты были выражены лютеранами. Только через 70 лет после публикации книги Коперника, в 1616 году, Святая палата начала действовать. В течение этого времени произошло многое. Прожили свою жизнь и уже умерли Томас Диггес и Джордано Бруно. Тихо Браге, Иоганн Кеплер и Галилео Галилей создали новую астрономию и экспериментальную физику. Был изобретен телескоп. Даже само небо, похоже, отметило коперниканскую революцию. Заметная комета 1557 года и две сверхновых звезды (последние сверхновые, наблюдавшиеся в нашей Галактике в историческое время) продемонстрировали, что небо не остается неизменным. И в середине этих событий Шекспир написал: «Есть многое на свете, друг Гораций, что и не снилось нашим мудрецам».

Вселенная Коперника все еще оставалась королевством кругов и эпициклов. Следующим шагом коперниканской революции стала замена наивного предположения о круговом движении представлением о более реалистических замкнутых орбитах. Этот решающий шаг сделал Иоганн Кеплер, для чего ему понадобились очень точные наблюдения Тихо Браге. Следующая глава посвящена их работе.

Глава 6 Открытие истинных законов движения планет

Средневековый космос подчинялся строгим взаимосвязям внутри своей сферической границы, с четкими законами кругового движения своих небесных сфер, в то время как повседневные законы и даже беспорядок господствовали вблизи Земли. Хотя геоцентрический взгляд глубоко укоренился в обществе, после Коперника границы этого взгляда начали размываться. Даже астрономы не сразу приняли гелиоцентрическую систему мира. Но все же поиск универсальных законов космического порядка и стремление к рациональному мышлению, идущее от ионийской революции, уже возродились.

Новая звезда Тихо Браге освещает путь.

Среди этих ищущих умов Тихо Браге (1546–1601) был блестящим исследователем ночного неба, собравшим прекрасный наблюдательный материал, необходимый астрономам. В течение многих лет он проводил аккуратные визуальные наблюдения планет, определяя их положение на небе с точностью в одну минуту дуги (1'), тогда как раньше астрономы удовлетворялись точностью в 10'. Тихо достиг нового уровня точности, построив свой собственный большой угломерный инструмент, работая каждую безоблачную ночь и учитывая различные систематические ошибки, влияющие на измерения положений звезд, включая рефракцию (изменение направления) светового луча в земной атмосфере (см. рис. 6.2).

Браге был старшим сыном в аристократической семье, жившей на юге Швеции (эта часть Швеции тогда принадлежала Дании). На его характер могла повлиять смерть его брата-близнеца в юном возрасте и то обстоятельство, что его воспитывали бездетные тетя и дядя. Талантливый юноша поступил в Копенгагенский университет, чтобы изучать риторику и философию. Здесь он заинтересовался звездами. Приехав в 1562 году в Лейпциг, чтобы изучить право, он решил заняться астрономией. Наряду с любовью к астрономии, Браге отличался вспыльчивым характером. Еще в студенческие годы он ввязался в дуэль на шпагах с другим аристократом и потерял в этом сражении часть носа. Всю оставшуюся жизнь Браге старался скрывать недостаток своей внешности при помощи искусственного металлического носа.

В 1576 году Браге получил в дар от короля Дании остров Вен. Там он построил великолепную обсерваторию Ураниборг и имел постоянное обеспечение. Дело в том, что приемный отец Тихо Браге заболел и умер после того, как спас утопающего короля. Все это было довольно дорого: несколько процентов национального дохода Дании уходило на «Небесный замок» и было сравнимо по стоимости и технологическому оснащению (по меркам той эпохи) с аналогичными параметрами космического телескопа «Хаббл».

Но деньги попали в хорошие руки. Уровень наблюдений был поднят на небывалую высоту, хотя обсерватория и была построена до изобретения телескопа. Эти наблюдения готовили вторую фазу коперниканской революции, поскольку Кеплер использовал именно наблюдения Браге.

Еще до создания обсерватории на о. Вен Тихо Браге провел наблюдения новой яркой звезды, появившейся в ноябре 1572 года. Он писал: «Изумленный ее удивительным видом, как сраженный ударом молнии, тихо стоял я некоторое время, уставившись на эту звезду. Она была вблизи звезд, которые с античных времен причислены к астеризму Кассиопея». Вначале звезда была такой же яркой, как Венера, а затем стала постепенно тускнеть, пока совсем не исчезла через полтора года (рис. 6.1).

Уже давно было замечено, что Луна довольно близка к Земле, поскольку она смещается относительно звезд при изменении положения наблюдателя в результате вращения Земли. Точные наблюдения Браге показали, что «новая» звезда не сдвинулась относительно звезд Кассиопеи ни в течение суток, ни за более длительное время. Браге решил, что (1) эта звезда расположена гораздо дальше Луны и (2) фактически она находится на сфере неподвижных звезд. Он написал книжечку об этом явлении, где говорилось, что вначале он не поверил собственным наблюдениям, так как философы, последователи Аристотеля, утверждали, что не может быть никаких изменений в эфирной зоне небес. Несмотря на это, новая звезда ясно показала, что небеса не остаются неизменными! Это важное наблюдение прославило Тихо Браге. Он продолжил свои исследования, которые сыграли критическую роль для коперниканской революции.

Рис. 6.1. Сверхновая, вспыхнувшая в 1572 году в созвездии Кассиопея. Тихо Браге пришел к выводу, что эта ??Stella nova?? (новая звезда) должна располагаться на сфере звезд, следовательно, эта сфера не может быть неизменной, как считалось прежде. Современные наблюдения гораздо более далеких сверхновых также привели к важнейшим космологическим выводам.

Комета 1557 года еще сильнее подорвала веру в идеальное небо. Наблюдения Браге убедили его, что комета блуждает гораздо дальше Луны и даже движется по траектории, которая проходит прямо сквозь хрустальную сферу, несущую Солнце. Все это противоречило традиционному мнению. Новая звезда, комета и сделанные после этого выводы показали, что довольно простые наблюдения вместе с вычислениями и рассуждениями могут снабдить нас новыми знаниями о космосе.

Система мира Тихо Браге.

Хотя Тихо Браге и не соглашался с новой моделью Коперника, но признаком эпохи перемен стала предложенная им новая система мира, отличающаяся от системы Птолемея. Земля оставалась фиксированной в центре, и вокруг нее обращались Луна и Солнце. Но все другие планеты уже не обращались вокруг Земли, а двигались вокруг Солнца, и это удерживало их вблизи Земли. Математически модель Тихо была эквивалентна модели Коперника. Тогда зачем нужно столь сложное построение? Для Браге, педантичного наблюдателя, трудность модели Коперника заключалась в том, что годичное движение Земли по орбите вокруг Солнца должно было бы вызывать периодические изменения видимого положения неподвижных звезд, так называемые параллактические смещения. Но этих изменений не видно, следовательно, либо расстояния до звезд очень велики, либо Земля неподвижна. Браге полагал, что если бы звезды действительно были так далеки, то их размер оказался бы фантастически велик (в ту дотелескопическую эпоху он считал угловой размер звезд равным примерно 1 минуте дуги, что всего в 30 раз меньше солнечного диска). Но если Земля неподвижна, то нет и проблемы гигантских звезд. Кроме того, нет необходимости в огромных «бесполезных» пустых пространствах, возникающих в гелиоцентрической модели мира.

Рис. 6.2. Тихо достиг высочайшей точности в своих визуальных астрономических наблюдениях. На этом рисунке из книги Тихо (1598) показан его стенной квадрант. Два ассистента помогают наблюдателю фиксировать время и записывать данные.

Этот парадокс гигантских звезд служил одним из аргументов против теории Коперника и был устранен, когда Галилей показал, что звезды гораздо мельче, чем это кажется невооруженному глазу. Он протянул веревку на фоне звездного неба и проверил, на каком расстоянии веревка закрывает находящуюся за ней звезду. Галилей пришел к выводу, что звезды имеют ширину 5 секунд дуги (то есть 1/12 минуты дуги). В действительности угловой размер звезд намного меньше, но атмосфера Земли размывает их изображения.

Космографическая тайна Кеплера.

Иоганн Кеплер был великим строителем мировой системы, вероятно, последним, кто полагал, что математические модели Платона служат идеальным отражением физической реальности. Его семья в Германии, по-видимому, оказалась далеко не идеальной для будущего серьезного ученого. Отец его был авантюристом и наемником; он исчез навсегда, когда Иоганну исполнилось 17 лет. Его матери, эксцентричной личности типа ведьмы, грозила смерть на костре за колдовство. Ее освободили из тюрьмы лишь благодаря многолетним стараниям сына, который к тому времени стал уважаемым астрономом. Семья была бедной, но Кеплер получил стипендию для обучения в школе — даже тогда существовали стипендии для бедных, но одаренных детей. Затем он поступил в университет Тюбингена для изучения теологии. Там от математика Михаэля Местлина он узнал о новой системе мира и стал пылким поклонником Коперника. Особое впечатление произвело на него то, как движение Земли объясняло попятное движение планет.

Когда Кеплеру было 24 года, ему предложили должность профессора математики в протестантском университете города Грац, созданном несколькими годами ранее. После недолгих сомнений он согласился, хотя изучение им теологии еще не было завершено. В Тюбингене теологи могли чувствовать, что Кеплер слишком критичен для того, чтобы проповедовать. В любом случае, эта работа давала ему некоторую экономическую свободу и время для изучения космологии (рис. 6.3).

В университете молодой лектор не был популярен. В первый год преподавания у него на лекциях присутствовало всего несколько студентов, а в следующем году не оказалось ни одного. Но кроме преподавания в его обязанности входила подготовка календаря с астрономической информацией и астрологическими прогнозами.

В своем первом календаре он предсказал необычно холодную зиму и турецкое вторжение в Австрию. Предсказания сбылись, и это сделало его знаменитым.


Рис. 6.3. Иоганн Кеплер (1571–1630) на портрете 1610 года.


Кеплер был увлечен исследованием структуры Вселенной, которая в то время ограничивалась Солнечной системой, окруженной сферой неподвижных звезд. Под влиянием традиции пифагорейцев он считал, что должен существовать математический закон для последовательности расстояний планет от Солнца. Было ли ключом к космической архитектуре то, что количество известных в то время планет (шесть) на единицу превосходило число правильных тел, известных Платону? В конце первого года преподавания Кеплер выдвинул блестящую идею: сферы, по которым движутся планеты, должны быть такими, чтобы внутри и снаружи на них можно было построить тела Платона (правильные выпуклые многогранники). Поэтому-то их и шесть. Он начал работать над своей первой книгой «Космографическая тайна» с описанием новой модели, согласно которой Великий Архитектор создал Вселенную с помощью пяти идеальных тел (рис. 6.4).

Каждый правильный многогранник состоит из одинаковых правильных многоугольников. Вот эти тела: куб можно собрать из шести квадратов, а три идеальных тела состоят из равносторонних треугольников — тетраэдр (4 треугольника), октаэдр (8) и икосаэдр (20). А додекаэдр состоит из 12 пятиугольников. Если одну сферу плотно вложить внутрь куба, а другую описать вокруг куба, то отношение их радиусов будет равно 0,577. Октаэдр дает такое же соотношение.

Сферы икосаэдра и додекаэдра дают отношение 0,795, а сферы тетраэдр — 0,333. Эти числа чем-то напоминают отношения расстояний от Солнца соседних планет. Хотя соответствие и было далеко не идеальным, Кеплер считал, что он на верном пути. Позднее стало ясно, что идеальные тела вряд ли имеют что-то общее со строением Солнечной системы. Кроме того, увеличилось число планет. Тем не менее первая попытка Кеплера подойти к космосу с геометрических позиций сыграла важную роль в его карьере.

Рис. 6.4. В Академии Платона было доказано, что существуют лишь пять правильных многогранников. Для Платона они представляли огонь, землю, воздух, воду и небесное вещество. Кеплер видел в этих формах возможную основу архитектуры Вселенной (в это время Солнечная система ограничивалась сферой неподвижных звезд).

Пути Кеплера и Браге пересекаются.

В 1588 году Тихо Браге потерял своего благодетеля: король Фредерик II умер. В последующие годы его отношения с королевским двором ухудшались. В 1596 году, после коронации преемника престола Кристиана, хозяина острова Вен лишили ежегодных выплат. После этого Тихо уже не мог оставаться на своем острове. Он покинул Данию навсегда и вначале жил в Гамбурге, а несколько последних лет своей жизни провел в Праге. Он умер в 1601 году, как говорят, после обильного ужина с возлиянием. Лежа на смертном одре, он повторял один и тот же вопрос — была ли его жизнь хоть чем-то полезна? И как живой ответ на этот отчаянный вопрос, у его постели стоял молодой человек — Иоганн Кеплер.

Тихо Браге получил книгу «Космографическая тайна» в подарок от Кеплера в 1597 году. Он понял, что автор должен быть очень талантливым юношей. Когда в 1600 году император Германии Рудольф II назначил Браге на должность императорского математика в Праге, Тихо решил пригласить Кеплера. Впервые они встретились в феврале в замке Бенатек близ Праги, через несколько дней после казни Джордано Бруно на костре в Риме. Кеплер остался у Браге до лета, затем вернулся в Грац и узнал, что больше не нужен университету. Он вернулся в Прагу и начал помогать Браге. Так начался один из важных периодов в жизни Кеплера. После смерти Браге в 1602 году он стал императорским математиком с зарплатой вдвое меньшей зарплаты предшественника. Проделав кропотливый анализ наблюдений Браге за планетой Марс, Кеплер открыл законы движения планет вокруг Солнца. Можно сказать, что так была решена задача Платона, поставленная за два тысячелетия до этого.

Новые законы космического порядка.

Долго можно рассказывать о том, как Кеплер пришел к своим новым, революционным взглядам на движение планет. Впервые посетив Тихо Браге, он очень заинтересовался получением от Тихо более точных значений минимального и максимального расстояний планет на их орбитах. Ему очень хотелось продолжить свои попытки подогнать планетные орбиты к идеальным телам. После некоторых сомнений Тихо позволил Кеплеру собрать все его наблюдения Марса.

Вначале Кеплер пытался понять движение Марса, следу я старому принципу кругового движения. После года борьбы с кругами и эпициклами он пришел к выводу, что с их помощью нельзя объяснить движение Марса. Фактически все упиралось в небольшое отклонение в 8 упрямых минут дуги, которые Кеплер никак не мог объяснить с помощью кругов. Кеплер ясно понимал, насколько важно проверить теоретические выводы с помощью точных наблюдений. Точность Тихо, равная 2', была выше, чем отклонение. Кеплер отмечал, что «эти 8 минут дуги, которые я не могу отбросить, приведут к полному изменению астрономии».

Затем, вопреки вековой традиции, он использовал эллиптическую орбиту для объяснения движения Марса. Эллипсы были известны еще со времен Аполлония (см. главу 3), изучавшего эти кривые наряду с другими коническими сечениями — гиперболой и параболой. Любопытно, что он же был и автором теории эпициклов в движении планет. Ему, как и всем остальным до Кеплера, не приходило в голову, что планеты могут двигаться по эллипсам. Эллипс является вытянутой замкнутой орбитой, тогда как окружность — лишь частный невытянутый вариант эллипса.

Работа всей жизни Кеплера выразилась в трех законах. Два первых появились в его книге «Новая астрономия» (1609), а третий закон — в книге «Гармония мира» (1619). Представленный выше первый закон формулировался так.

1. Планеты обращаются вокруг Солнца по эллиптическим орбитам, причем в одном из фокусов эллипса расположено Солнце.

На самом деле Кеплер открыл свой второй закон раньше первого. Он обнаружил, что Земля медленнее движется по своей орбите, когда она дальше от Солнца, и быстрее — когда ближе. Скорость перемещения по траектории не остается постоянной при движении по эллипсу вокруг Солнца, а ведет себя так:

2. Радиус-вектор, соединяющий Солнце с планетой, заметает одинаковые площади за одинаковое время.

Чтобы понять второй закон, представим заметаемую область в виде треугольника с вершиной у Солнца и основанием в виде короткой дуги, по которой планета перемещается по орбите за единицу времени. Треугольник будет узким и вытянутым, когда планета вдали от Солнца, и широким — когда она близко, но площади обоих треугольников будут равны (рис. 6.5).

Рис. 6.5. Первый закон Кеплера: планеты обращаются вокруг Солнца по эллиптическим орбитам. Солнце расположено в одной из двух фокальных точек. Второй закон Кеплера: планета движется с переменной скоростью, так что радиус-вектор заметает равные площади за равные интервалы времени (то есть чем ближе к Солнцу, тем быстрее движется). Третий закон Кеплера: период обращения планеты вокруг Солнца зависит от размера ее орбиты так, что квадрат периода пропорционален кубу среднего расстояния от Солнца.

Третий закон Кеплера сравнивает размеры орбит и орбитальные периоды любых двух планет. Обычно их сравнивают с Землей, поэтому для любой планеты используют в качестве единицы времени земной год, а в качестве единицы длины — расстояние от Земли до Солнца (а. е.). Размер орбиты (а) равен половине большой оси эллипса. Размеры орбит и продолжительность полного оборота планеты по орбите (Р) связаны следующим образом:

3. Квадраты орбитальных периодов планет пропорциональны кубам полуосей их орбит.

Интересно посмотреть, с какой точностью Кеплер мог проверить свой третий закон, используя имеющиеся значения, приведенные в «Гармонии мира». В табл. 6.1 верхний ряд представляет квадрат орбитального периода Р для каждой планеты: Р2 = Р х Р (единица измерения — год). А нижний ряд точно так же представляет кубы «а» — среднего расстояния от Солнца: а3 = ах ах а (в единицах среднего расстояния Земли = 1 а. е.). Соответствующие наблюдательные ошибки в верхнем и нижнем рядах практически одинаковы.

Таблица 6.1. Значения орбитальных параметров, вычисленные Кеплером для проверки его третьего закона.


Кеплер работал в Праге до 1612 года. Это было самое плодотворное время в его карьере, несмотря на непрерывные экономические проблемы и личную трагедию (умерли его жена и маленький сын). В дополнение к «Новой астрономии» он опубликовал три книги по оптике (около четверти из опубликованных им работ посвящены свету и оптике).

В 1612 году его покровитель император Рудольф II умер, и Кеплер переехал в Линц работать преподавателем, примерно на таких же условиях, как и в Граце. После этого он вновь женился, и его юная жена родила ему семерых детей, из которых двое умерли в младенчестве. В 1626 году Кеплер покинул Линц по религиозным соображениям. Кеплер являл собой пример человека, способного решать сложные научные задачи, несмотря на множество невзгод. В последние годы жизни Кеплер писал о своих страданиях, которые уготовила ему странная судьба, постоянно сталкивая его с трудностями. И во всем этом он не видел своей вины.

Вместе со своей большой семьей Кеплер поселился в Ульме, где и опубликовал свою последнюю крупную работу «Рудольфовы таблицы», содержащую астрономические таблицы, основанные на наблюдениях Браге, новые законы движения планет и рекомендации для вычисления положений небесных объектов в любой момент времени.

Конец жизни Кеплера был унизительным. Несколько лет он пытался получить у императора Фердинанда II недоплаченное ему жалование, но безрезультатно. Надеясь получить свои и 817 гульденов, он даже прослужил два года астрологом у генерала Валленштейна, героя Тридцатилетней войны. Потеряв всякую надежду, Кеплер сел на лошадь и поехал в Регенсбург, где заседал рейхстаг Священной Римской империи. Это был ноябрь 1630 года; долгий путь верхом в плохую погоду по разрушенной войной Германии оказался слишком труден для слабого здоровья 58-летнего Кеплера. До города он доехал уже больным, продал свою худую лошадь всего за 2 гульдена и свалился в постель с высокой температурой. Спустя несколько дней он умер. Кеплера похоронили за городом, на лютеранском кладбище. В годы следующей долгой войны его могила была разрушена вместе с кладбищем.

Орбиты и силы.

Многих удивляла способность планет двигаться по замкнутым орбитам. Как они находят свой путь обратно к той же точке в пространстве и повторяют ту же вытянутую траекторию? Чтобы объяснить физику этого движения, Кеплер привлек две силы: одна из них ведет планету по кругу, а вторая, типа «магнетизма», заставляет ее отклоняться от круга. Эти две силы каким-то образом так точно согласованы, что получается идеальный эллипс. Как мы увидим ниже, через 50 лет после смерти Кеплера Ньютон показал, что одной лишь силы гравитации достаточно для объяснения замкнутой формы планетных орбит.

В период жизни Кеплера его работы не получили того признания, которого они заслуживали. Он так и не узнал истинную ценность своих работ. Для Кеплера Вселенная все еще была конечной, со звездами, прикрепленными к внешней сфере. Внутри этой сферы был наш мир, источник математических законов Природы. Такой была миссия Кеплера — стоять одной ногой в прошлом, составляя гороскопы, а другой — прокладывать путь к современной астрономии. Он уже не верил в материальность планетных сфер. Планеты движутся в пустом пространстве под воздействием разных сил. Наблюдая за ними, мы с восхищением вспоминаем законы Кеплера. Изучение этих закономерностей и поиск гармонии во Вселенной сделали Кеплера предшественником современной космологии и теоретической физики. Когда Ньютон разрабатывал свою механику и теорию гравитации, он, по его словам, «стоял на плечах гигантов». Одним из этих гигантов был Кеплер, а вторым — Галилей, о котором мы расскажем в следующей главе.

Глава 7 Галилео Галилей и его последователи

Галилео Галилей родился в Пизе, в дворянской семье. Его отец Винченцо преподавал музыку (и разрабатывал ее математическую теорию), а также помогал семье жены в их небольшом бизнесе. Он желал своему сыну лучшей, чем их скромная, если не сказать бедная, жизни. Но вместо того, чтобы делать карьеру в бизнесе, как советовал ему отец, 17-летний Галилео поступил в Пизанский университет, собираясь изучать медицину. Спустя четыре года он покинул университет без диплома, но с багажом знаний по математике и физике Аристотеля. Возвратившись домой к родителям, которые в то время жили во Флоренции, Галилео начал писать работы по математике, давать частные уроки и читать публичные лекции. Он помогал своему отцу в музыкальных опытах со струнами различной длины, толщины и натяжения. Интересно, что основатель экспериментальной физики занимался опытами, похожими на первые известные количественные опыты ранних пифагорейцев, обнаруживших, что при целочисленном отношении длин струн у лиры повышается ее благозвучие.

Галилей познакомился с трудами Архимеда, переведенными на латинский язык в XVI веке. Это побудило его к изучению разделов статистической механики, например вопроса о центре тяжести тела. Благодаря небольшой работе, написанной на эту тему, он был временно назначен на должность профессора математики в Пизанском университете. Через три года в возрасте 28 лет он переехал в Падую для преподавания математики и астрономии. Галилей прожил там 18 лет, проделав большинство своих знаменитых работ по изучению движения тел (рис. 7.1).

Рис. 7.1. Галилео Галилей (1564–1642), основатель экспериментальной физики и первый наблюдатель небесных объектов с помощью телескопа.

Наблюдение и эксперимент.

Книги Галилея демонстрируют современный подход к изучению природы. В древности очень ценились наблюдения, но не возникало идеи проведения эксперимента с определенной целью. Вспомним главу 2: Аристотель утверждал, что мы понимаем явление только в том случае, если знаем его особую причину, окончательную цель. Только зная «мотивацию», мы можем сказать, почему это случилось. Например, камень падает, потому что его цель — приблизиться к своему естественному положению, к центру Вселенной. По мнению Аристотеля, наблюдение случайных, а не специально созданных процессов важно для их понимания.

Современная наука, напротив, считает, что если известно начальное состояние системы и все действующие силы, то можно понять, каким будет последующее состояние, не предполагая какого-либо естественного конца. Эта причинная связь делает эксперимент эффективным средством изучения природы. Изменяя в эксперименте начальное состояние, можно изучить законы, связывающие причину с результатом. Важнейшей задачей эксперимента является проверка теории, пытающейся объяснить явление. Эксперимент и теория идут рука об руку в том смысле, что хорошая теория имеет практическое значение, поскольку способна предсказывать ход природных явлений в разных ситуациях. Если говорить о прикладном значении, то взять хотя бы телевизор: мы подтверждаем лежащую в его основе теорию каждый раз, когда нажимаем кнопку «Вкл.».

Основные результаты опытов Галилея в области динамики можно сформулировать в виде нескольких законов.

1. Свободное горизонтальное движение происходит с постоянной скоростью, без изменения направления.

В нашей повседневной жизни на Земле трение всегда останавливает движение любого тела, например катящегося по ровной поверхности шара. Но благодаря своим экспериментам и интуиции Галилей пришел к заключению, что шар никогда бы не остановился, если бы трение можно было полностью устранить, то есть если бы движение было «свободным».

2. Свободно падающее тело испытывает постоянное ускорение.

Ускорением называют изменение скорости тела за единицу времени. У равномерно ускоряющегося тела, которое вначале было неподвижным, через некоторое время скорость и становится равной ускорению а, умноженному на время t (v = at). Для тела, падающего у поверхности Земли, ускорение равно 9,8 м/с2. Через 1 секунду скорость тела будет равна 9,8 м/с, через 2 секунды — 19,6 м/с, и т. д. В результате исследований в колледже Мертон (Оксфорд) еще в XIV веке возникло предположение, что расстояние s, пройденное равномерно ускоренным телом за время t равно половине произведения ускорения на квадрат времени (s = 1/2 at2). Галилео показал, что эта формула верна, изучая движение шара, катящегося с малым ускорением вниз по наклонной плоскости. Экстраполируя этот опыт на случай вертикального движения, он пришел к выводу, что свободно падающее тело подчиняется этому же закону, то есть имеет постоянное (но большее) ускорение. Вернемся к ускорению 9,8 м/с2. Через 1 секунду тело упадет на 4,4 м. Через 2 секунды оно уже пройдет расстояние 17,6 м, вчетверо большее, чем за первую секунду, и т. д.

3. Все тела падают одинаково быстро.

Результат, обычно приписываемый опыту Галилея, бросавшего предметы с наклонной Пизанской башни, в действительности был получен раньше датско-бельгийским математиком Симоном Стевином. В 1586 году он заявил, что тела с различными массами падают с одинаковым ускорением. Галилей был согласен с этим мнением и мог попытаться провести подобный эксперимент с двумя плотны-ми телами различной массы. Конечно, если бы можно было убрать воздух, то молоток и перо падали бы с одинаковой скоростью и одновременно упали бы на землю. Астронавты из экспедиции «Аполлон» на безвоздушной поверхности Луны доказали, что это действительно так.

4. Принцип относительности Галилея. Траектория и скорость движения тела зависят от системы отсчета, в которой они наблюдаются.

Одним из аргументов, которые приводились против вращения Земли, было утверждение, что если бы Земля вращалась, то тело, брошенное с вершины башни, не должно было бы упасть прямо к подножию, поскольку поверхность вращающейся Земли должна немного передвинуться за время падения. Обоснованность этого аргумента можно проверить в аналогичной ситуации, бросив камень с верхушки мачты плывущего корабля. Отклонится ли траектория камня к корме корабля? Французский философ Пьер Гассенди (1592–1655) проделал такой опыт и обнаружил, что камень всегда падает на палубу рядом с основанием мачты и никакого отклонения нет! Даже падая, объект перемещается вместе с кораблем. Галилей заключил, что наблюдатель, участвующий в равномерном движении, не может обнаружить это движение в эксперименте со свободным падением. Интересно, что, с точки зрения наблюдателя, стоящего на берегу, падающий камень движется по параболической траектории. Какая же из этих траекторий «настоящая» — прямая вертикальная линия или кривая парабола? Галилей говорил, что обе траектории правильные, так как они зависят от системы отчета, которую можно связать либо с берегом, либо с равномерно движущимся кораблем, в зависимости от положения наблюдателя.

Во времена Галилея важность этих законов движения определялась двумя обстоятельствами. Во-первых, они четко отрицали старые взгляды, основанные на физике Аристотеля. Во-вторых, они помогали понять, что Земля может быть подвижной без каких-либо драматических последствий кроме ежедневных восходов и заходов Солнца и других небесных светил. Атмосфера может двигаться вместе с Землей, не производя сильного ветра и не улетая в космос.

Первые шаги в глубокий космос.

Уже то было замечательно, что Галилей показал, как можно использовать эксперименты для проверки философских идей о материи и движении и как они могут открывать новые законы природы на Земле. Но это было еще не все. Он смог взглянуть на небо с помощью нового инструмента, возможности которого намного превысили способность невооруженного глаза и позволили обнаружить новые явления во Вселенной.

Галилео услышал, что в Нидерландах шлифовщик линз построил прибор, приближающий далекие объекты. Летом 1609 года он сам сделал такой же инструмент, который мы теперь называем телескопом. В первую очередь Галилей думал о том, что прибор может быть использован моряками и что продажа телескопов могла бы улучшить его материальное положение. Он показал свой инструмент правителям Венеции, которые с удивлением обнаружили, что можно увидеть далекий корабль в Венецианском заливе и еще до его приближения распознать, друг это или враг. Галилео представил свой телескоп верховному правителю Венеции — дожу. Тот был настолько впечатлен, что продажи Галилея увеличились вдвое, а его временная должность профессора стала пожизненной. Два телескопа, изготовленные Галилеем, демонстрируются в Музее истории науки (Institute е Museo di Storia della Scienza) во Флоренции. Линзы их объективов имеют диаметры 16 и 26 мм. По современным стандартам телескоп Галилея был, конечно, не самым лучшим. Но он радикально усилил возможности человеческого глаза при наблюдении небольших, тусклых и далеких объектов. Направив телескоп в небо, Галилей сделал неожиданные открытия. В книге «Звездный вестник», опубликованной в 1610 году, Галилей рассказал о своих новых космических открытиях.

• Луна, которая кажется ровной сферой, в действительности имеет неровную поверхность с горами, ямами и долинами, наряду с большими плоскими районами.

• Многие новые звезды, невидимые невооруженным глазом, появляются на небе при наблюдении в телескоп, особенно Млечный Путь — огромное облако тусклых звезд.

• У Юпитера четыре обращающихся вокруг него спутника.

Позднее, в 1610 году, Галилей совершил новые открытия.

• Венера имеет фазы наподобие Луны.

• На Солнце есть пятна, движение которых по диску отражает его вращение с периодом около месяца (возможно, это открытие независимо сделали и другие астрономы).

Все это было настолько ново и радикально, что многие не смогли сразу принять и согласиться, тем более что кроме слов самого Галилея никаких других доказательств не было. А наблюдение в телескоп не очень-то помогало: размазанное дрожащее изображение первых телескопов не пользовалось доверием. Современный маленький бинокль дает гораздо лучшее изображение. Быть может, вам захочется с помощью бинокля найти на небе Юпитер и заметить один из его четырех крупных спутников. В конце концов вам, вероятно, удастся увидеть один или даже несколько спутников, но для этого понадобится прочный и устойчивый современный штатив, вроде тех, что у фотоаппаратов.

Открытия Галилео стали сенсацией, а его книга — бестселлером. Бе первые 550 экземпляров оказались быстро распроданы. Слава автора не ограничилась Европой: через четыре года книга была издана в Китае священником-иезуитом, описывающим новые небесные явления, открытые в далекой экзотической Италии.

Рис. 7.2. Фазы Венеры ясно показывают, что она действительно обращается вокруг Солнца, а не бродит туда-сюда между Землей и Солнцем, как утверждалось в древней системе мира. Рисунок: NASA.


Открытия Галилея, сделанные при помощи телескопа, поддержали идею Коперника. Ее оппоненты утверждали, что если бы Земля обращалась вокруг Солнца, то Луна должна была бы отстать. Теперь же стало видно, что спутники Юпитера обращаются вокруг него и не отстают при движении Юпитера по орбите. Венера, как и Луна, меняет фазы, и это означает, что она при движении вокруг Солнца выходит из-за Солнца и оказывается между Землей и Солнцем (рис. 7.2). Наконец, кратеры на Луне и солнечные пятна указывают, что эти тела состоят из вещества, похожего на вещество «несовершенной» Земли (рис. 7.3).

Рис. 7.3. Галилей был одним из первых, кто заметил пятна на Солнце. Это современное фото показывает группу огромных пятен, наблюдавшихся на Солнце в 2001 году. Солнечные пятна — это временные образования: одни пятна со временем исчезают, другие появляются. Теперь мы знаем, что причиной появления пятен служат сильные магнитные поля, выходящие из внутренних областей Солнца. Пятна кажутся темными, потому что они немного холоднее окружающей поверхности.


Кеплер и Галилей были совершенно разными людьми, и это отразилось в их подходе к науке. Кеплер был тихим, глубоким теоретиком, с хрупким здоровьем и слабым телом. Галилей, крупный и здоровый, имел горячий нрав, ясный ум и острый язык. Поэтому он часто конфликтовал с другими учеными. Хотя Галилей не принял кеплеровскую теорию движения планет (он рассматривал круговые движения как естественные), их работы дополняли друг друга на протяжении всего времени, пока мостилась дорога к новой физике Земли и небесных объектов.

Борьба на два фронта.

В 1616 году католическая церковь объявила учение о движении Земли абсурдным и еретическим. Этому предшествовала сложная цепь событий. Определенную роль сыграли зависть малограмотных профессоров, споры между вспыльчивым Галилеем и начальством университета, а также желание втянуть Галилея в спор о системе мира и положениях Библии. В результате книга Коперника и ряд других книг были «задержаны, пока не будут исправлены». Ну а, к примеру, книга Фоскарини была вообще запрещена — монах ордена кармелитов пытался доказать, что движение Земли не противоречит Библии. В 1620 году были запрещены и «все другие книги, утверждающие то же самое». И так было вплоть до издания «Индекса запрещенных книг» 1835 года, после которого идеи Коперника более не преследовались.

Один из веских аргументов в пользу запрета — как со стороны религии, так и со стороны науки — состоял в том, что движение Земли все еще не было доказано. Эта чрезвычайно смелая теория вынуждена была вести борьбу на двух взаимосвязанных фронтах — в науке и в обществе. В 1632–1633 годах перед трибуналом инквизиции в Риме состоялся суд над Галилеем. Причиной судебного разбирательства послужила книга «Диалог о двух главнейших системах мира». Папа Урбан VIII, который проявлял интерес к космологии, уговорил своего друга Галилея написать новую книгу. Но он сказал Галилею, что система Коперника должна быть представлена только как гипотеза (это позволял Декрет 1616 года), и Галилей согласился. Но когда книга была издана, оказалось, что в ней Галилей пытается доказать, что Земля движется. Положение усугубилось еще и тем, что не очень умный персонаж книги — Симпличио, приверженец геоцентрической картины мира, был явной карикатурой на папу. Вердикт суда принудил Галилея публично объявить, что Земля неподвижна. К счастью, во время суда с 70-летним ученым обращались хорошо, его не поместили в камеру и не пытали.

Злоключения Галилея, подобно казням Сократа и Бруно, стали символом борьбы за свободу мысли. Но было бы слишком просто считать это столкновением науки и религии. Революционеры в науке — Коперник, Кеплер и Галилей, а затем и Ньютон — верили в Бога, как и большинство их современников в Европе, и не утверждали, что Библия противоречит науке. Новые идеи были враждебно встречены религиозными лидерами, которые приспособили систему Птолемея для своих догм, что позже назвали «незаконным браком науки и религии».

Картезианская физика

Суд над Галилеем стал частью коперниканской революции и вынудил учен. ых искать дополнительные доказательства в пользу новой системы мира. Однако история с Галилеем заставила на некоторое время прекратить открытые дискуссии на эту тему. Одним из тех, кого в 1633 году встревожили новости из Рима, был Рене Декарт (1596–1650), французский философ и математик, только что закончивший работу «Мир». В этой книге он представил свою физическую систему мира, включающую гелиоцентризм. Декарт решил отложить рукопись, и она была опубликована лишь после его смерти.

Впрочем, Декарт сделал и многое другое, что повлияло на философию, физику и математику еще при его жизни. Отправной точкой «картезианской физики» был закон инерции. Он обсуждался Галилеем, но только Декарт сформулировал его для идеальной частицы в бесконечном пространстве. Если частица не соприкасается с другой частицей, то она будет либо сохранять начальное состояние покоя, либо двигаться с постоянной скоростью по прямой. Закон Декарта о движении свободной частицы по инерции очень похож на первый закон движения Ньютона, который мы обсудим позднее. Однако, в отличие от гравитационного притяжения сквозь пустое пространство, в физике Декарта ничего не происходит, пока частица не отклонится при столкновении с другой частицей; иными словами — изменения в нашем мире вызываются столкновениями. Нет загадочного взаимодействия на расстоянии; все тела постоянно находятся в контакте с другими телами. Даже пространство между звездами не пустое, а заполнено частицами эфира.

Исходя из этих предположений, Декарт объяснял различные явления, включая движение планет: вместо гравитации их движение вызвано частицами эфира, роящимися вокруг Солнца. Подобные же вихри существуют и вокруг других звезд. Солнечный вихрь смог захватить оказавшиеся поблизости мертвые звезды, так появились планеты, в том числе и Земля.

Описывая движение планет, картезианская физика смогла предложить только качественное, туманное объяснение этого явления. Ньютон же с помощью своих новых законов движения, включая гравитационное притяжение сквозь пустое пространство, смог построить количественную математическую физику, которая заменила декартовскую физику. Тем не менее исследовательская позиция Декарта влияла на научное мышление в течение всего периода коперниканской революции. Декарта часто называют отцом современной математики. Он объединил геометрию с алгеброй, создав аналитическую геометрию, в которой положение точки на математической плоскости определяется двумя координатами — x и у. Говорили, что корни этой идеи уходят в его детство, когда он наблюдал за мухой, ползавшей по потолку над его кроватью. Как описать путь мухи? Это можно сделать, если каждую точку потолка описать парой чисел (x:, у). В качестве примера можно привести прямоугольную систему координат. В ней расстояние между любыми двумя точками можно определить просто из разности координат: (расстояние)2 = (расстояние по x)2 + (расстояние по y)2.

Введение точного времени.

Время в современном смысле ввел в науку Галилей. В своих опытах с шаром, катящимся вниз по наклонной плоскости, он вместо часов использовал биение собственного сердца. Кроме того, он измерял время, взвешивая воду, вытекшую через отверстие в сосуде, но затем он понял, что для этой цели можно использовать маятник. Рассказывают, что в возрасте 20 лет, когда он оказался на мессе в кафедральном соборе, его внимание привлекли люстры, свисающие с потолка на длинных цепях. От сквозняка они величественно раскачивались. Люстры были подвешены на цепях одинаковой длины, но имели разный вес. Однако раскачивались они при этом с одинаковой частотой. Это подтолкнуло Галилея к опыту, показавшему, что в действительности период качания зависит не от веса груза у маятника, а от его длины. Галилею пришла идея, что можно собрать часовой механизм, используя постоянные колебания маятника, если умудриться поддерживать эти колебания и механически считать их количество. С уменьшением длины маятника период становится короче, поэтому можно точно измерять короткие интервалы времени.

Идею маятниковых часов реализовал голландский физик Христиан Гюйгенс (1625–1695). В его маятниковых часах была решена проблема поддержания колебаний, а измерение времени происходило с ошибкой около 10 секунд в сутки, в отличие от существовавших до этого механических часов, дававших ошибку около 15 минут в сутки.

Возвращаясь к вопросу о движении Земли и имея в виду более поздние работы Ньютона по гравитации, укажем, что именно Гюйгенс в 1659 году определил, каким должно быть ускорение к центру, чтобы тело двигалось по круговой орбите. Он показал, как вычислить ускорение к центру: нужно разделить квадрат круговой скорости на радиус окружности. Например, на экваторе Земли скорость равна 464 м/с, а радиус Земли равен 6,380 x 106 м. Таким образом, центростремительное ускорение, необходимое для того, чтобы удержать воздух у поверхности Земли, равно (464 х 464)/6 380 000 = 0,0337 м/с2. С другой стороны, притяжение Земли придает телу центростремительное ускорение 9,8 м/с2, что гораздо больше необходимого значения. Прежде боялись, что вращение Земли может стать причиной ветра и сдуть воздух в космическое пространство. Приведенные выше вычисления показывают, что ускорение, вызванное гравитацией, гораздо больше, чем требуется для удержания воздуха у поверхности вращающейся Земли. Поэтому нет никакого риска, что воздух улетит в космос.

Эволюция телескопа.

Первые астрономические наблюдения Галилея показали, насколько сильно даже маленький телескоп увеличивает возможности человеческого глаза. Телескоп собирает намного больше света, чем глаз. Это дает возможность увидеть гораздо более тусклые объекты, чем доступные невооруженному глазу. Например, в области Плеяд Галилей увидел 36 звезд вместо обычных 6. На фотографиях, полученных с помощью современных телескопов, в этой группе видны сотни звезд. Большой объектив значительно улучшает и разрешение. Это означает, что две близкие звезды, сливающиеся для невооруженного глаза в одно пятнышко, можно увидеть по отдельности в телескоп. Способность собирать больше света, чем глаз, и высокое разрешение дают возможность увидеть больше структур и тусклых объектов на звездном небе. Высокое разрешение позволяет более точно определять положения (координаты) звезд. А это очень важно при измерении расстояний до звезд, о чем мы расскажем в следующей главе.

Конструкцию телескопа Галилея вскоре улучшил Кеплер, предложив оптическую схему, используемую по сей день. В «кеплеровском» телескопе большая объективная линза дает изображение небесного объекта на большом расстоянии от объектива. Детали этого изображения рассматривают с помощью увеличивающей выпуклой окулярной линзы.

Качество изображения первых телескопов было плохим. Простые линзы отягощены цветовыми ошибками (хроматическая аберрация), вызванными тем, что световые лучи разного цвета не фокусируются в одной точке, поэтому изображение звезды получается размытым пятнышком, окруженным цветными разводами. В определенной степени линза действует как призма. Изобретение ахроматических объективов в XVIII веке намного улучшило изображения. Прежде для этого были вынуждены сооружать очень длинные телескопы. Когда отношение диаметра объективной линзы и ее фокусного расстояния мало, лучи света лишь слегка преломляются, цветовая погрешность меньше, а изображение резче. На рис. 7.4 показаны такие длинные телескопы Парижской обсерватории.

Рис. 7.4. «Воздушные телескопы» Парижской обсерватории XVII века. Даже при том, что они были очень неудобными в работе, с их помощью были сделаны открытия.


Христиан Гюйгенс тоже строил телескопы, самый большой из которых имел в длину 37 м. Невозможно было сделать такую гигантскую сплошную трубу, поэтому объективная линза устанавливалась на верхушке шеста или на коньке кровли, а управляли ее положением с помощью длинной веревки, стоя на земле и удерживая окуляр перед глазом. Судя по всему, очень неудобно было работать с таким инструментом, следя за вращающимся звездным небом. Тем не менее при помощи этих инструментов получали интересные наблюдательные данные. Например, Гюйгенс обнаружил, что странные отростки у Сатурна, замеченные Галилеем, в действительности являются тонким плоским диском вокруг планеты в ее экваториальной плоскости.

Другим знаменитым наблюдателем эпохи длинных телескопов был поляк Ян Гевелий (1611–1687), имевший собственную обсерваторию в Гданьске. Это была первая в мире обсерватория, оснащенная телескопом. Наблюдениями занималась и его жена Елизавета. Инструмент Гевелия имел 45 м в длину! Его сложная система канатов и реек напоминала оснащение парусного судна и для управления определенно нуждалась в сноровке моряка. С помощью этого телескопа Гевелий исследовал поверхность Луны и составил ее хорошие карты. Когда мы говорим о лунных «морях», следует помнить, что так их назвал Гевелий. Теперь мы знаем, что это низины, наполненные застывшей лавой.

После изобретения в XVIII веке ахроматических линзовых телескопов, в изображении которых цветные разводы сильно ослаблены, эра длинных линзовых телескопов завершилась. До конца XIX века еще строили крупные линзовые телескопы с объективами диаметром вплоть до 1 метра, но уже были разработаны телескопы другого типа, которые постепенно стали основными инструментами современных исследований. В 1671 году Исаак Ньютон построил первый рефлектор, где не линза, как в рефракторе, а вогнутое зеркало собирало свет. Опыты с преломлением лучей в стеклянной призме привели Ньютона к выводу, что цветовые ошибки телескопов-рефракторов полностью устранить невозможно. Это заставило его обратиться к альтернативному способу фокусировки световых лучей путем отражения, угол которого не зависит от цвета. Изображение, сформированное в фокусе зеркала, не имеет цветных разводов. Если поверхность вогнутого зеркала параболическая, то все лучи, отраженные как от центральной части зеркала, так и от его краев, будут собираться в один фокус. Сохранился телескоп, собственноручно изготовленный Ньютоном. Его металлическое зеркало имеет диаметр 3,5 см. Ньютон использовал маленькое плоское зеркало для отклонения лучей вбок, в дырочку на трубе телескопа, где расположен увеличивающий окуляр.

Большие современные телескопы-рефлекторы часто имеют отверстие в центре главного зеркала, сквозь которое лучи, отраженные от вторичного зеркала, попадают на детектор излучения. Сегодня изображение регистрируют уже не глазом или фотопластинкой, а высокочувствительной ПЗС-камерой или спектрографом. Телескоп описанного типа называется кассегреновским рефлектором, поскольку его изобрел француз Г. Кассегрен (о котором очень мало известно) вскоре после создания рефлектора Ньютона. Впрочем, телескоп Кассегрена, на самом деле, был усовершенствованной версией телескопа, предложенного Джеймсом Грегори еще до Ньютона. Но Грегори не построил свой телескоп. В телескопе Кассегрена в качестве вторичного используют выпуклое зеркало; это приводит к уменьшению длины телескопа.

Важное преимущество телескопа-рефлектора состоит в том, что размер главного зеркала можно сделать гораздо больше, чем у линзы рефрактора. При этом собирается больше света и можно наблюдать более тусклые и далекие объекты. Зеркало можно поддерживать сзади по всей поверхности, в то время как линзу можно держать только по краям. После разработки методов нанесения серебра, а затем и алюминирования, вместо использовавшегося Ньютоном металла, стали применять стекло, которому даже не нужно быть прозрачным. Вообще свободный от хроматической аберрации рефлектор большого диаметра можно построить за те же деньги, что и рефрактор меньшего размера.

Хотя рефлекторы в астрономии начали успешно конкурировать с рефракторами еще в XIX веке, оставалось много задач, при решении которых предпочтение отдавалось рефракторам. Например, их использовали для точного определения положений звезд. Большие проблемы создавало наличие хроматической аберрации, но в конце концов ее удалось устранить. Это позволило осуществить мечту об измерениях расстояний до звезд.

Сегодня телескопы усложнились еще больше. Наряду с работой в визуальной области, они могут работать в рентгеновском, ультрафиолетовом, радио- и инфракрасном диапазонах, недоступных человеческому глазу. Некоторые телескопы работают в космосе, и им не мешает атмосфера, размывающая оптическое изображение и поглощающая излучение на многих длинах волн (исключая визуальный свет и радиоволны). На рис. 7.5 представлено большое зеркало, предназначенное для космического телескопа. Для радиотелескопов вместо зеркала используют вогнутую тарелку, а радиоприемник устанавливают в фокусе этой тарелки. Большая длина радиоволн делает их разрешение ниже, чем у оптического телескопа того же размера, поэтому тарелка радиотелескопа очень крупная. Бывают тарелки диаметром 100 м и даже больше, тогда как диаметр зеркала современного оптического телескопа не превышает 10 м. Радиоастрономы научились объединять сигналы с разных тарелок, имитируя одну тарелку, сравнимую с размером Земли. Это называется интерферометрией. Уровень современной электроники позволяет сделать то же самое и в оптическом диапазоне, используя несколько телескопов одной обсерватории.

Рис. 7.5. Зеркало диаметром 3,5 м, созданное финской оптической фирмой Opteon для европейского космического телескопа «Гершель». Сейчас это самый большой космический телескоп. Поверхность зеркала так отполирована, что неровности на ней не превышают нескольких тысячных долей миллиметра. Фото: Opteon.

Наконец, некоторые современные телескопы стали трудноузнаваемыми. Разработаны приборы, способные регистрировать субатомное нейтринное излучение Солнца и сверхновых звезд. Созданы детекторы гравитационных волн для обнаружения изменений полей при орбитальном движении черных дыр или их рождений в сверхновых.

Исследовательский дух очень силен в астрономии. Велико желание продвигаться все глубже и глубже в бездну Вселенной, чтобы увидеть то, чего никто никогда ранее не видел. Для обнаружения и дальнейшего исследования всех этих неожиданных небесных тел и явлений требуются телескопы все большего и большего размера.

Глава 8 Далеко ли до звезд?

Согласно Птолемею, расстояние до сферы звезд составляет 20 000 радиусов Земли. Коперник же считал это расстояние просто «огромным», поскольку звезды не демонстрируют покачиваний, вызванных годичным движением Земли вокруг Солнца. Отсутствие «годичного параллакса» отмечал еще Птолемей, который использовал это как доказательство неподвижности Земли. Для Аристарха, как и для Коперника, отсутствие параллакса свидетельствовало о безграничности Вселенной.

Коперниканская революция не только убрала Землю из центра Вселенной и придала ей движение, но и разбила вдребезги старую хрустальную сферу, с древних времен удерживающую звезды. Коперник и Кеплер все еще верили в эту самую дальнюю сферу, но фактически она стала бесполезной, когда утратила свою исходную функцию. Этот новый мировой порядок ясно описал горячий поклонник Коперника — Бруно: «Если только мы поймем, что видимость мирового движения вызвана истинным ежедневным движением Земли… то не будет оснований, которые принуждали бы нас считать все звезды одинаково далеко отстоящими от нас». Еще раньше, как мы рассказали в главе 4, Диггес отделил звезды от сферы и рассеял их в пространстве: «Эта сфера неподвижных звезд безгранично простирается во всех направлениях и оттого недвижима. Эта обитель блаженства украшена вечно сияющими бесчисленными огнями, намного превосходящими своим сиянием наше Солнце и по качеству, и по количеству».

Галилей и годичный параллакс.

Обнаружение небольшого годичного параллакса стало бы очень важным доказательством системы Коперника. К тому же это позволило бы измерить расстояния до звезд. Параллакс звезды равен углу, под которым радиус земной орбиты виден с расстояния до звезды. Он также равен половине полного изменения направления на звезду в течение года. Если параллактический угол равен 1 секунде дуги, то говорят, что звезда находится на расстоянии 1 парсек (par-sec). В названии этой единицы длины зашифровано ее определение (параллакс = 1 секунде; parallax = 1 arcsec). Один парсек (1 пк) равен 206 265 радиусам земной орбиты. На врезке 8.1 объясняется, как возникло это число. Полезно помнить, что 1 парсек равен 3,26 светового года. Один световой год — это расстояние, которое проходит луч света за год (9,46 x 1012 км).

Врезка 8.1. Длина 1 парсека.

На каком расстоянии г радиус земной орбиты R стягивает угол в 1 секунду дуги (1")? Предположим, что R — длина малого сегмента окружности радиусом r, тогда R/2?r = 1"/360°.

Поскольку вся окружность содержит 360 x 60 х 60 секунд дуги, то R/r = 2?/(360 x 60 x 60) = 1/206 265. Следовательно, 1 парсек равен 206 265 расстояниям Солнце-Земля, или 3,0857 x 1013 км. Что касается светового года, который часто используется в научно-популярной литературе, то 1 парсек = 3,26 светового года, или 1 св. год = 0,307 пк.

В своем «Диалоге» Галилей уделяет большое внимание тому, как обнаружить и доказать движение Земли. Точно так же, как на борту судна мы не чувствуем его движения, мы не можем почувствовать и постоянное вращение Земли, пока она не столкнется с каким-нибудь препятствием, которое резко остановит ее и выбросит нас к звездам, как это в кошмарной сцене описывает Сальвиати — персонаж, выражающий мысли Галилея. Однако мы можем наблюдать звезды и заметить намек на движение Земли. В то время таких намеков замечено не было. Сначала Сальвиати рассматривает случай, когда звезда расположена точно на эклиптике. Если наблюдать с движущейся Земли, то эта звезда должна за год совершить колебание вдоль эклиптики, подобное петлеобразному движению далекой планеты относительно неподвижных звезд (рис. 8.1). Но Сальвиати объясняет, что такое движение звезды очень трудно заметить, так как нужно иметь точки отсчета, расположенные намного дальше этой звезды. И эффект вообще пропадает, если все звезды находятся на небесной сфере.

Рис. 8.1. Направление на звезду меняется по мере обращения Земли вокруг Солнца. Это позволяет измерять расстояния до звезд методом триангуляции. Но этот фундаментальный метод удается использовать только для относительно близких звезд.


Но задача облегчается, если звезда расположена вдали от эклиптики. Тогда в течение года она будет менять свое угловое расстояние от эклиптики, то «опускаясь», то «поднимаясь». При этом сама неподвижная плоскость эклиптики служит той системой координат, в которой можно измерять углы.

Галилей упоминает также о возможности наблюдать относительный параллакс двух звезд, удаленных на разное расстояние, что могло бы стать еще одним доказательством годичного движения Земли. Он высказывает мнение, что не все звезды лежат на одинаковом расстоянии от нас, а некоторые из них могут быть в «два или три» раза дальше, чем остальные. Если две такие звезды были бы расположены вблизи друг друга, то более близкая звезда могла бы двигаться относительно более далекой, и астроном имел бы возможность измерить это малое смещение. И такие измерения действительно были проделаны, но двумя столетиями позже! А в промежутке люди пытались заметить движение звезд «вверх и вниз» по эклиптическому методу Галилея. Попытки оказывались неудачными (очень трудно провести точные измерения углов от эклиптики, чтобы заметить эти сдвиги), но в процессе этих измерений было обнаружено другое очень важное явление, меняющее направление на звезду. Этим неожиданным оптическим явлением оказалась аберрация света.

Еще до начала охоты за параллаксом в дело вмешалось настоящее животное. А именно примерно в 1640 году паук сплел свою паутину внутри телескопа английского любителя астрономии Уильяма Гаскойна (William Gascoigne). Это был телескоп кеплеровского типа, у которого объектив формирует изображение внутри телескопа, перед окуляром. Поэтому часть паутины свисала как раз в фокальной плоскости и была отчетливо видна, когда владелец телескопа (не тот, что внутри!) посмотрел в окуляр. Это навело Гаскойна на мысль создать измерительный прибор для своего телескопа. Он натянул две тонкие параллельные нити из паутины в фокальной плоскости таким образом, чтобы иметь возможность поворотом винта менять их взаимное расстояние. Этот нитяной микрометр усовершенствовался много лет для точного измерения малых углов. Он доказал свою пользу при измерении почти незаметных движений звезд.

Брадлей открывает аберрацию света.

Звезда Этамин (? Dra) из созвездия Дракон, лежащая между Малой Медведицей и Лирой, довольно тусклая и ничем не выделяется. Но ее положение на небе таково, что если на нее смотришь с широты Лондона, то она ежедневно проходит близ зенита. Это делает ее очень удобным объектом для наблюдений с помощью зенитного телескопа, измеряющего угол между зенитом и звездой, когда она пересекает меридиан (линию север-юг). Еще известный английский физик Роберт Гук (1635–1703) пытался определить годичный параллакс этой звезды и о результатах своей работы написал в 1674 году в брошюре «Попытка доказательства движения Земли по наблюдениям». Название книжки свидетельствует, что Гук имел в виду решающий космологический тест — доказать, что Земля действительно движется, как это представлено в модели Коперника. Он верил в это, обнаружив изменения в положениях звезды Этамин, превышающие 24", но наблюдения были немногочисленны, и точность измерительных приборов невелика.

Спустя десятилетия увлеченный любитель астрономии Самюэль Молине приступил к наблюдениям Этамина с помощью своего зенитного телескопа, который был длиннее и лучше, чем телескоп Гука. Вместе с ним за движением звезды следил и его друг, королевский астроном Джеймс Брадлей (1693–1762). К их удивлению, положение звезды хотя и менялось относительно его среднего значения, но не так, как должно быть по причине параллакса. В течение трех месяцев она переместилась от своего среднего положения на 20" к югу. Затем в течение 6 месяцев звезда от южной точки сместилась на 40" к северу, а после этого вновь двинулась к югу, и все началось сначала. Смещение на ±20" было реальным, но оно не могло быть обусловлено годичным параллаксом, так как это движение на 3 месяца отстает от того, которое должен был вызвать параллакс. Обнаруженное смещение звезды всегда происходило в направлении орбитальной скорости Земли.

После трех лет наблюдений и долгих раздумий Брадлей понял причину необычных перемещений Этамина на небе. Говорят, что эта идея пришла к нему во время путешествия на корабле по реке Темза в сентябре 1728 года. Он заметил, что, когда корабль поворачивает, флюгер на верхушке мачты тоже поворачивается. Брадлей сделал вывод, что направление флюгера показывает не истинное направление ветра, а направление относительно движущегося корабля. Это и побудило его к размышлению о том, что случится с видимым направлением света, проходящим через пространство, если смотреть на него с движущегося места наблюдения, например с Земли. Полагая скорость света конечной, он пришел к следующим заключениям:

Видимое положение источника света, наблюдаемого движущимся глазом, в общем случае отличается от того, какое видит неподвижный глаз. Неизменным оно остается только при движении вдоль луча зрения, направленного на объект (вперед или назад). Но если есть составляющая движения, перпендикулярная лучу зрения, то объект виден в ином положении, слегка сдвинутом в направлении движения.

Причину этой аберрации света можно понять в любой дождливый день. Когда вы сидите в неподвижном автомобиле, капли дождя падают вертикально. Но если автомобиль движется, капли кажутся падающими под наклоном, с направления, немного сдвинутого вперед по ходу машины. Это происходит потому, что вы и в этом случае используете автомобиль как систему отсчета, а он уже движется. Если скорость наблюдателя значительно меньше скорости света, как в случае движения Земли по орбите вокруг Солнца, очень легко понять происхождение аберрации и вывести для нее математическую формулу (рис. 8.2).

Угловое смещение изображения зависит от отношения скорости наблюдателя к скорости света (V/c). Это смещение зависит также от угла между направлением на объект (скажем, звезду) и направлением движения. Если этот угол равен нулю, то смещения вообще не будет. И оно максимально, когда движение направлено перпендикулярно относительно направления на звезду (угол = 90°). Например, орбитальная скорость Земли составляет около 30 км/с.

Ее отношение к скорости света равно 1/10 000, что соответствует примерно 20" [= 360 x 60 x 60/(2? х 10 000)]. Так что неслучайно наблюдаемое отклонение у Дракона от ее среднего положения составляет 20": Молине и Брадлей просто наблюдали аберрацию света. Слово «аберрация» происходит от латинского глагола ab erro (сдвинуться, отклониться). По-видимому, впервые его употребил для обозначения крошечного сдвига звезд Евстахий Манфреди (Eustachio Manferdi) в том же 1629 году, когда Брадлей объявил о своем открытии. Этот итальянский астроном, разумеется, не знал истинной причины сдвига.

Рис. 8.2. Простая аналогия аберрации света. Бегущий под дождем человек наклоняет зонт в направлении движения, как будто дождевые капли падают вниз под углом.

Сегодня мы знаем, что Этамин находится довольно далеко и его годичный параллакс равен примерно 0,02", что гораздо меньше 20". С помощью телескопа Молине и его метода невозможно было заметить столь малый параллактический эффект на фоне значительно более сильной аберрации.

Пятьюдесятью годами ранее: Рёмер и скорость света.

Открытие аберрации стало значительным событием с нескольких точек зрения. Прежде всего это было очень важно для астрономов, измеряющих положения звезд и пытающихся определить расстояние до них. Но это открытие одним выстрелом убило двух зайцев. Наличие аберрации доказало, что Земля действительно движется в пространстве относительно звезд, то есть обращается вокруг Солнца. Для этой цели аберрация оказалась даже лучшим тестом, чем значительно меньший годичный параллакс. Движение Земли стало наблюдаемым фактом. Кроме того, было подтверждено, что скорость света конечна, хотя и очень велика. До открытия Брад-лея вопрос о скорости света оставался спорным, несмотря на то что в 1676 году датский астроном Оле Рёмер (1644–1710), работающий тогда в Париже, опубликовал доклад, по сути содержавший первое измерение скорости света.

Он изучал движение ближайшего спутника Юпитера — Ио, надеясь использовать его как «часы» для определения географической долготы в открытом море (этот способ предложил Галилей). Но часы оказались не такими точными, как предполагалось. Иногда они «спешили», а иногда «отставали», в зависимости от того, был ли Юпитер по одну сторону от Солнца с Землей или же Земля и Юпитер оказывались по разные стороны от Солнца. Рёмер убедился, что эти 22-минутные вариации обусловлены не ошибками в конструкции космических часов, а конечным значением скорости света. Это как раз то время, за которое свет проходит расстояние, равное диаметру земной орбиты. В его докладе не было подробных вычислений скорости. Рёмер только рассказал, как он обнаружил видимые изменения в движении Ио и что это укрепило его уверенность в том, что причиной изменений служит конечность скорости света. Если проделать вычисления с современными единицами измерения, то получим скорость около 227 000 км/с, а ее точное значение равно

с = 299 792,458 км/с.

Различие обусловлено трудностью хронометража движения Ио. В любом случае скорость света огромна по сравнению с привычными движениями на Земле. Чтобы ее измерить, было необходимо перейти в «космическую лабораторию», где даже свету требуется заметное время для преодоления больших расстояний.

Этот вывод был встречен без особого энтузиазма, поскольку бытовало мнение, что лучи света распространяются мгновенно. К примеру, Кеплер и Декарт разделяли эту точку зрения, однако Галилей предложил эмпирический способ проверки этого предположения, используя двух человек с фонарями, обладающих острым зрением и быстрыми руками. Спустя десять лет Ньютон в своей книге «Начала» сообщил, что «по измерениям астрономов» скорость света конечна. В Париже тоже было не все однозначно, так как начальник Рёмера, Джованни Кассини, ранее предлагал похожее объяснение необычного поведения Ио, но вскоре отказался от него, видимо, как от слишком спекулятивного для столь изощренного наблюдателя планет. В общем, до конца жизни Рёмера Парижская Академия наук так и не смогла решить, с какой же скоростью движется свет — конечной или бесконечной (рис. 8.3).

Рис. 8.3. Часть сообщения Парижской Академии, содержащая доклад Рёмера об открытии конечной скорости распространения света.

Открытие Брадлеем аберрации света решило этот вопрос. Исходя из скорости Земли на орбите и наблюдаемого изменения видимого положения звезды Этамин, Брадлей смог вычислить скорость света — результат почти совпал с измерениями Рёмера. Эти два совершенно разных наблюдения убедили научное сообщество в конечности скорости света. Если бы скорость света была бесконечной, аберрация была бы нулевой.

Технический прогресс.

Ньютон скептически смотрел на возможность создания линзовых объективов, лишенных цветовых погрешностей. Но в XVIII веке оптики смогли их изготовить. Одним из них был Джон Доллонд из Лондона, получивший около 1757 года первый патент на изобретение ахроматического объектива. Сначала он состоял из двух линз, но позже сын Джона, Питер, сделал трехлинзовый объектив. Внешние линзы были выпуклые, из обычного стекла типа крон, а между ними была вставлена двояковогнутая линза, изготовленная из сильно преломляющего стекла типа флинт. При такой конструкции лучи света разных цветов фокусируются почти в одной точке фокальной плоскости.

Вначале ахроматические объективы были малы, меньше ю см в диаметре. И только в 1799 году франко-швейцарский ремесленник и любитель оптики Пьер Луи Гуинанд научился делать большие диски из флинта хорошего качества, а затем изготовил из них и ахроматические объективы; самый большой из них был диаметром 35 см. Вначале Гуинанд держал свой метод в секрете. Но в 1805 году он переехал в Мюнхен, где начал сотрудничать с Йозефом Фраунгофером. Так искусство изготовления линз Гуинанда объединилось с искусством механика Фраунгофера, что заметно сказалось на развитии науки.

Йозеф фон Фраунгофер (1787–1826) осиротел в и лет и был вынужден пойти работать. Его взял к себе подмастерьем мастер по изготовлению зеркал, который, к сожалению, умер через три года в результате несчастного случая в мастерской. Пострадал при этом и Фраунгофер, но это не сказалось на его карьере. Он смог поступить на работу к Йозефу фон Утцшнайдеру (1763–1840), владевшему фирмой по изготовлению оптических приборов. Необразованный, но талантливый юноша быстро продвинулся, стал помощником Утцшнайдера и принялся изучать свет и оптику. Их фирма, состоявшая из более чем полусотни человек, вышла в мировые лидеры по изготовлению точных приборов для геодезии, навигации и астрономии.

Наряду с оптикой развивались и прочие части телескопа. Мы уже рассказывали о нитяном микрометре (спасибо пауку!), необходимом для точных позиционных измерений. Другим полезным для астрономии прибором стали часы. Как было сказано в главе 7, Гюйгенс создал первые маятниковые часы. Они преобразили и наш быт, и науку и тут же нашли применение в астрономии.

Звездное небо вращается с постоянной скоростью, поэтому, чтобы узнать, где искать звезду, нужно знать время. Или наоборот, если наблюдать звезду, когда она пересекает на юге меридиан, то момент пересечения дает координату долготы этой звезды на небе («прямое восхождение»). Если быть точным, то речь идет о сидерическом времени, которое отличается от нашего обычного солнечного времени, потому что звездное небо вращается немного быстрее Солнца. Причина в том, что в дополнение к суточному вращению Земли она еще обращается и вокруг Солнца. Это приводит к тому, что звездное небо совершает один «лишний» поворот за год, и поэтому сидерическое (звездное) время течет быстрее солнечного на 4 минуты в сутки (24 4/365 сут = 4 мин). Используя направленный к югу меридианный инструмент и точные часы, астрономы измерили точные значения координат для тысяч звезд, создав базу для первых успешных определений звездных параллаксов.

Возрождение метода Галилея.

Измерения аберрации показали, что годичный параллакс звезд значительно меньше аберрации и что звезды расположены гораздо дальше, чем казалось. Это вынудило астрономов развивать новые, более точные методы наблюдения и стараться угадать перспективные, наиболее близкие звезды, параллаксы которых были бы достаточно велики и доступны для измерения.

Вильям Гершель (подробно мы расскажем о нем в другом месте) стал первым, кто попытался применить метод относительных параллаксов Галилея при наблюдении реальных звезд. Он составил список сотен звездных пар на небе и выбрал для измерения те пары, в которых одна из звезд была заметно менее яркой. Если считать, что эта тусклая звезда расположена гораздо дальше яркой, ее можно использовать как звезду сравнения, относительно которой измеряется параллактический сдвиг более яркой и близкой звезды. Заметим, что у обеих звезд в паре аберрация практически одинаковая, поэтому ее можно не учитывать.

Когда Гершель попытался использовать метод Галилея для определения параллакса при помощи своего телескопа, он неожиданно обнаружил на небе большое количество звездных пар. Сначала он думал, что пары состоят из звезд, расположенных на разных расстояниях от нас, и что они случайно оказались видны рядом при наблюдении с Земли. Но их огромное количество заставило его предположить, что некоторые пары могут быть действительно близкими в пространстве звездами, физически двойными. Позднее он убедился в этом, наблюдая звезду Кастор в созвездии Близнецов. Кастор состоит из двух компонентов, и Гершель установил, что они обращаются друг вокруг друга. Предполагая измерить параллаксы, Гершель открыл двойные звезды! Это открытие по важности не уступает открытию Галилеем спутников Юпитера: гравитация оказалась универсальным явлением, как и предполагал Ньютон.

Гонка за звездными расстояниями.

За свою короткую жизнь Йозеф Фраунгофер сделал очень многое для улучшения телескопов. Он создал штатив, на котором телескоп мог вращаться в экваториальной плоскости вокруг оси, направленной к северному полюсу. Штатив был снабжен часовым механизмом, обеспечивающим необходимую скорость вращения, так что интересующие ученого звезды постоянно оставались в поле зрения, и астроном мог точно определять их положение. Фраунгофер изготовил также специальный тип рефрактора, так называемый гелиометр, очень удобный для точного измерения углового расстояния между двумя звездами.

Мастерство Фраунгофера в изготовлении приборов позволило Фридриху Бесселю (1784–1846) впервые надежно измерить параллакс звезды. Директор Кёнигсбергской обсерватории Бессель был человеком, выбившимся из низов; его юношеской мечтой было отправиться в торговую экспедицию в Китай и Ост-Индию. Готовясь к этой поездке, он решил ознакомиться со способами наблюдения на море. Постепенно от навигации он перешел к астрономии, а от астрономии — к математике.

Фраунгофер построил первый гелиометр для обсерватории Бесселя. Но сборка была завершена только после смерти мастера-оптика в 1829 году. Бессель знал о высоком качестве инструмента, но только в 1837 году начал серьезно заниматься проблемой параллакса. В отличие от Гершеля, он решил не использовать яркость звезды как критерий ее расстояния. Он полагал, что те звезды, которые быстро перемещаются по небу относительно других звезд, должны быть более близкими. За век до этого британский астроном Эдмунд Галлей (1656–1742) показал, что звезды не закреплены на небесной сфере, а медленно передвигаются. Например, со времен Птолемея Сириус сместился на полградуса (диаметр Луны). Эти собственные движения отражают и перемещение нашего Солнца в пространстве, и истинное движение самой звезды. В любом случае, ожидается, что далекая звезда имеет небольшое собственное движение, в то время как близкая звезда кажется быстрее движущейся (например, когда вы мчитесь в поезде, вам кажется, что близкие предметы за окном перемещаются быстро, а далекий ландшафт еле ползет). В соответствии с этим критерием Бессель выбрал довольно неприметную звезду 61 Лебедя, на «заднем крае крыла» созвездия Лебедь. Эта звезда — настоящий спринтер среди звезд: она смещается более чем на три диаметра полной Луны за тысячу лет. А рекордсменом, как выяснилось позже, является звезда Барнарда в Змееносце, смещающаяся на один диаметр Луны за 180 лет. И действительно, она на втором месте среди ближайших к нам звезд.

В течение года Бессель измерял угловое расстояние звезды 61 Лебедя от трех других тусклых звезд сравнения. Тщательный анализ этих измерений показал ему, что звезда имеет параллакс 0,3136 ± 0,0202 секунды дуги. Как известно, параллакс в одну секунду дуги соответствует расстоянию в 206 265 радиусов земной орбиты (врезка 8.1). По результатам Бесселя звезда 61 Лебедя оказалась расположена на расстоянии примерно в 650 000 раз дальше, чем Земля от Солнца. Отметим, что возможная неточность результата Бесселя («плюс/минус») была вычислена уже в наши дни способом, который предложил математик Карл Фридрих Гаусс, показавший, как из наблюдений можно не только найти среднее значение измеряемой величины, но и оценить вероятную ошибку. Современные измерения дают для параллакса звезды 61 Лебедя значение 0,299 ± 0,0045 секунды дуги, так что результат Бесселя был весьма близок к истинному.

Первое измерение расстояния до звезды стало прорывом в астрономии и привлекло большое внимание. Крошечный эффект, о котором писали Птолемей и Галилей, наконец был обнаружен, и определение космических расстояний перешло из Солнечной системы в царство звезд (рис. 8.4).

Всего через два месяца после Бесселя о своих результатах сообщил шотландский астроном Томас Хендерсон (1798–1844). Он информировал астрономическое сообщество, что измерил параллакс яркой южной звезды альфа Кентавра (? Cen). Результат был получен на основе наблюдений, проведенных в течение нескольких лет в обсерватории на мысе Доброй Надежды в Южной Африке, и оказался равен 0,98 ± 0,09 секунды дуги. В действительности ? Cen состоит из трех звезд, обращающихся друг вокруг друга. Самая близкая из них — Проксима Кентавра. Расстояние до нее 1,3 парсека.

Рис. 8.4. Гелиометр Фраунгофера Королевской обсерватории Кёнигсберга, который был использован для измерения параллаксов (расстояния) звезд. В 1838 году Бессель определил, что расстояние до звезды 61 Лебедя примерно в 650 000 раз превышает расстояние до Солнца.

Собственно говоря, вопрос о звездных расстояниях уже давно «висел в воздухе». Директор Дерптской (ныне г. Тарту) обсерватории Фридрих (Василий Яковлевич) Струве (1793–1864) заказал фирме Утцшнайдера и Фраунгофера высококачественный телескоп с объективом диаметром 24 см. Когда в 1824 году этот телескоп начал работать, он стал крупнейшим рефрактором в мире. Среди наблюдавшихся Струве звезд была и ярчайшая звезда северного неба Вега. Наблюдения 1835–1836 годов показали, что ее параллакс составляет 0,10" — 0,18", о чем Струве и доложил в Санкт-Петербургской Академии наук в 1837 году. Его сообщение было зачитано на собра-нии Академии, но затем затерялось в архиве. Современное значение параллакса Веги составляет 0,12" (расстояние = 8 пк), так что Струве был на верном пути. Но он не был удовлетворен результатом и продолжал наблюдения. Когда в 1840 году он опубликовал новые результаты, то определенный им параллакс равнялся 0,26 ± 0,03 секундам дуги. По какой-то причине он получил удвоенное значение параллакса, и расстояние оказалось на 50 % короче.

После этих пионерских работ трех астрономов измерение параллаксов стало признанным способом определения расстояний до звезд и вскоре превратилось в важнейшее направление в астрономии. Большие расстояния доказывали, что раз столь далекие звезды видны на нашем небе, то они должны излучать столько же света, а может, и больше, чем наше Солнце. Если выразить расстояния до звезд в километрах, то получится огромное и трудное в использовании число, поскольку 1 пк составляет примерно 3 х 1013 км. Даже ближайшая звезда расположена на расстоянии 3,9 х 1013 км, невообразимое расстояние! Если размер звезды уменьшить до размера яблока, то в пространстве звезды были бы разделены расстояниями около 20 000 км. Как видим, звезды в космосе разбросаны очень негусто, поэтому столкновения между ними крайне редки.

Единица длины парсек сравнима с огромными расстояниями между звездами и прямо связана с методом измерения таких расстояний. Поэтому астрономы обычно указывают космические расстояния в парсеках. В этой книге мы используем также и световой год (вспомним, что 1 пк = 3,3 св. года).

Вначале число звезд с измеренными параллаксами росло очень медленно. К концу 1870 года было известно всего 20 параллаксов, поскольку визуальные наблюдения в телескоп были очень утомительными. Но с развитием астрономической фотографии, в 1880 году, астрономы начали определять параллаксы звезд по фотопластинкам, и это ускорило процесс. К настоящему времени с помощью наземных телескопов измерено более 7000 параллаксов.

Все известные звезды расположены на расстояниях, превышающих 1 пк, поэтому параллактический сдвиг на небе всегда меньше одной секунды дуги. Такой маленький сдвиг очень трудно обнаружить даже с помощью широко расставленных астрономических «глаз» (диаметр орбиты Земли). Неспокойный воздух размывает изображение звезды в расплывчатое пятнышко, которое ограничивает возможности наземного определения параллакса расстоянием в 50 пк.

Трехмерный взгляд на зимнее небо: Сириус, звезды Ориона и Альдебаран.

Все знакомы с восхитительным зимним созвездием Орион и близкой ярчайшей звездой небосвода Сириусом. По другую сторону от Ориона, в созвездии Телец, сияет Альдебаран. Всего лишь два века назад расстояния до этих звезд были неизвестны. Наблюдатель этой области неба воспринимал ее как двумерную. Но сейчас, любуясь этой областью, мы уже знаем, на каком расстоянии находятся эти звезды. На рис. 8.5 показана эта область неба и указаны расстояния до некоторых звезд. Ближайшей из них является Сириус на расстоянии 2,7 пк, Процион на расстоянии 2,7 пк и Альдебаран на расстоянии 20 пк (или 65 световых лет). Остальные яркие звезды расположены на расстояниях более 100 пк; обычно на таких больших расстояниях параллакс с поверхности Земли точно не измеряется, поэтому их определяют другими методами.

Рис. 8.5. Сириус, звезды Ориона и Альдебаран (в Тельце) представляют очень красивое зрелище в зимний вечер. Звезды расположены на разных расстояниях в пространстве. На рисунке расстояния указаны в парсеках (1 пк = 3,26 светового года).


Сегодня измерение параллаксов стало основной ступенью в лестнице космических расстояний. Звезды, находящиеся на расстоянии больше 50 пк, можно наблюдать с помощью приборов, вынесенных за атмосферу, где изображения звезд не размыты. Европейский спутник «Гиппаркос» (Hipparcos) в 1990-х годах измерил параллаксы звезд, расположенных в несколько раз дальше. Было получено 100 000 измерений, но они покрыли лишь малую часть объема нашей Галактики. В 2010-х годах космическая обсерватория «Гайя» (Gaia) будет измерять расстояния до 20 000 пк и почти перекроет всю Галактику!

Что, если бы все звезды были похожи на Солнце?

Это может показаться странным, но Ньютон догадывался, насколько далеки звезды. Как же это было возможно до эры параллаксов? В 1668 году шотландский математик Джемс Грегори (16381675) предложил новый метод измерения звездных расстояний: стандартную свечу. Если бы все звезды светили так же, как наше Солнце, то, сравнивая видимые яркости звезды и Солнца, можно было бы в единицах расстояния Солнце-Земля определить расстояние до звезды. Мерилом расстояния до звезды служил бы ее блеск.

Конечно, очень трудно сравнивать ослепляющий свет Солнца со светом тусклой звезды. Поэтому Грегори предлагал в качестве промежуточного объекта использовать планету: яркость планеты, сравниваемая с яркостью звезды, зависит от отраженного света Солнца. Таким способом Ньютон смог вычислить расстояние до Сириуса с помощью Сатурна. Оказалось, что Сириус в миллион раз дальше Солнца. Это всего в два раза превосходит истинное расстояние, но в целом подтверждает идею об огромных расстояниях до звезд.

Метод стандартной свечи основан на важном законе, установленном Кеплером: поток света от звезды уменьшается обратно пропорционально квадрату расстояния до нее (врезка 8.2). Этим фотометрическим методом измерения больших космических расстояний пользуются в тех случаях, когда метод параллаксов уже не работает. Вместо Солнца в качестве стандартной свечи применяют звезды и даже галактики различных типов.

В действительности звезды не одинаковы. По светимости, то есть по излучаемой световой энергии, они могут сильно отличаться от Солнца. Некоторые звезды-гиганты излучают как миллион Солнц, а некоторые карлики — в десятки тысяч раз меньше. Близкий к нам пример — Сириус, который на самом деле является двойной звез-дой. Сириус А имеет светимость, равную 23 светимостям Солнца, а его тусклый сосед Сириус В излучает только 1/500 часть излучения Солнца. Если сравнивать каждую звезду с Солнцем, считая, что она похожа на Солнце, то можно сильно ошибиться с расстоянием до нее. Естественно, астрономы стремятся разделить все небесные объекты на узкие классы по светимости. Отношение светимостей Солнца и Сириуса всего примерно в 20 раз объясняет, почему первые оценки Ньютона дали разумное значение расстояния.

Врезка 8.2. Расстояние, светимость и наблюдаемый поток света.

Предположим, что звезда имеет светимость L — количество световой энергии, излучаемой во всех направлениях за одну секунду. На расстоянии R от звезды ее световая энергия будет равномерно распределена по поверхности сферы радиусом R. Так как площадь поверхности равна 4?R2, то поток света f, падающий на единицу площади, будет

f = L/4?R2

то есть обратно пропорционален квадрату расстояния R. Если измерить поток f и знать светимость L, то эта формула даст расстояние R. И обратно: зная расстояние R, можно вычислить светимость L. Эта формула в астрономии очень важна.

Мы уже видели, что расстояние Солнце-Земля служит естественной единицей для измерения расстояний до звезд при использовании метода параллаксов (и даже при использовании Солнца как стандартной свечи). Но каково значение этой единицы, выраженное в обычных мерах длины? Иначе говоря, насколько велика наша Солнечная система? В следующей главе мы увидим, как нелегко было измерить расстояние до Солнца, даже при том, что это ближайшая звезда и такая яркая.

Глава 9 Масштаб Солнечной системы

В древности радиус Земли был основной единицей измерения расстояний до Луны и Солнца. Аристарх, Гиппарх и Птолемей пытались измерить расстояние до Солнца, но потерпели неудачу, так как это расстояние оказалось слишком большим. Гелиоцентрическая система Коперника придала расстоянию Солнце-Земля особое значение, поскольку оно могло служить масштабом расстояний внутри Солнечной системы (см. табл. 5.1). Это же расстояние фигурирует и в Третьем законе Кеплера: время обращения планеты вокруг Солнца, найденное из наблюдений, определяет относительный размер планетной орбиты в единицах Солнце-Земля. Когда астрономы начали определять расстояния (параллаксы) звезд, расстояние от Земли до Солнца окончательно заменило радиус нашей планеты в качестве естественной единицы измерения.

Однако хотелось бы знать космические расстояния в обычных земных единицах длины, используемых физиками в своих экспериментах. Например, чтобы узнать полную мощность излучения звезды в ваттах (Дж/с), выраженную в единицах потока ее излучения, измеряемого на Земле в Вт/м2, нужно знать расстояние до звезды в метрах. Для получения этого расстояния в метрах из годичного параллакса звезды нужно знать расстояние до Солнца в метрах. Но с первого взгляда неясно, как измерить расстояние до Солнца в метрах.

Намек из кафедрального собора Сан-Петронио.

Даже Коперник и Кеплер плохо представляли себе расстояние до Солнца, а о размере звездной сферы они вообще ничего не знали (табл. 9.1). С XVII до XIX века проблема расстояния Солнце-Земля оставалась основной проблемой астрономии. Было изобретено и опробовано много различных методов и снаряжены дорогостоящие экспедиции в далекие уголки Земли. Результатом этого, наряду с постоянным уточнением расстояния до Солнца, стало начало международного научного сотрудничества.

Джованни Кассини (1625–1712), молодой профессор астрономии Болонского университета, что на севере Италии, использовал измерительный прибор, сооруженный им в кафедральном соборе Сан-Петронио для определения высоты Солнца над горизонтом, когда оно пересекает меридиан на юге. Фактически это была гигантская камера-обскура, создающая круглое изображение Солнца на полу собора.

Таблица 9.1. Расстояния до Солнца и сферы звезд.


Хотя целью Кассини не было определение расстояния до Солнца, точные измерения в течение года привели его к неожиданному выводу: чтобы понять изменения высоты Солнца, нужно отдалить его гораздо дальше того расстояния, которое, согласно рекомендации Кеплера, принималось в то время равным 3469 радиусов Земли. Мы можем понять, почему изменение высоты Солнца зависит от расстояния до Солнца. Суточное вращение Земли смещает наблюдателя относительно центра Земли на расстояние порядка размера Земли. От этого перемещения меняется направление на Солнце, и этот эффект тем сильнее, чем ближе Солнце. Измерения Кассини вынудили его отнести Солнце на неслыханно далекое расстояние, по крайней мере на 17 000 радиусов Земли, иначе он не мог объяснить свои наблюдения.

В 1669 году по приглашению короля Людовика XIV Кассини переехал в Париж, чтобы возглавить новую Парижскую обсерваторию. Там в его исследовательской программе одной из приоритетных задач стало определение расстояние до Солнца. Поскольку значение, полученное по измерениям в Болонье, могло быть искажено изменениями атмосферной рефракции, нужно было использовать другие методы для подтверждения или опровержения длинной шкалы расстояния до Солнца.

Использование Марса как посредника.

Как уже было сказано и представлено в табл. 5.1, Коперник определил относительные расстояния внутри Солнечной системы. Известно было важное соотношение: расстояние от Солнца до Марса в 1,52 раза больше, чем расстояние от Солнца до Земли. Если бы только узнать разность этих расстояний, то с помощью простых арифметических вычислений можно было бы определить расстояние Земли от Солнца. Эта разность равна расстоянию между Землей и Марсом, когда Марс находится в противостоянии с Солнцем (иными словами, когда все три тела — Солнце, Земля и Марс — расположены на одной прямой). Каждые 16 лет происходят особенно близкие противостояния, когда Марс наиболее близок к Земле и расстояние до него легче всего измерить.

По прогнозу, такое удобное противостояние должно было случиться в 1672 году, и Кассини быстро организовал экспедицию в Гайану (Южная Африка). В те годы это была французская колония, и туда постоянно ходили морские суда. Целью Кассини было использовать линию Париж-Гайана как базу космического треугольника с вершиной на Марсе. Кассини хотел проверить, смогут ли одновременные наблюдения Марса из Гайаны и Парижа выявить различия в его направлении относительно неподвижных звезд. Увы, никакого различия обнаружить не удалось.

Но даже «нулевой результат» имел свою ценность. Кассини понял, что Марс очень далеко и поэтому его параллактическое смещение теряется на фоне наблюдательных ошибок. Он пришел к выводу, что расстояние до Солнца составляет не менее 21 000 радиусов Земли, и это подтвердило недоверие к старой шкале расстояний, возникшее при наблюдениях изображения Солнца на полу кафедрального собора Сан-Петронио.

Поддержка мнения о большом расстоянии до Солнца пришла и с другой стороны пролива Ла-Манш, от Джеймса Флемстида (1646–1719), который использовал метод, предложенный Тихо Браге. Он наблюдал движение Марса по небу в течение нескольких часов. Видимое движение планеты отражало орбитальное движение не только Марса, но и Земли. Суточное вращение Земли также должно вызывать наблюдаемое смещение, которое тем меньше, чем дальше Марс. Флемстид пришел к выводу, что расстояние до Солнца должно быть «не менее 21 000 радиусов Земли».

Заметим, что увеличение расстояния до Солнца сразу же увеличило размер всей Солнечной системы. Так, расстояние от Солнца до самой дальней планеты Сатурн теперь составляло 200 000 радиусов Земли, что превысило казавшееся верным всего лишь сто лет тому назад расстояние до сферы неподвижных звезд (рис. 9.1)!

Рис. 9.1. Масштаб расстояний в Солнечной системе относительно расстояний до ближайших звезд и галактик.

Прохождение Венеры.

В XVII веке астрономы определили нижний предел расстояния от Земли до Солнца. Новым методом, использовавшимся последующие два столетия, было наблюдение прохождений Венеры по диску Солнца. Впоследствии этот метод был заменен более точным, но он занял свое важное место в истории астрономии как первый крупный проект международного научного сотрудничества.

Когда Венера, обращаясь вокруг Солнца внутри земной орбиты, пересекает линию Земля-Солнце, она видна нам на фоне солнечного диска в виде маленького темного пятнышка. Такие прохождения случаются довольно редко, но они происходят парами, разделенными 8 годами, например:

Прохождение можно наблюдать либо в июне, либо в декабре, когда Земля проходит через те точки своей орбиты, где слегка наклоненная орбитальная плоскость Венеры пересекает орбитальную плоскость Земли. Эдмунд Галлей использовал возможность измерить расстояние от Земли до Солнца во время аналогичного явления 1716 года, когда наблюдалось прохождение Меркурия по диску Солнца. Но он не дожил до прохождения Венеры в 1761 году. Идея этого эксперимента состояла в том, что наблюдатели, расположившиеся на отдаленных друг от друга географических широтах, следят за движением планеты и точно измеряют интервал времени, необходимый Венере для прохождения по диску Солнца. Наблюдатель, расположившийся в южных широтах Земли, увидит Венеру, пересекающую солнечный диск ближе к северному полюсу Солнца, чем это увидит наблюдатель в северных широтах. Интервалы времени дают точные положения траекторий Венеры на солнечном диске. Используя эти данные вместе с известными географическими широтами наблюдателей и отношением размеров орбит Земли и Венеры, можно вычислить расстояние до Солнца (рис. 9.2).


Рис. 9.2. Метод прохождения. Венера проходит по диску Солнца разными путями, в зависимости от географической широты наблюдателя на Земле. Так как отношение расстояний Земля-Солнце и Венера-Земля равно 7:5, то видимые траектории могут различаться более чем на 5 земных радиусов, что соответствует 44 " на солнечном диске. На рисунке это различие сильно преувеличено (вспомним, что видимый диаметр Солнца равен половине градуса, что в 40 раз больше максимальной разности). По существу, Солнце используется как фон для точного измерения параллактического угла Венеры, после чего расстояние до Солнца определяется из отношения 7:5.


Процедура измерения на удивление проста и требует лишь наличия телескопа и хороших часов. Но наблюдателям не везло: отметить точный момент, когда Венера, двигаясь по солнечному диску, касается его края, не удавалось, так как точка касания становилась размытой. Это оптическое явление служит первым признаком того, что Венера имеет атмосферу (см. рис. 9.3 и главу 31). Поскольку точное определение времени в этом методе очень важно, результаты 1761 и 1769 годов не дали той точности, на которую рассчитывали.

Наблюдения второго прохождения были тщательно подготовлены. По всей Земле было организовано 77 наблюдательных станций со 151 наблюдателем. Потребовалось десять лет, чтобы проанализировать и сопоставить все наблюдения. Окончательный результат показал, что расстояние до Солнца равно 24 200 (±250) радиусов Земли. Более поздние определения различными методами дали более точные результаты: 23 494 земных радиуса. Оставалось определить размер Земли в метрах, чтобы завершить вычисление расстояния от Земли до Солнца.

Рис. 9.3. (а) Прохождение Венеры по диску Солнца 8 июня 2004 года в 11 часов всемирного времени. Фото: USNO. (б) Венера на лимбе Солнца. Поярчание края диска Венеры на фоне темного неба вызвано преломлением света в толстой атмосфере Венеры. Фото: Голландский солнечный телескоп на о. Ла-Пальма.

Размер Земли спустя 2200 лет после Эратосфена.

Вспомним, что Эратосфен уже определил приблизительный размер Земли. Он измерял угол между Солнцем и зенитом, чтобы измерить разность широт между Александрией и Сиеной, удаленной на известное расстояние к югу. Для увеличения точности измерения лучше использовать особенные звезды — близкие к зениту, измеряя их угловое расстояние от вертикали, когда они пересекают небесный меридиан. Французский астроном Жан Пикар (1620–1682) стал первым, кто провел такие измерения, используя телескоп, оснащенный только что изобретенным нитяным микрометром (см. главу 8). При измерении зенитных расстояний его точность достигала 5". Поэтому, он смог измерить окружность Земли с точностью около 50 км.

Кроме того, стало возможным исследовать, является ли форма Земли точно сферической. С одной стороны, Христиан Гюйгенс и Исаак Ньютон теоретически пришли к выводу, что суточное вращение Земли вокруг оси должно вызывать у нее небольшую приплюснутость у полюсов и раздутость у экватора. С другой стороны, Жак Кассини (1677–1756) провел измерения длины дуги в разных областях Франции и определил, что полярный радиус Земли немного длиннее, чем радиус у экватора, что противоречило выводам Гюйгенса и Ньютона. Однако он измерял слишком короткие дуги меридианов (9°). Чтобы разгадать загадку формы Земли раз и навсегда, Парижская академия в 1730-х годах организовала две экспедиции. Одну отправили на юг, к экватору в Перу, а другую на север, в Лапландию. Измерения ясно показали, что дуга в 1° на севере длиннее, чем у экватора, как и должно быть у сплюснутой Земли. Современные измерения с использованием спутников дают следующие значения размеров сфероида, наиболее подходящего для описания формы Земли:

Радиус у экватора = 6378 км

Радиус на полюсе = 6357 км.

Современный взгляд на размер Солнечной системы

Современное значение астрономической единицы, выраженное в километрах:

Среднее расстояние от Земли до Солнца = 149 597 870 км.

Это значение получено по нескольким измерениям, среди которых было и радарное измерение расстояния до Марса, использован был и Третий закон Кеплера. Как мы уже отмечали, если известно расстояние Земля-Солнце, то все остальные расстояния в Солнечной системе становятся определенными. В табл. 9.2 приведены данные об орбитах планет, включая Плутон, потерявший свой статус большой планеты в 2006 году.

Из таблицы можно сделать несколько выводов. Орбита Венеры близка к окружности, и ее расстояние от Солнца меняется всего на 1 %. Меркурий имеет очень вытянутую орбиту (не говоря уже о Плутоне!). Кроме того, орбита Марса заметно эллиптическая, что облегчило Кеплеру задачу определения ее формы. Таблица также показывает, что расстояние Земли от Солнца меняется на пять миллионов километров. Ближе всего к Солнцу Земля подходит, когда в Северном полушарии зима.

Чтобы наглядно представить пропорции Солнечной системы, можно использовать миниатюрную модель (следуя ранним попыткам Христиана Гюйгенса). Давайте поместим в центр сферу размером с большое яблоко, например диаметром 10 см. Это Солнце. А Земля — это зернышко в 1 мм, которое обращается вокруг «яблока» на расстоянии 11 м. Сатурн обращается на расстоянии 103 м. Расстояние Солнце-Плутон в этой модели должно равняться 425 м, хотя и может меняться. Если мы добавим к этой модели близлежащие звезды, то они окажутся на расстоянии 3000 км. Если быть точными, то это будет система а Кентавра с ее двумя главными членами: звезда А (возможно, похожая на большой грейпфрут) и звезда В (маленькое яблоко), которые обращаются друг вокруг друга на расстоянии 300 м. В это время маленькая звезда С (Проксима) размером с ягоду черники будет двигаться очень медленно на расстоянии около 100 км от первых двух звезд.

Таблица 9.2. Элементы орбит больших планет и карликовой планеты Плутон.

Мы прошли длинный путь: от Солнца, освещающего Стоунхендж в день летнего солнцестояния, до ближайших звезд на расстоянии четырех световых лет. Сейчас самое время вернуться немного назад и посмотреть на секреты нашего дома, называемого Землей. Вместе с Исааком Ньютоном мы можем задать вопрос: «Что заставляет яблоко падать, а Землю обращаться вокруг Солнца?»

ЧАСТЬ II ФИЗИЧЕСКИЕ ЗАКОНЫ ПРИРОДЫ
Глава 10 Ньютон

Сэр Исаак Ньютон (1642–1727) входит в число наиболее влиятельных среди когда-либо живших ученых. Он завершил революцию, начатую Коперником, Кеплером и Галилеем, и помог нам понять, почему планеты движутся именно так, а не иначе. С помощью законов Ньютона можно надежно вычислять орбиты космических кораблей. Ньютон создал новый научный метод, ставший основным для будущих исследователей; экспериментальная проверка стала непременным спутником индуктивного и дедуктивного методов. Он подчеркивал важную роль наблюдений и эксперимента и считал, что создавать математическую теорию нужно на основе экспериментальных данных, а теоретические прогнозы сравнивать с результатами новых измерений. Хорошая теория не только объясняет исходные наблюдения, но и предсказывает новые явления, которые можно проверить. Если получается отрицательный результат, то нужно либо улучшать теорию, либо вообще отказываться от нее и создавать другую. Будучи президентом Лондонского Королевского общества, Ньютон писал: «Задачей натуральной философии является выяснение строения и действий Природы и систематизации их, насколько это возможно, посредством правил и законов, выводя эти правила из наблюдений и экспериментов и устанавливая тем самым причины явлений и их следствия…»

От Вулсторпа до «Начал»

Детство Ньютона протекало не очень-то гладко. Он родился в поместье своих родителей Вулсторп в Ланкашире спустя 3 месяца после смерти отца. Его мать вновь вышла замуж, когда Ньютону было з года, и оставила его с бабушкой. Когда Ньютону исполнилось и лет, муж его матери умер, и Ньютон стал жить с мамой, двумя сводными братьями и сводной сестрой. Мать хотела, чтобы Исаак стал фермером, но ему это было неинтересно. Он увлекался созданием механических игрушек и хорошо учился в школе. Местный священник посоветовал его матери послать сына после окончания школы в Кембриджский университет. В 1661 году Исаака приняли в Кембридж, хотя ему было уже 18 лет, что считалось тогда весьма солидным возрастом для студента (рис. 10.1).

Рис. 10.1. Исаак Ньютон в возрасте 46 лет. Портрет кисти Годфри Неллера, написанный в 1689 году.

Ньютон учился как все, но к тому же очень много читал. Это заметил профессор математики Исаак Барроу и стал давать ему книги из своей личной библиотеки. Поэтому, когда четыре года спустя Ньютон сдал выпускные экзамены, он уже хорошо разбирался в астрономии, математике, физике и химии. Он уже был готов создавать современную физическую науку.

Но кроме хорошо знакомого нами Ньютона-ученого был еще один Ньютон, изучавший алхимию, ставшую его любимым делом, и знавший Библию гораздо лучше многих теологов. Алхимия и Библия были его любимыми занятиями всю жизнь. По словам лорда Кейнеса, «он был последним из мудрецов, последним из вавилонян и шумеров, последним великим умом, который смотрел на видимый и интеллектуальный мир такими же глазами, как и те, кто начал создавать наше интеллектуальное наследие менее 10 000 лет назад».

В 1665 году по Англии прошла эпидемия чумы, и университет закрылся. Ньютон вернулся в свой родной Вулсторп. Позже он описал, как проводил там время. Вначале разработал «метод приближенного вычисления рядов и правило для преобразования в ряд двучлена любой степени». А затем…

«В мае того же года я нашел метод касательных Грегори и Шлюзиуса и уже в ноябре имел прямой метод флюксий, а в январе следующего года — теорию цветов, а в следующем за ним мае я имел начало обратного метода флюксий. В том же году я начал размышлять о том, что тяготение распространяется до орбиты Луны, и (найдя, как вычислить силу, с которой шар, катящийся внутри сферы, давит на ее поверхность) из кеплеровского правила периодов планет, находящихся в полукубической пропорции к расстоянию от центров их орбит, вывел, что силы, которые держат планеты на их орбитах, должны быть обратно пропорциональны квадратам расстояний от центров, вокруг которых они обращаются; и, таким образом, сравнив силу, требуемую для удержания Луны на ее орбите, с силой тяжести на поверхности Земли, я нашел, что они отвечают друг другу. Все это было в два чумных года — 1665 и 1666. Поскольку в те дни я был в расцвете творческих сил и думал о математике и физике больше, чем когда-либо после…»

Потрясающе! Но не многовато ли для начинающего физика? Впрочем, историки считают, что Ньютон на старости лет преувеличивал достижения своей юности. Возможно, он действительно думал обо всех этих вещах в годы Большой чумы, но многие из его работ были закончены значительно позже. По натуре Ньютон был замкнутым и не любил делиться всеми своими знаниями. Когда кто-либо другой начинал заниматься теми же проблемами, Ньютон старался побыстрее опубликовать свои результаты и завоевать первенство. Впоследствии начинался спор о том, кто первым получил результат. «Сдвинув» все свои наиважнейшие изобретения к чумным годам, Ньютон смог, хотя бы для себя, решить вопрос приоритета.

Когда в 1667 году Ньютон вернулся в Кембридж, он начал закладывать фундамент сразу нескольких областей науки. Его метод флюксий известен сегодня как дифференциальное и интегральное исчисление. В теории света его особенно интересовала природа цвета, а используя механику, он решил древнюю задачу о движении планет. В окончательной форме результаты появились много позже. «Математические начала натуральной философии» были изданы в 1687 году, а «Оптика» — в 1704 году (рис. 10.2).

«Начала» считаются наиболее важной работой в истории науки. Основную заслугу в том, что эта работа была начата, с Ньютоном могли бы разделить Лондонское Королевское общество, основанное в 1662 году, и особенно его члены — Кристофер Рен (1632–1723), Роберт Гук и Эдмунд Галлей. Когда Рен, вступая в должность профессора астрономии Оксфордского университета, произносил речь, он заявил, что важнейшей проблемой физики того времени является объяснение законов Кеплера. Он пророчествовал, что человек, который сможет это сделать, уже родился. И оказался прав: в это время Ньютону было уже 15 лет. Рен и Гук проводили опыты с маятниками, и это навело Гука на мысль, что движение планет является суммой тангенциального движения и «притягательного движения, направленного к центральному телу».

Рис. 10.2. Обложка первого издания «Начал».

Став в 1677 году секретарем Королевского общества, Гук попытался вступить в переписку с Ньютоном, который был широко известен своими математическими талантами. Гук полагал, что темой их переписки станет его гипотеза; он писал: «Осталось понять, по какой траектории будет двигаться тело под действием силы, обратно пропорциональной квадрату расстояния. Я не сомневаюсь, что Вы при помощи своего превосходного метода сможете определить, какова эта кривая и ее свойства, и предложите физическую причину этой зависимости».

Гук не получил ответа на свое послание. Возможно, именно поставленный Гуком вопрос вдохновил Ньютона, и в начале 1680-х годов он разработал свой закон всемирного тяготения, объяснив при этом и законы Кеплера. В те годы ученые уже обсуждали возможность того, что притяжение между Солнцем и планетами ослабевает пропорционально квадрату расстояния (так называемый закон обратных квадратов). Такой вывод можно сделать, объединив формулу Гюйгенса о центростремительном ускорении с Третьим законом Кеплера. Роберту Гуку это было известно, но он не мог сказать, способна ли изменяющаяся по такому закону сила создать орбиты в соответствии с Первым и Вторым законами Кеплера (эллипсы и равные площади).

Так и не найдя возможности начать обсуждение этой проблемы с Ньютоном, Гук в августе 1684 года послал к нему юного Эдмунда Галлея. Позже Ньютон описал все это Абрахаму де Муавру: «После недолгого разговора Галлей спросил Ньютона, как он думает, по какой кривой будут двигаться планеты, если предположить, что сила их притяжения к Солнцу обратно пропорциональна квадрату расстояния от него». Сэр Исаак тут же ответил, что это будет эллипс. Доктора Галлея это очень удивило и восхитило, и он спросил, откуда это известно? И сразу же попросил показать расчеты. Сэр Исаак поискал в своих бумагах, но не нашел их и обещал, что найдет свои расчеты, обновит их и перешлет Галлею…»

Ньютон решил назвать свои лекции так — «О движении тел по орбите». Эту работу он написал в виде девятистраничного трактата («De motu» — О движении) и в ноябре переслал Галлею. Под напором Галлея он продолжал писать и спустя два года издал «Начала» (при частичной финансовой поддержке Галлея).

Физика Ньютона.

Одним из важнейших понятий «Начал» стало всемирное тяготение. Это естественно, ведь притяжение удерживает нас на Земле. Что-то заставляет далекую Луну обращаться вокруг Земли, а планеты — обращаться вокруг Солнца. Неужели это одна и та же сила? Мы уже рассказывали, как Гюйгенс определил, что ускорение к центру для тела, движущегося по круговой орбите, равно квадрату скорости, деленному на радиус орбиты. Чтобы доказать, что сила всемирного тяготения меняется обратно пропорционально квадрату расстояния, Ньютон сравнил ускорение к центру Земли, действующее на ее поверхности, с тем ускорением, которое Земля оказывает на Луну, удаленную на 60 земных радиусов. Гравитационное ускорение на лунной орбите должно быть в 602 раз меньше ускорения на поверхности Земли и равняться центростремительному ускорению Луны в направлении Земли. Зная радиус Земли, Ньютон предпринял это сравнение и подтвердил закон обратных квадратов. Великолепный результат! Из-за многократного уменьшения ускорения Луна за минуту падает настолько же, насколько за секунду падает яблоко на Земле.

Свои исследования по движению тел Ньютон обобщил в виде трех законов механики. Первое правило Галилея (известное и Декарту) было представлено как Первый закон Ньютона.

1. Всякое тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока под влиянием действующих на него сил не выйдет из этого состояния.

Под воздействием внешних сил состояние движения меняется, иными словами, тело испытывает ускорение. В своем Втором законе Ньютон утверждает следующее.

2. Изменение движения происходит пропорционально действующей силе и обратно пропорционально массе тела, и направлено оно в ту же сторону, что и действующая сила.

Можно сказать и короче: ускорение = сила/масса, или, как часто пишут,

Сила = Масса x Ускорение.

Основные правила механики завершает Закон противодействия, или Третий закон Ньютона.

3. Для каждого действия существует равное ему противодействие, направленное в противоположную сторону. Или так: взаимное действие двух тел друг на друга всегда равно и направлено в противоположные стороны.

Другими словами, при воздействии одного тела (агента) на другое с некоторой силой это другое тело воздействует на агента с той же силой, но в противоположном направлении. Отсюда Ньютон смог найти зависимость от массы в законе тяготения. Вспомним, что ускорение, вызываемое тяготением, подчиняется закону обратных квадратов. Согласно Второму закону Ньютона, сила должна быть пропорциональна массе ускоряющегося тела. Например, сила, с которой Земля воздействует на Луну, должна быть пропорциональна массе Луны. Но, согласно Третьему закону Ньютона, и Луна воздействует на Землю с той же силой, но направленной в противоположную сторону, и эта сила пропорциональна массе Земли. Таким образом, взаимное гравитационное притяжение между двумя телами должно быть пропорционально произведению их масс и при этом меняться обратно пропорционально расстоянию между ними.

Нужно отметить, что ракеты летают на основании Третьего закона Ньютона о действии и противодействии. Через два века после Ньютона теоретические основы космонавтики разработал российский учитель математики и мечтатель Константин Циолковский, который говорил: «Планета есть колыбель разума, но нельзя вечно жить в колыбели» (рис. 10.3).

Рис. 10.3. Константин Циолковский (1857–1935) был отцом космонавтики, четко понимавшим, что Третий закон Ньютона о действии и противодействии позволяет путешествовать в космосе. Справа представлена его схема ракеты.

Природа гравитации.

«Начала» Ньютона общественность приняла не сразу. Во-первых, потому что это была математическая работа, трудная для чтения. Как говорят, Ньютон хотел настолько усложнить текст, чтобы его конкурент Гук не смог ничего понять. Но и у других читателей возникали сомнения. Гюйгенс в 1690 году писал: «В теории Ньютона есть одна проблема: судя по движению планет и комет сквозь космическое пространство, в нем может содержаться лишь очень разреженное вещество. Но тогда возникает трудность с объяснением распространения гравитации или света, по крайней мере, так, как я это представлял». Гюйгенс придерживался взглядов Декарта (см. главу 7). Он также докучал Ньютону тем, что тот не может объяснить, как сила передается между космическими телами. Описать эту силу Ньютон мог только математически.

Во втором издании «Начал» (1713) Ньютон написал свои знаменитые слова об отказе от предположений, также содержащие краткую формулировку его научного метода: «Причину же этих свойств тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю. А всё, что не выводится из явлений, должно называться гипотезою; гипотезам же — метафизическим или физическим, основанным на скрытых свойствах или механическим, — не место в экспериментальной философии. В такой философии частные утверждения выводятся из явлений, а затем логически обобщаются».

В своей переписке с Ричардом Бентли по космологическим вопросам (мы обсудим это в главах 23 и 28) Ньютон в 1693 году писал: «Тяготение должно быть вызвано неким агентом, действующим постоянно по определенным законам; но материален этот агент или нематериален, я предоставляю судить моим читателям». Такое объяснение удовлетворяло не всех. Например, Фонтенель во Франции XVIII века возражал: «Тяготение и вакуум, которые Декарт, как казалось, навсегда изгнал из физики, сейчас довольно настойчиво возвращены обратно сэром Исааком Ньютоном, хотя и в несколько измененном виде. Но я не считаю это возможным». По тем же причинам Гюйгенсу трудно было принять идеи Ньютона о природе света. Если свет имеет волновую природу, такого же типа, как звуковые волны, то должна существовать всепроникающая среда для его распространения. Ньютон отказался от концепции среды: он представлял свет как частицы, летящие в пустоте.

В 1669 году Ньютон заменил Исаака Барроу на посту профессора математики в Кембридже. В 1689 году его как представителя университета избрали в парламент. Если верить анекдоту, то задумчивый профессор всего лишь раз выступил перед парламентом: он сказал, что из открытого окна дует, и сел на место…

Интерес Ньютона к науке уменьшался. В 1696 году его назначили смотрителем Королевского монетного двора — вторая должность в иерархии Монетного двора. А самый высокий пост директора Монетного двора он занял через 3 года. Это была очень высокая должность: вся денежная система Британской империи оказалась под его контролем. Он с энтузиазмом взялся за новое дело и добился успехов. В 1705 году он был возведен в рыцарское достоинство, будучи уже президентом авторитетного Королевского общества. На этом посту он оставался последние десятилетия своей жизни, но научная работа его уже не интересовала. В конце жизни сэр Исаак объяснял свои успехи так: «Если я видел дальше других, то потому что стоял на плечах гигантов». Еще одно трогательное выражение Ньютона звучит так:

«Не знаю, как меня воспринимает мир, но самому себе я кажусь мальчиком, играющим на морском берегу и развлекающимся тем, что время от времени отыскивает камешек более ровный или ракушку более красивую, чем другие, в то время как великий океан истины расстилается передо мной неисследованным».

Вооруженные математическими методами и законами природы, открытыми Ньютоном, мы вернемся к Солнечной системе для проверки основ новой науки механики. Мы покинули ее в XVII веке, когда уже были известны ее масштабы и шесть планет.

Глава 11 Небесная механика

Новая область математики, которую Ньютон назвал флюксиями, позволила астрономам вычислять орбиты небесных тел и привела к расцвету физики в следующем веке. Нам эта новая математика более знакома в форме обозначений, независимо разработанных Готфридом Вильгельмом Лейбницем (1646–1716). Позже успех Ньютона обобщил Жозеф Лун Лагранж в своей «Аналитической механике» (1788), изложив в математической форме разработанный им метод решения различных задач механики. Лагранж очень гордился тем, что в своей знаменитой книге он обошелся без единого рисунка, но читать эту книгу было нелегко. Лагранж считал, что все можно выразить с помощью формул и алгебраических выражений (рис. 11.1).

Рис. 11.1. Жозеф Луи Лагранж (1736–1813), великий математик, благодаря которому механика Ньютона получила дальнейшее развитие.

Открытие Урана.

На протяжении почти всей письменной истории было известно, что только семь особых объектов — Солнце, Луна и пять планет движутся среди неподвижных звезд вдоль одной и той же полосы созвездий. Их число бережно сохранялось в разных культурах. Все семь объектов были названы именами богов и богинь и даже использовались как названия дней недели. Интересно, что почти до конца XVIII века, когда их физическая природа была уже разгадана, возможность существования еще не открытых планет в нашей Солнечной системе серьезно не рассматривалась.

Все изменилось, когда Вильям Гершель (1738–1822) обнаружил в 1781 году новый, медленно движущийся небесный объект, который он вначале принял за комету. Но вскоре финский астроном Андерс Йохан Лексель (1740–1784), работавший в Санкт-Петербурге, а за ним и Пьер Симон де Лаплас, вычислили орбиту нового объекта и обнаружили, что она круговая, и стало очевидно, что это планета. Для нее было предложено два названия: Гершель предложил назвать ее «Георгиевой звездой» (Georgium Sidus, в честь правившего тогда короля Англии Георга III), но за планетой закрепилось другое название — «Уран». Таким образом, была открыта не только новая планета, но и родилось представление о существовании неизвестных объектов за орбитой Сатурна. За свое важнейшее открытие Гершель получил постоянное жалование от британской короны. Мы вернемся к другим достижениям Гершеля в главе 20.

Сестра Гершеля Каролина была его верным помощником во всех делах, начиная от шлифовки линз и кончая проведением наблюдений. Она сама была астрономом и открыла по меньшей мере восемь комет, несколько туманностей и звездных скоплений. В 1828 году она была удостоена золотой медали Лондонского Королевского общества за публикацию каталога звездных скоплений и туманностей, наблюдавшихся ее братом. Этот и другие опубликованные ею каталоги стали основой для современных каталогов. После открытия Урана английское правительство назначило и ей денежное содержание, так что, возможно, она стала первой женщиной в Англии, занявшей столь высокое положение.

Гонка за открытием Нептуна.

Важной астрономической проблемой XVIII века было вычисление орбит тел в том случае, когда друг на друга влияют более двух тел. Например, на движение Луны вокруг Земли, кроме притяжения между Луной и Землей, влияет и притяжение со стороны Солнца, действующее на них обеих. При этом оно вызывает не только обращение системы Земля-Луна вокруг Солнца, но и делает орбиту Луны вокруг Земли не идеальным эллипсом. Точно так же планеты возмущают эллиптическое движение друг друга вокруг Солнца.

Знаменитым стал случай с орбитой Урана, вычисленной в 1820-х годах очень точно. Английский астроном Мэри Сомервиль (1780–1872) предрекала, что возмущения орбит можно будет использовать для открытия новых объектов. Наблюдения Урана показали, что он не движется по ранее вычисленной орбите: в 1830 году он уклонился от вычисленного пути на 20", к 1840 году это отклонение достигло 1,5', а к 1845 году — уже 2'. Поскольку при вычислениях орбиты Урана учитывались возмущения со стороны всех известных планет, был сделан вывод, что существует неизвестная планета, которая тоже влияет на его движение.

В 1843 году студент Кембриджского университета Джон Кауч Адамс (1819–1892) приступил к вычислениям положения неизвестной планеты, которая могла бы вызвать наблюдаемые отклонения Урана. Вычисления оказались сложными; чтобы упростить их, Адамс предположил, что неизвестное массивное тело обращается вокруг Солнца за Ураном, на расстоянии, определенном по закону Тициуса-Боде. Этот «закон» был назван в честь Иоганна Тициуса фон Виттенберга, указавшего в примечании к работе 1766 года, что расстояния планет от Солнца подчиняются простому правилу. Через шесть лет директор Берлинской обсерватории Иоганн Боде, увидел примечание и добавил его в очередное издание своей книги (см. врезку 11.1). К октябрю 1845 года Адамс вычислил текущее орбитальное положение неизвестной планеты и сообщил своему профессору астрономии Чаллису. Тот показал координаты Королевскому астроному Эри, но Эри не счел вычисления студента достаточно обоснованными, и наблюдательный поиск неизвестной планеты не предпринял.

В том же году французский астроном Урбен Леверье (1811–1877) начал такие же вычисления, не зная, что Адамс уже завершил их. Весной 1846 года он получил результат, согласующийся с координатами Адамса. Леверье написал директору Берлинской обсерватории Иоганну Галле и попросил его поискать планету в указанном месте. Тот приступил к наблюдениям сразу же по получении письма, 23 сентября. Телескоп Галле имел достаточное увеличение и показал, что одна из звезд в указанной области имеет не точечное изображение, а похожа на диск планеты, какой обычно виден на небе. Более того, следующая ночь показала, что объект движется относительно звезд. Из всех предложенных для новой планеты имен было выбрано «Нептун» как наиболее сочетающееся с названиями остальных планет.

Врезка 11.1 Закон Тициуса-Боде

Закон Тициуса-Боде — это эмпирическая формула, приблизительно определяющая расстояния (d) планет от Солнца, выраженные в единицах расстояния от Земли до Солнца (а. е.):

d = (4 + 3 x 2n)10

Здесь n = — ? для Меркурия (или d = 0,44) и n = 0,1, 2 и т. д. для Венеры, Земли, Марса и т. д. Чтобы легче было запомнить формулу, нужно обратить внимание на порядок цифр в нем (43210). Формула дает правильные значения для всех орбит, известных в 1845 году, и она также применима к крупнейшему из известных тогда астероидов — Церере (ныне ее относят к планетам-карликам). Вычисленные и наблюдаемые значения приведены в следующей таблице:

Обнаружение Нептуна так близко от ожидаемого положения — ближе 1° от предвычисленных координат — означало большую победу механистического взгляда на мир, основанного на теории Ньютона. Впредь, если хотели подчеркнуть превосходство современной науки над прежними верованиями, то говорили, что современная наука способна предсказывать и открывать новые планеты. Разумеется, это открытие не обошлось без элементов удачи. На самом деле Нептун заметно ближе к Солнцу, чем предполагает «за-кон» Тициуса-Боде. При ином стечении обстоятельств вычисления Адамса и Леверье могли бы и не попасть в цель.

Разумеется, в британской и французской прессе начались дебаты о том, какой стране принадлежит приоритет в открытии Нептуна. Англичане узнали предсказанное положение планеты раньше. Но открыли планету немецкие астрономы по вычислениям французского астронома. В конце концов наибольшая слава досталась Леверье. Впрочем, Джон Адамс и Урбен Леверье выказывали обоюдное уважение: позднее первый из них как президент Лондонского Королевского астрономического общества вручал второму как директору Парижской обсерватории золотую медаль.

И другие планетные возмущения.

Открытие Нептуна вдохновило исследователей на поиски и других необъясненных эффектов в движении планет. Небольшие возмущения выявились и у орбиты Нептуна. Персиваль Ловелл объяснил их наличием неизвестной планеты, более далекой, чем Нептун, и в семь раз более массивной, чем Земля. Вдохновленные этим прогнозом, наблюдатели несколько десятилетий искали новую планету, пока молодой астроном Клайд Томбо (1906–1997) не обнаружил ее на фотоснимке в 1930 году. Планету назвали Плутоном, но при массе 1/500 массы Земли она неспособна вызывать наблюдаемые возмущения орбиты Нептуна. Поэтому обнаружение Плутона на расстоянии 6° от ожидаемого положения было делом чистого везения и упорства. Впрочем, если бы Клайд Томбо не обнаружил Плутон, то позже это сделал бы Юрьё Вяйсяля из университета г. Турку во время поиска астероидов в 1935–1946 годах (о Вяйсяля см. в главе 22).

В 1993 году астроном Лаборатории реактивного движения Майлс Стендиш, используя точные значениям масс планет, полученные из наблюдений за межпланетными зондами, пришел к выводу, что никаких отклонений от теории в движении Урана и Нептуна нет. Таким образом, не имеется динамических указаний на присутствие еще одной крупной планеты за орбитой Нептуна. Недавно обнаруженные небольшие объекты пояса Койпера — вблизи Плутона и дальше него — были найдены по наблюдениям. Ни один из них не обладает настолько большой массой, чтобы вызвать возмущение планет» Правда, на довольно большом расстоянии найден один объект более массивный, чем Плутон. Поскольку могут обнаружиться и другие подобные объекты, в 2006 году Плутон получил статус «карлико-вой планеты» вместе с новыми крупными объектами пояса Койпера и крупнейшим астероидом Церерой (см. врезку 31.1).

Астрономы XIX века заметили, что и во внутренней области Солнечной системы нет полного согласия с теорией. В движении планеты Меркурий выявились отклонения, которые не удавалось полностью объяснить в рамках Ньютоновой механики гравитационными возмущениями со стороны других планет. Леверье вычислил, что орбитальный эллипс Меркурия поворачивается (прецессирует) за 100 лет на 35" больше, чем это можно объяснить возмущениями со стороны всех остальных планет. Саймон Ньюком уточнил эти вычисления и обнаружил, что необъяснимая прецессия составляет 43" в столетие. Эту прецессию можно было бы отнести на счет неизвестной маленькой планеты, обращающейся ближе к Солнцу, чем Меркурий. Из-за близости к Солнцу ее трудно было бы обнаружить. Эту планету (предварительно названную Вулканом) так и не нашли, несмотря на упорные поиски. В качестве альтернативы в 1895 году Ньюком предположил, что закон обратных квадратов не совсем верен. В этом смысле Ньюком оказался прав. Избыточная прецессия орбиты Меркурия стала одной из причин, побудивших Эйнштейна взяться за разработку улучшенной теории гравитации, которая смогла бы объяснить это явление.

Мы видели, как вычисление орбит с помощью закона гравитации Ньютона легло в основу нового направления в науке, названного небесной механикой, где совпадение вычисленных значений с наблюдательными данными оказывается беспримерно точным. Отклонение орбиты Меркурия от теоретического значения на 43" за 100 лет было сочтено значимым и требующим более тщательного изучения. За один год необъяснимое отклонение составляло всего 0,43"- Сравним это с наблюдениями Марса, проведенными Тихо Браге, когда расхождение с предсказаниями Птолемея и Коперника составляло 500'. Как видим, за три столетия точность теории и наблюдения планетных движений возросла в 1000 раз. Такие же отклонения в движении Марса вряд ли заставили бы Кеплера взяться за разработку новой теории планетных движений.

Взгляд Лапласа на мир.

Триумф теории Ньютона укрепил механистический взгляд на мир. Знаменитым приверженцем этого подхода был Пьер Симон маркиз де Лаплас (1749–1827), чей пятитомный труд «Небесная механика» не только стал переложением ньтоновых «Начал» на язык дифференциального исчисления, но и содержал много нового материала. Лаплас представлял Вселенную наподобие гигантского часового механизма. Он говорил:

«Если бы некоему разумному существу в некоторый определенный момент времени стали известны все силы, приводящие природу в движение, а также и положение всех тел, из которых она состоит, то, будь оно способным осмыслить все это, оно смогло бы написать единую формулу, описывающую состояние движения всех частиц во Вселенной — от величайших тел до мельчайших атомов. Для такого существа не осталось бы ничего неясного, и будущее предстало бы перед его глазами точно так же, как прошлое».

Лаплас считал, что эволюция любой системы и даже Вселенной в целом полностью определяется начальным состоянием всех ее частиц: «Все природные явления — всего лишь математический результат небольшого числа неизменных законов». Если природа настолько проста, то согласно Томасу Хаксли (1825–1895) «Наука — это не что иное, как обученный и организованный здравый смысл». Но физическая реальность оказалась намного сложнее идеального часового механизма.

Очень важным результатом исследований Лапласа стало вычисление долговременных возмущений планетных орбит. Нужно было бы беспокоиться о судьбе жизни на Земле, если бы влияние остальных планет вынуждало Землю то приближаться к Солнцу, то удаляться от него. К счастью, Лаплас доказал, что эти влияния не смещают планетные орбиты неизменно в каком-либо одном направлении — к Солнцу или от него. Возмущения носят циклический характер. Таким образом, Земля остается на одном и том же среднем расстоянии от Солнца в течение миллиардов лет, несмотря на то что Меркурий и Венера слегка притягивают ее, а внешние планеты — оттягивают от Солнца.

Лаплас также обсуждал происхождение Солнечной системы в своей книге «Изложение системы мира» (1796). Основываясь на теории Ньютона, он предполагал, что Солнечная система вначале была вращающимся облаком газа, которое медленно сжималось и по мере сжатия вращалось все быстрее. Наконец вращение стало настолько быстрым, что облако начало сбрасывать кольца с экватора. В дальнейшем из каждого кольца сформировалась планета, а то, что осталось в центре, стало Солнцем. Планеты тоже были вначале вращающимися газовыми облаками, которые также сжимались и сбрасывали кольца со своего экватора. Впоследствии из этих колец сконденсировались спутники планет. Похожие идеи выдвинули Эмануэль Сведенборг (1688–1772) и Иммануил Кант. В этих старых теориях содержатся элементы, согласующиеся с современными взглядами на формирование Солнечной системы (см. главу 30), хотя происходившие при этом физические процессы, как выясняется, были намного сложнее.

В «Изложении системы мира» содержатся и пророческие слова о том, что «гравитация небесного тела может быть настолько сильна, что свет не сможет его покинуть». Такие тела сейчас называют черными дырами. Эту же идею еще раньше, в 1784 году’, высказал Джон Мичелл. Оба ученых пришли к ней независимо друг от друга (см. главу 15).

Проблема трех тел.

Вычисление возмущенной орбиты Луны — трудная задача; говорят, что она единственная вызывала затруднения даже у сэра Исаака. Частично это связано с тем, что нужно учитывать притяжение Луны не только Землей, но и Солнцем. Вслед за Ньютоном этой проблемой занялись великие практики небесной механики — французский математик Жан Лерон Д’Аламбер (1717–1783) и швейцарский астроном Леонард Эйлер (1707–1783), проработавший большую часть жизни в Санкт-Петербурге. Оба они пытались объяснить сложное движение Луны и связанные с ним изменения ориентации оси вращения Земли. Прецессия земной оси происходит с периодом 26 000 лет, и к тому же ось совершает небольшие колебания с периодом 18 лет, связанные с периодом затмений, саросом, упомянутым в главе 1. Эти колебания — их называют нутацией — были открыты Джеймсом Брадлеем в 1748 году. А через год Д’Аламбер опубликовал теорию нутации, основанную на Ньютоновой механике. Он сообщил результаты своей работы Эйлеру, который счел эту теорию трудной для чтения. Эйлер создал упрощенную версию теории Д'Аламбера, но по неизвестной причине не упомянул в этой работе имя самого Д’Аламбера. Это привело к разрыву отношений между двумя выдающимися учеными своего времени. Позже Эйлер извинился, но это не спасло положения.

Еще одной сложной задачей оказалось явление приливного трения. Приливы служат причиной постепенного замедления вращения Земли. Вызывая приливы, Луна пытается затормозить вращение Земли до своего собственного орбитального периода, но это, в свою очередь, удлиняет орбитальный период Луны. В конце концов земные сутки и лунный месяц станут одинаковыми — 55 современных суток каждый. При этом Луна окажется гораздо дальше от Земли, чем сейчас. Но эти изменения происходят очень медленно. За прошедшие 400 млн лет наши сутки удлинились с 22 до 24 часов. Изменения подтверждаются слоистой структурой ископаемых раковин и кораллов, которую используют для подсчета количества дней и месяцев в году в период их жизни, так же как определяют возраст дерева по количеству колец на спиле его ствола. Кораллы за сутки наращивают один очень тонкий слой извести. Можно посчитать эти суточные линии роста. Их толщина меняется в течение года. Так что, имея хороший кусок коралла, можно вычислить, сколько суток было в году в ту эпоху (рис. 11.2).

Рис. 11.2. За последние 600 млн лет количество дней в году уменьшилось примерно от 420 до 365 суток. На это указывает подсчет слоев в окаменелых ракушках и кораллах. Таким образом, в прошлом сутки были короче, чем сейчас.

Наряду с долговременными эффектами приливного трения система Земля-Луна-Солнце демонстрирует нам пример относительно простой задачи трех тел с очень массивным Солнцем, расположенным очень далеко от двух других тел. Запуская космический корабль в сторону Луны, мы вынуждены решать гораздо более сложную задачу трех тел при сравнимых расстояниях между ними: в каком направлении и с какой скоростью мы должны запустить маломассивный космический корабль из окрестности Земли, чтобы он попал на Луну по удобной орбите. В общей задаче трех тел, имеющих сравнимые массы и движущихся на сравнимых расстояниях друг от друга, орбиты становятся еще сложнее (рис. 11.3).

Рис. 11.3. Орбиты в системе трех тел. Эти орбиты сложно извиваются, пока одно из тел не оказывается выброшенным, а два других остаются рядом, образовав двойную звезду, компоненты которой обращаются один вокруг другого. Это результат компьютерного моделирования, проведенного Сеппо Миккола в обсерватории Туорла (Университет г. Турку).

Время от времени два тела тесно сближаются, в то время как третье тело держится на расстоянии. Сближения повторяются вновь и вновь, причем члены тесной пары меняются. И это продолжается вплоть до распада системы, когда одно из трех тел окончательно выбрасывается. После этого орбиты становятся простыми: остается двойная система с эллиптическими орбитами, а третье тело удаляется от этой двойной. Формы и размеры окончательных орбит можно посчитать статистическим методом, но что произойдет в каждом конкретном случае, удается определить только путем долгих и точных вычислений. Часто нам вполне достаточно статистического описания. Например, в звездном скоплении сближения трех тел случаются часто, поэтому интерес представляет только их статистический эффект.

Всего сто лет назад задача трех тел была совершенно не исследована. Существовало две школы с разными подходами. Следуя идее часового механизма Лапласа, можно было описать орбиты трех тел, если были известны начальные условия. Ярым приверженцем этой теории был финский астроном Карл Сундман (1873–1949), представивший в 1912 году решение задачи трех тел в виде математической формулы. Французский математик Анри Пуанкаре (1854–1912) полагал, что «может так получиться, что маленькое различие в начальных условиях приведет к большим расхождениям в окончательных результатах». Для задачи трех тел это означает, что существует детерминистический хаос: малое изменение начальных условий приводит к столь сильному различию в окончательной картине, что результатом становится непредсказуемый хаос.

К концу XIX века вопрос о решении задачи трех тел был поставлен шведским королем Оскаром II, который обещал денежную премию за ее окончательное решение. Пуанкаре получил премию после публикации работы «О задаче трех тел и уравнениях равновесия». В этой работе Пуанкаре пришел к пониманию того, что бесконечно сложное поведение может возникнуть в простых нелинейных системах[3]. Без компьютера, обладая только математической интуицией, он смог описать многие из основных характеристик детерминистического хаоса. Сам термин «хаос» стал использоваться гораздо позднее, и сейчас он служит основой при описании сложных систем в природе (например, ограничивает точность предсказаний метеорологов).

Однако нужно сказать, что и Сундман был отчасти прав. Если одно из трех тел всегда находится вдали от двух других, то можно предсказать их орбиты и даже написать математические формулы, описывающие их. Таким образом, задача трех тел показывает две стороны природных явлений: если известны начальные условия, то на каком-то уровне или при каких-то условиях явления предсказуемы, как и утверждал Лаплас; но на другом уровне и при других обстоятельствах эти же явления непредсказуемы.

Задача трех тел существенно упрощается, если одно из этих тел пренебрежимо мало по сравнению с двумя другими. Тогда два главных тела движутся по эллиптическим орбитам одно вокруг другого и не чувствуют влияния третьего тела. Остается лишь описать орбиту этого маленького тела. Задача еще больше упрощается, если два главных тела движутся по круговым орбитам (ограниченная задача трех тел). Карл Якоби (1804–1851) сделал большой шаг в изучении этой проблемы. Его работа позволяет сразу же решить, какой тип орбит маленького тела возможен, а какой нет. Так как орбита Луны вокруг Земли практически круговая, то ограниченную задачу трех тел можно использовать для расчета движения ракеты, посланной на Луну. При путешествии к другим планетам сама планета и Солнце будут главными телами, а космический корабль будет третьим телом.

Орбиты комет.

Еще одним важным приложением ограниченной задачи трех тел являются орбиты комет. Ледяные тела комет, обычно диаметром несколько километров, гораздо менее массивны, чем планеты. Если комета пролетает мимо планеты, ее притяжение слишком мало, чтобы повлиять на практически круговую орбиту планеты. С другой стороны, орбиты самих комет совсем даже не круговые. В большинстве случаев они настолько вытянуты, что похожи на параболы. В отличие от планет, которые движутся вблизи средней плоскости Солнечной системы, кометы перемещаются по орбитам, произвольно ориентированным относительно этой плоскости.

По-видимому, современные орбиты кометы сильно отличаются от исходных. Двигаясь по типичной орбите, комета удаляется от Солнца в 1000 раз дальше Плутона. Но когда она входит в область планет, особенно — в мощное гравитационное поле Юпитера, ее орбита испытывает сильные возмущения. Если в результате комета затормозится, она на длительное время может перейти на орбиту меньшего размера. Если же возмущения увеличат скорость кометы, она может вообще покинуть Солнечную систему. Даже если орбита кометы вначале лежала в плоскости Солнечной системы, планетные возмущения могут вывести ее из этой плоскости на такую орбиту, какие обычно наблюдаются в наше время.

Хороший пример кометы, захваченной планетами, демонстрирует нам комета Галлея. История ее открытия восходит к Ньютону, который показал, как можно вычислить орбиту кометы, если удалось измерить ее положение на небе в течение нескольких ночей. Используя этот метод, Эдмунд Галлей занялся вычислением орбит тех комет, которые были открыты в предшествовавшие столетия. Особенно внимательно он отнесся к кометам 1531,1607 и 1682 годов, орбиты которых выглядели практически одинаковыми. В 1705 году он пришел к выводу, что это одна и та же комета, которая с промежутком в 76 лет приближается к Солнцу по вытянутой орбите. Кроме того, оказалось, что практически по той же орбите двигались и кометы 1305,1380 и 1456 годов. Поэтому Галлей предсказал, что эта комета вновь появится в 1758 году (рис. 11.4).

Рис. 11.4. Орбита Большой кометы 1680 года была очень вытянутым эллипсом, как видно по иллюстрации из «Начал» Ньютона.

Когда предсказанный момент возвращения кометы был близок, французский астроном Алексис Клод Клеро (1713–1765) сообразил, что планетные возмущения могли настолько сильно изменить орбиту кометы, что она может не вернуться к предсказанному времени. Клеро опасался, что комета вернется раньше, чем он закончит свои расчеты, но ему повезло. Законченные осенью 1758 года, его вычисления показали, что комета станет заметной позже предсказанного срока более чем на год и к наиболее близкой к Солнцу точке орбиты подойдет только в марте следующего года. Действительно, комету обнаружили в конце 1758 года, и к Солнцу она приблизилась к моменту, указанному Клеро. Успешное предсказание Галлея, дополненное вычислениями Клеро, было воспринято как триумф теории Ньютона.

Комету назвали именем Галлея, и все ее последующие возвращения в окрестности Солнца — в 1835,1910 и 1986 годах — вызывали всеобщий интерес. За прошедшие 200 лет методы вычисления орбит были настолько усовершенствованы, что время появления кометы в 1986 году было известно заранее с точностью 5 часов. Если бы не было еще и других сил, воздействующих на комету, то момент ее появления можно было бы вычислить точнее. Но из ядра кометы испаряются газы, образующие обширный хвост (см. рис. 11.6). Выброс газа действует как маленький реактивный двигатель и непредсказуемо влияет на движение кометы.

Интересные изменения в орбитах комет могут возникать под влиянием возмущений со стороны Юпитера. В 1770 году Шарль Мессье открыл комету, летящую почти точно к Земле и прошедшую от нас всего в 2 миллионах километров. Андерс Лексель вычислил орбиту этой кометы и обнаружил, что ее орбитальный период равен всего лишь 5,6 года. Она стала первым представителем нового класса короткопериодических комет. Но в течение следующих 10 лет эта комета не появилась, и Лексель начал искать причину. Согласно его вычислениям, в 1779 году комета прошла вблизи Юпитера, и ее орбита поменялась настолько, что она уже никогда не подойдет к Земле. Комету обнаружили на новой орбите и теперь называют кометой Лекселя.

Вероятно, Лексель был первым ученым, понявшим, насколько чувствительна задача трех тел к начальным условиям — упомянутому выше детерминистическому хаосу. Это видно из его неопубликованного комментария, написанного при вычислении орбиты кометы Лекселя. Интересно, что к концу XVIII века недетерминистическая природа Ньютоновой механики была уже известна, хотя и полностью находилась в тени детерминистических работ Д’Аламбера, Клеро и других.

Еще одним примером возмущения орбиты под влиянием Юпитера может служить тусклая комета, открытая в 1943 году Лииси Отерма (1915–2001), сотрудницей университета в г. Турку (Финляндия). Отерма вычислила ее орбиту и с удивлением обнаружила, что она почти круговая, в отличие от очень вытянутых орбит остальных комет. Известна лишь еще одна комета с похожей круговой орбитой. Согласно вычислениям Отерма, эта орбита была временной. До 1937 года комета двигалась вдали от Земли, за орбитой Юпитера. Сближение с Юпитером забросило комету внутрь орбиты Юпитера, где ее и удалось обнаружить. Отерма рассчитала, что комета вернется на свою удаленную орбиту после следующего сближения с Юпитером в 1963 году, что и случилось. Теперь комету Отерма можно увидеть только с помощью больших телескопов (рис. 11.5).

Наконец, знаменитая комета Шумейкеров-Леви была захвачена Юпитером с околосолнечной орбиты на орбиту вокруг Юпитера. При тесном сближении с планетой ядро кометы развалилось не менее чем на 21 фрагмент. В 1994 году телескопы по всей Земле и даже из космоса наблюдали, как эти фрагменты влетали в атмосферу Юпитера и разрушались. Хотя размер самых крупных фрагментов не превышал нескольких километров, места столкновений были видны даже в маленькие наземные телескопы (см. вклейку).

Рис. 11.5. Три орбиты кометы Отерма: до 1937 года, в 1939–1962 годах и 1964 году. Для сравнения показана орбита Юпитера (по рисунку Shane D. Ross на основе его вычислений и с его разрешения).

Рис. 11.6. Комета Хейла-Боппа, сфотографированная в обсерватории Туорла в апреле 1997 года. В это время ее хвост был раздвоенным, Прямой хвост состоит из ионов и направлен точно от Солнца, а искривленный хвост состоит из пылевых частиц и следует за ионным хвостом. Орбитальный период этой кометы очень велик, около 4000 лет; после этого она вновь может вернуться к нам. Фото: Harry Lehto.

Глава 12 Природа света

Что такое свет, этот прекрасный и стремительный переносчик информации, без которого мы не можем изучать ни глубины Вселенной, ни секреты микромира? Ньютон считал, что свет состоит из частиц, в то время как Гюйгенс представлял свет как волны в гипотетической среде — эфире. Томас Юнг разгадал эту загадку раз и навсегда; по крайней мере, так казалось.

Юнг начал свою карьеру в медицине, которую он изучал в Лондоне, Эдинбурге и Геттингене; в конце концов ученую степень он получил в Кембриджском университете. Но еще до окончания университета ему досталось наследство от двоюродного деда, и это обеспечило его существование до конца дней (рис. 12.1). Юнг стал практикующим врачом в Лондоне, но в то же время интересовался всем, что было связано со светом: зрением, происхождением радуги и т. п. Он проводил опыты по разделению луча света на две части, а затем собирал их опять в один луч.

Рис. 12.1. Томас Юнг (1773–1829) продемонстрировавший волновую природу света.

Свет как волновое явление.

Что получается, когда сливаются два световых луча? Если свет состоит из частиц, то интенсивность света должна возрастать: свет + свет = больше света. Но если свет имеет волновую природу, то возможен и другой результат: свет + свет = тьма. Представьте себе волны на воде с выступами над поверхностью и впадинами под ней. Волны могут разрушать друг друга, если впадина одной волны попадает на некоторый участок поверхности в тот момент, когда туда же попадает выпуклость другой волны. Юнг наблюдал это явление, называемое интерференцией (рис. 12.2). Ясно, что интерференция указывает на волновую природу явления. Это опыт очень помог Юнгу измерить крошечное расстояние между соседними гребнями волны, то есть длину волны, света. Она заключена в пределах от 0,4 мкм (1 мкм = 0,001 мм) для фиолетового света до 0,7 мкм для красного света.

Рис. 12.2. Опыт Юнга по интерференции света. Свет попадает на экран через две вертикальные щели. Вместо двух ярких линий на экране получается несколько перемежающихся белых и черных полосок. На белой полоске волны, приходящие из разных щелей, усиливают друг друга. Разность пути лучей от щелей до места расположения светлой полосы равна либо нулю, либо целому числу длин волны, поэтому пики волн приходят одновременно. На темных полосках они гасят друг друга, так как разность путей равна половине длины волны. Поэтому пик одной волны совпадает с впадиной другой волны. Этот эксперимент доказал волновую природу света.

Если свет — волна, то что же колеблется? В нашем примере поверхность воды колебалась вверх и вниз, перпендикулярно направлению перемещения гребней и впадин, — это поперечная волна. Звуковая волна распространяется в воздухе как волна сжатия, перемещая молекулы туда-сюда вдоль направления движения; волна движется как при резком сжатии пружины с одного конца — это продольная волна. Юнг показал, что световые волны являются поперечными, как волны на поверхности воды. К такому же выводу независимо, но немного позже, пришел и Огюстен Жан Френель (1788–1827). Таким образом, свет — как любая поперечная волна — может быть поляризован (и это используется в солнечных очках фирмы Polaroid, что невозможно для волн сжатия. В качестве аргумента против волновой природы света ученые той эпохи указывали, что ничего не известно о той среде, в которой распространяются световые волны и которую Юнг и Френель называли эфиром.

Как заметил Ньютон, когда луч солнечного света, проникнув сквозь дырочку в оконных ставнях, далее проходит через призму, он расщепляется на все цвета радуги, которые создают видимость непрерывной полосы цветов — солнечного спектра (рис. 12.3). Как показано на рисунке, свет данного цвета невозможно еще сильнее расщепить второй призмой. Проделав этот опыт, Ньютон пришел к выводу, что белый свет — это смесь, состоящая из отдельных компонентов, каждый из которых имеет свой цвет.

Рис. 12.3. Ньютон разложил солнечный свет на цвета радуги, применяя призму, расположенную справа. Затем он использовал вторую призму, слева, чтобы доказать, что отдельные цвета невозможно разложить еще сильнее, и сделал вывод, что свет — это смесь, состоящая из разных компонентов (цветов). Иллюстрация из «Оптики» Ньютона.

При расщеплении призмой широкого солнечного луча разные цвета перекрываются, что делает спектр недостаточно четким. Чтобы избежать взаимного наложения цветов, уже упоминавшийся нами Йозеф Фраунгофер использовал точно изготовленную систему из очень узкой щели, линз и призмы (такой прибор сейчас называют спектроскопом). Изучая солнечный свет, Фраунгофер обнаружил, что в спектре Солнца отсутствуют некоторые цвета! На цветной полосе спектра отсутствующие цвета видны как темные линии — на этом месте, то есть на этой длине волны, в спектре Солнца нет изображения узкой входной щели.

Еще до Фраунгофера, в 1802 году, это явление обнаружил Уильям Волластон (1766–1828). Он наблюдал всего несколько линий и принял их как естественную границу между основными цветами. А Фраунгофер наблюдал и измерил около 600 темных линий; теперь их так и называют — фраунгоферовы линии. Он заметил также, что в искрах и пламени огня спектр некоторых элементов дает яркие линии, которые появляются на тех же местах, что и определенные темные линии в спектре Солнца. Например, натрий дает яркий желтый цвет на той же длине волны, что и темная фраунгоферова линия «D». Некоторые линии Фраунгофера показаны на рис. 12.4.

Рис. 12.4. Положения основных линий Фраунгофера в спектре Солнца. Заметим, что «А» и «В» никак не связаны с самим Солнцем, они обусловлены молекулами кислорода в атмосфере Земли. За единицу длины волн принят 1 нм = 10-9 м.

Спектральный анализ — вперед, к физике звезд.

Истинное значение открытий Фраунгофера не было оценено еще несколько десятилетий. Наконец примерно в 1860 году Роберт Вильгельм Бунзен (1811–1899) и Густав Роберт Кирхгоф продемонстрировали важность спектральных линий в химическом анализе. Кирхгоф учился в Кёнигсберге и в весьма юном возрасте, в 26 лет, получил должность профессора в университете г. Бреслау (ныне — Вроцлав). Там он познакомился с Бунзеном, и они стали друзьями. Когда Бунзен переехал в Гейдельберг, он смог найти там место и для Кирхгофа. В 1871 году Кирхгоф стал профессором теоретической физики в Берлине. Говорят, что Кирхгоф на своих лекциях скорее усыплял студентов, а не придавал им энтузиазма, но среди его студентов были и Генрих Герц, и Макс Планк, ставшие великими физиками (рис. 12.5).

Рис. 12.5. Густав Роберт Кирхгоф (1824–1887) отождествил темные линии в спектре Солнца со спектральными линиями земных химических элементов.

Долгое время Кирхгоф в сотрудничестве с Бунзеном проводил свои успешные исследования. Бунзен начал анализ химического состава образцов по цвету, который они придавали бесцветному огню его знаменитой горелки. Кирхгоф решил, что будет лучше использовать спектроскоп для более точного измерения длины волны (цвета). Когда это удалось осуществить, все линии Фраунгофера были отождествлены.

Оказалось, что характерный цвет пламени обусловлен яркими спектральными линиями разной длины волны у разных элементов. Каждый элемент имеет собственный характерный признак в виде спектральных линий, которые появляются, когда образец нагревается до такой температуры, чтобы он превратился в горячий газ. По спектральным линиям можно определить химический состав исследуемого образца. В письме, датированном 1859 годом, Бунзен писал: «Сейчас вместе с Кирхгофом мы проводим исследования, которые не дают нам уснуть. Кирхгоф сделал совершенно неожиданное открытие. Он нашел причину возникновения темных линий в спектре Солнца, и он способен воспроизвести эти линии… в непрерывном спектре пламени на тех же местах, что и линии Фраунгофера. Это открывает путь к определению химического состава Солнца и неподвижных звезд…».

На самом деле еще в 1849 году Жан Фуко (1819–1868) в Париже обнаружил совпадение между лабораторными спектральными линиями и линиями в спектре Солнца. Но по каким-то причинам его открытие оказалось забыто. Ничего не зная о работе Фуко, Бунзен и Кирхгоф повторили и усовершенствовали его опыты.

Кирхгоф обобщил свои результаты в виде так называемых законов Кирхгофа (см. также рис. 12.6).

Рис. 12.6. Свет горячего источника, поступающий в спектроскоп, показывает непрерывный спектр, в то время как свет, прошедший сквозь газ, демонстрирует темные линии поглощения. Но если посмотреть на спектр самого газа, то в нем видны яркие эмиссионные линии. Изучая спектры звезд и галактик, астрономы определяют их температуру и химический состав, а также их массы, скорости и расстояния до них.

I закон Кирхгофа: Горячий плотный газ и твердые тела излучают непрерывный спектр. Спектр называют непрерывным, если в нем представлены все цвета радуги и поэтому в нем нет темных линий.

II закон Кирхгофа: Разреженные (имеющие низкую плотность) газы излучают спектр состоящий из ярких линий. Яркие линии с определенными длинами волн называют также эмиссионными линиями.

Как уже говорилось, спектр с эмиссионными линиями возникает от горячего, разреженного газа в пламени бунзеновской горелки, наблюдаемом на темном фоне. Однако если за горелкой поставить источник света и пустить интенсивный луч света сквозь газ этого пламени, то можно предположить, что свет горелки и свет, идущий от источника за горелкой, будут складываться. Если же свет, приходящий из-за горелки, имеет непрерывный спектр, то можно ожидать, что яркие линии пламени горелки будут налагаться на непрерывный спектр. Но Кирхгоф этого не увидел. Наоборот, он видел непрерывный спектр с темными линиями на тех местах, где должны были быть эмиссионные линии. И это он зафиксировал в своем третьем законе.

III закон Кирхгофа: Когда непрерывный спектр проходит через разреженный газ, в спектре возникают темные линии.

Темные линии называются абсорбционными линиями, или линиями поглощения. В спектре Солнца непрерывное излучение исходит из нижних, относительно горячих (около 5500 °C) и плотных слоев солнечной поверхности. На пути вверх свет проходит через более холодные и разреженные слои солнечной атмосферы, которая и дает темные линии Фраунгофера.

Спектральный анализ позволил исследовать химический состав Солнца и даже звезд. Например, две соседние темные спектральные линии «D» в солнечном спектре видны как яркие линии в спектре горячего натриевого газа. Из этого Кирхгоф и Бунзен сделали вывод, что на Солнце много газообразного натрия. Кроме того, они нашли в спектре Солнца признаки железа, магния, кальция, хрома, меди, цинка, бария и никеля. К концу столетия были открыты водород, углерод, кремний и неизвестный элемент, который назвали гелием в честь греческого имени Солнца. В 1895 году гелий был обнаружен и на Земле. Самый простой спектр из всех элементов оказался у водорода. Его спектральные линии образуют такой простой и стройный ряд, что преподаватель Базельского университета (Швейцария) Иоганн Якоб Бальмер (1825–1898) придумал простую формулу для определения их длин волн. Эту серию спектральных линий водорода называют бальмеровскими линиями.

Но невозможно определить степень обилия элементов на Солнце только лишь на основе интенсивности спектральных линий каждого элемента. С помощью сложных вычислений, учитывающих температуру, было выяснено, что наиболее обильным элементом на Солнце является водород (хотя его спектральные линии не очень интенсивны), а второе место занимает гелий. На долю всех прочих элементов приходится менее 2 % (табл. 12.1, там указано также обилие наиболее распространенных элементов на Земле и в человеческом теле). К вопросу о спектрах звезд мы вернемся в главе 19.

Таблица 12.1. Относительное обилие (в процентах по массе) химических элементов на Солнце, Земле и в человеческом теле.

Современный химический анализ показывает, что остальные звезды не сильно отличаются от Солнца. А именно, водород — самый распространенный элемент; его доля составляет примерно 72 % массы звезды. Доля гелия около 26 %, а на долю остальных элементов остается не более 2 %. Однако содержание именно этих тяжелых элементов на поверхности звезд сильно различается от одной звезды к другой.

Больше информации из спектра.

Наряду с данными о химическом составе, спектр звезды несет много другой информации, например, он сообщает о скорости движения звезды относительно наблюдателя. Ее измерение основывается на принципе, предложенном в 1842 году австрийским ученым Кристианом Доплером (1803–1853). Согласно закону Доплера, длина волны света меняется пропорционально скорости излучающего тела. Это явление хорошо известно для звуковых волн. Например, сирена машины «скорой помощи» слышна на высоких тонах (короткая длина волны), когда автомобиль приближается к нам, но тон сразу же становится ниже (длина волны возрастает), как только машина промчится мимо и начнет удаляться от нас (рис. 12.7). Точно так же спектральные линии звездного света смещаются к голубому концу спектра, то есть их длина волны уменьшается, когда звезда приближается к нам. И наоборот, если звезда удаляется, ее спектральные линии смещаются к красному концу спектра. Относительный сдвиг, называемый красным смещением, показывает скорость удаления звезды.

Рис. 12.7. Эффект Доплера: источники, излучающие волны, движутся относительно чуткого наблюдателя, фиксирующего систематические различия длин волн, приходящих от отдаляющегося и приближающегося источников.

Фактически Доплер считал, что можно определить скорость звезды по ее цвету. Но для типичных скоростей звезд изменения цвета настолько малы, что их невозможно заметить. Спустя несколько лет французский физик Ипполит Физо, не зная о работах Доплера, предположил, что можно использовать узкую спектральную линию в качестве индикатора небольшого изменения длин волн в спектре движущейся звезды.

Доля энергии в разных частях спектра не зависит от природы излучающего тела, неважно — это кусок железа или далекая звезда. Видимый цвет зависит только от температуры тела. Это заметил еще в 1792 году производитель фарфора Томас Веджвуд при разогревании разных материалов. Примерно сто лет спустя немецкий физик Вильгельм Вин (1864–1928) более точно сформулировал эту идею, и сейчас ее называют законом смещения Вина: длина волны максимума в распределении энергии излучения пропорциональна температуре тела, выраженной в градусах Кельвина (врезка 12.1).

Если быть точным, то закон смещения Вина выполняется только для идеальных тел, где происходит 100 %-ное излучение и поглощение света. Такие идеализированные тела называют «абсолютно черными», подчеркивая их способность поглощать лучи. Если тело не излучает свет, оно выглядит черным. Отверстие в лабораторной печи является хорошим приближением к абсолютно черному телу, поскольку свет не отражается от отверстия. Таким образом, свет, исходящий из этого отверстия, можно рассматривать как излучение абсолютно черного тела. Звезды также являются довольно хорошими примерами черных тел. Автором этого понятия был Густав Кирхгоф.

Врезка 12.1. Закон смещения Вина.

Длина волны (в сантиметрах) максимума в излучении (?max) зависит от температуры (T), выраженной в кельвинах (К), следующим образом:

?max(см) = 0,2898/T

Большинство небесных тел светят потому, что они очень горячие. О температуре тела можно судить по области длин волн, в которой излучение максимально сильное. Оптическое (видимое) излучение приходит от звезд, похожих на Солнце (температура около 6000 К), а очень горячие звезды (скажем, 30 000 К) излучают ультрафиолетовый свет. Инфракрасный свет излучается намного более холодными планетами и межзвездной пылью. Рентгеновское излучение исходит, например, из солнечной короны или от газа с температурой в миллионы градусов, заполняющего скопления галактик.

Когда тело нагревают, то не только смещается в голубую сторону цвет его максимально яркого излучения, но и возрастает общая мощность излучения (энергия, отданная за секунду). Австрийский физик Йозеф Стефан (1835–1893) предложил формулу (закон Стефана): мощность излучения тела пропорциональна четвертой степени его температуры в градусах Кельвина.

Напомним, что градусы Кельвина (К) получаются из градусов Цельсия, если прибавить к ним 273. Нулевая точка на шкале Кельвина соответствует самой низкой возможной температуре, называемой абсолютным нулем и равной -273 °C. Ввел точку абсолютного нуля на шкале температур Уильям Томсон (1824–1907). Отец Томсона был профессором математики в университете г. Глазго. Он брал маленького сына слушать свои лекции. В возрасте 10 лет Уильям официально стал студентом университета и в 15 лет уже читал книги ведущих физиков. Через два года его зачислили в Кембриджский университет. На экзамене по математике в Кембридже он занял только второе место, и это вызвало у него большое разочарование. Когда в 1846 году отец умер, Уильям занял его место профессора в университете Глазго. В этой должности он оставался 53 года.

Исследования Томсона в области термодинамики привели его в 1848 году к мысли о введении абсолютной шкалы температур. В точке абсолютного нуля на этой шкале тепловое движение молекул теоретически должно прекратиться. Абсолютная шкала температур Кельвина, как ее сейчас называют, получила свое название по титулу лорда Кельвина Ларгского, который он получил от Британского правительства в 1892 году. Кельвин — это река, протекающая невдалеке от университета, где работал Уильям Томсон.

Мы прошли немалый путь для разгадки природы света: описали его свойства как волнового явления и обсудили некоторые приемы, позволяющие измерить по спектру скорости отдаленных звезд, их химический состав и температуру поверхности. Но чтобы лучше понять роль света в физической реальности, мы должны теперь обратиться к другим явлениям — электричеству и магнетизму.

Глава 13 Электричество и магнетизм

К началу первого десятилетия XVIII века из всех областей физики только механика обрела вид, близкий к современному. После смерти Ньютона в 1717 году другой важный раздел физики — исследование электричества и магнетизма — все еще оставался совершенно не разработанным. Наиболее важные открытия в этой области были сделаны в течение следующего столетия, и они неожиданно, как это часто бывает в науке, привели к новому, единому взгляду на электромагнетизм, свет и другие виды излучения.

Разумеется, о естественно намагниченной железной руде, магнетите, было известно еще в античные времена. Кроме того, об электростатическом притяжении янтаря, среди прочих, упоминал еще Платон. Но пионером научного изучения электричества и магнетизма можно считать Уильяма Гильберта (1544–1603), придворного врача королевы Елизаветы I. Гильберт учился медицине и математике в Кембридже, затем работал врачом в Лондоне. Он был сторонником Коперника и его теории о движении Земли. Исследования по физике, которой Гилберт занимался в свободное время, появились в 1600 году в его книге «О магните».

Природа электричества.

Гильберт рассматривал электричество как жидкость, которая возникает или переносится при трении, например, когда янтарь натирают мехом. Он назвал эту жидкость «электрика», по греческому названию янтаря (многие родственные слова, произошли от этого термина, например электрон). Он показал также, что Земля является огромным магнитом, и изучал ее свойства, используя миниатюрную модель из магнетита (рис. 13.1). Это помогло ему объяснить, почему стрелка компаса указывает направление север-юг. Истинный магнитный полюс Земли расположен на широте 83°, в Северной Канаде, и медленно смещается к северу примерно на 40 км в год. По определению, северным полюсом магнитной стрелки называют тот ее конец, который смотрит на север. Как мы знаем, Кеплер рассматривал роль магнетизма в движении планет; теперь очевидно, что он заблуждался.

Рис. 13.1. Иллюстрация из книги Уильяма Гильберта «О магните», Гильберт знал, что на стрелку компаса влияет магнитное поле Земли, которое он называл Orbis virtutis В Китае компасом пользовались уже в первые века нашей эры, а в Европе о нем узнали в XIII веке. На рисунке северный и южный магнитные полюса расположены слева и справа.

Другой англичанин, Стефен Грей (1666–1736), объявил в 1729 году, что электричество, полученное в результате трения, можно перемещать с места на место. В зависимости от способности пропускать через себя электричество он разделил вещества на проводники (например, медь) и изоляторы (например, стекло). Француз Шарль Дюфе (1698–1739) слышал о работах Грея и начал собственное исследование. Он пришел к выводу, что существует два вида электричества — стеклянное и янтарное (или смоляное). Первый вид возникает, например, при трении стекла шелковой тканью, а второй — в янтаре, когда его трут мехом. Он сделал такое заключение, заметив, что тела, заряжающиеся схожим электричеством, отталкиваются друг от друга, в то время как тела с противоположным электричеством притягивают друг друга.

Открытие Дюфе можно было интерпретировать по-разному: либо действительно существует два вида электрической жидкости, или же есть жидкость одного вида, но возможен ее избыток или дефицит, как предполагал, например, Бенджамин Франклин. Он считал стеклянное электричество реальным, положительным электричеством, а янтарное электричество представлял как нехватку, или отрицательное электричество. По его мнению, трение или любое другое действие и не создают, и не разрушают электричество, а всего лишь приводят к передаче электричества от одного тела к другому. Таким образом, он предчувствовал закон сохранения электрического заряда, один из краеугольных камней современной физики. Ту же идею еще раньше предлагал Уильям Уотсон (1715–1787).

Франклин был не только одним из «отцов-основателей» во время Американской революции, но и изобретателем эффективной «печи Франклина», бифокальных очков и громоотвода. Он начинал подмастерьем переплетчика, став затем торговцем книгами и издателем. Случайно, в Бостоне, Франклин посетил выставку чудес электричества и был так очарован, что следующие 10 лет изучал электричество. Но еще он был вынужден заниматься дипломатической работой, помогая в создании Декларации независимости, Конституции США и служа американским послом в Париже (рис. 13.2).

Рис. 13.2. Бенджамин Франклин (1706–1790) был эрудитом, диапазон интересов которого простирался от электричества до дипломатии.

Когда мы анализируем электрическое притяжение и отталкивание, совершенно естественно сравнить их с гравитацией Ньютона. Кроме того, что для электрической силы характерны два вида заряда, она является более сильной версией закона сил Ньютона, что облегчает исследования. Английский теолог и физик Джозеф Пристли (1733_18°4) первый продемонстрировал, что закон силы между зарядами является законом обратных квадратов, как и закон гравитации Ньютона. Наиболее детальные исследования электрической силы провел Шарль Кулон (1736–1806) во Франции, поэтому закон действующей между электрическими зарядами силы назвали законом Кулона.

Электрическая батарея, созданная итальянским физиком Алессандро Вольта (1745–1827), открыла широкое поле для исследований, изменивших всю картину. Раньше сильные электрические токи генерировались только на мгновение во время электрического разряда. Теперь любая лаборатория могла быть оснащена мощной электрической батареей (рис. 13.3). Мощность электрического тока для исследований повысилась в 10 000 раз. Так были раскрыты новые секреты природы.

Рис. 13.3. Эту большую батарею в подвале Королевского института использовал, например, Гемфри Дэви в своих экспериментах.

Объединение электричества и магнетизма.

Следующее большое открытие произошло почти случайно. Ханс Кристиан Эрстед (1777–1851), профессор физики Копенгагенского университета, готовился к лекции об электричестве и магнетизме; для этого он принес в аудиторию батарею, чтобы продемонстрировать действие электрического тока. Рядом с батареей он положил компас — для демонстрации магнитных сил. Прежде он уже замечал, что между электричеством и магнетизмом существует некоторая связь: например, стрелка компаса беснуется во время грозы. До начала лекции оставалось немного времени, и профессор решил провести небольшой опыт. Эрстед положил компас рядом с проводом, по которому тек электрический ток, и его подозрения подтвердились: под действием тока стрелка компаса начала двигаться. Таким образом, два отдельных феномена, электричество и магнетизм, которые до этого рассматривались совершенно раздельно, в действительности оказались связаны друг с другом. Эрстед продолжил свои исследования и опубликовал результаты в 1820 году.

Новость об открытии Эрстеда распространилась очень быстро. Через несколько лет его статья была зачитана на собрании Французской академии наук. На этом собрании был и Ампер, который тут же начал работать над объяснением явления, обнаруженного Эрстедом. Теория была готова через неделю и послужила основой для объединения электричества и магнетизма в теорию электромагнетизма.

Андре Мари Ампер (1775–1836) родился недалеко от Лиона. Его отец, состоятельный купец, занимавший должность мирового судьи в Лионе, был казнен во время Французской революции. Теперь дом Ампера превращен в музей и открыт для посещения. В детстве Ампер не ходил в школу, а приобрел свои знания путем чтения книг. Вот эпизод, говорящий о его прекрасной памяти и способностях к обучению. Будучи еще маленьким мальчиком, он отправился в Лионскую библиотеку и попросил книги знаменитых математиков — Эйлера и Бернулли. Библиотекарь объяснил мальчику, что это сложные математические книги, которые ему будет трудно понять, к тому же — они написаны на латинском языке. Новость о латинском языке смутила Ампера, но он решил, что незнание латинского языка не должно мешать ему. Спустя несколько недель он вернулся в библиотеку, уже зная латынь, и начал читать эти книги.

Ампер женился в 24 года и содержал семью, работая школьным учителем. В 1808 году он был назначен инспектором школ и на этой должности оставался всю жизнь. Кроме того, он работал профессором в Париже. К 1820 году, когда Ампер заинтересовался электромагнетизмом, он был уже широко известен своими трудами по математике и химии. Этот разносторонний ученый начинал как профессор математики, затем стал профессором философии, а позднее — профессором астрономии! Начиная с 1824 года Ампер был уже профессором физики Коллеж де Франс.

Ампер не удовлетворился только лишь объяснением результатов Эрстеда и начал свои исследования. Например, он показал, что, смотав электрический провод в виток, можно создать искусственный магнит — электромагнит, который действует точно так же, как естественные магниты. Ампер смело, но совершенно верно предположил, что естественные магниты содержат внутри себя небольшие витки непрерывного тока, которые действуют вместе и создают естественный магнетизм.

Ампер сразу же понял важность феномена электромагнетизма в передаче информации. Включая и выключая ток, можно привести в движение стрелку компаса, находящегося довольно далеко. Послание может быть передано с такой скоростью, с какой распространяется электрический ток. Вскоре началось производство телеграфных аппаратов, работающих по этому принципу. Одна из первых телеграфных линий была протянута в 1834 году в Геттингене между лабораторией Вильгельма Вебера и астрономической обсерваторией Карла Фридриха Гаусса. В том же году первую коммерческую телеграфную линию, соединившую Вашингтон и Балтимор (США), наладил Сэмюэл Морзе, изобретатель азбуки Морзе.

Другим ученым, сразу же оценившим огромное значение открытия Эрстеда, стал англичанин Майкл Фарадей. Он был сыном кузнеца и получил минимальное образование. В 13 лет он стал подмастерьем переплетчика. Переплетая книги, он их читал. Один из клиентов дал ему бесплатный абонемент на посещение публичных лекций Гемфри Дэви (1778–1829). Фарадей сделал аккуратный конспект лекций, красиво переплел его и послал Дэви с запиской, в которой спрашивал, нет ли у Дэви работы для него. Каково же было удивление Фарадея, когда Дэви пригласил его к себе. Конспект был написан очень аккуратно и произвел на Дэви хорошее впечатление. В 1820 году он предложил мальчику должность своего ассистента в Королевском институте в Лондоне. Так началась одна из наиболее знаменитых карьер в науке. Говорили, что самым большим открытием Дэви был Фарадей (рис. 13.4).

Фарадей учился у самого Дэви. Когда Дэви отправился в полуторагодичный тур на континент, он взял с собой Фарадея, который познакомился там, среди прочих, с Ампером и Вольтой. Когда Дэви работал в Париже с Луи Гей-Люссаком, изучая новый химический элемент — йод, им помогал Фарадей. Впрочем, и дома в его служебные обязанности входило проведение химических опытов.

Рис. 13.4. Майкл Фарадей (1791–1867), портрет Томаса Филлипса.

Если не считать временного интереса к электромагнетизму, вызванного открытием Эрстеда, Фарадей до 1830 года был профессиональным химиком. В 1833 году он стал профессором химии в Королевском институте. Но к этому моменту его научные интересы уже поменялись. Фарадей был убежден, что если электрический ток может быть причиной возникновения магнитных сил, то и магнит должен быть способен создавать электрический ток. Это мнение разделяли многие, среди которых был и Ампер, не сумевший, однако, подтвердить эту захватывающую идею.

В течение 10 лет Фарадей проводил различные опыты по электромагнетизму. В 1831 году он вложил одну катушку внутрь другой. Когда по одной из катушек пускали ток, она становилась электромагнитом. Фарадей хотел выяснить, способен ли магнит вызвать появление электрического тока во второй катушке. Действительно, ток возникал, но лишь на мгновение — только при включении или выключении электромагнита. Это привело Фарадея к важному открытию: изменение магнита — например, изменение силы магнита или его вращение — генерирует электрический ток в соседней катушке. Ключевым моментом здесь было изменение магнита.

Это позволило Фарадею сконструировать электрический генератор — простое динамо, ставшее в будущем основой электротехники. Однажды он демонстрировал свое открытие Уильяму Гладстону, который в то время был министром финансов, и тот спросил: «Ну и как же это можно использовать?» Фарадей ответил: «Вполне возможно, сэр, что когда-нибудь вы сможете обложить это налогом».

Силовые поля.

Одним из важнейших достижений Фарадея стала предложенная им новая интерпретация того, как сила передается от одного тела к другому. Вместо действия на расстоянии он представлял себе силовые линии, пронизывающие пространство. В 1830-е и 1840-е годы Фарадей продолжал разрабатывать свою идею магнитных и электрических силовых линий. Но поскольку эта новая идея не имела математической формы, большинство ученых отвергло ее. Однако было два важных исключения — Уильям Томсон и Джеймс Клерк Максвелл. Томсон дал силовым линиям Фарадея математическую интерпретацию и показал, что концепция силовых линий согласуется с теорией тепла и механикой; тем самым был заложен математический фундамент теории поля. Фарадей осознавал важность поддержки этими «двумя очень талантливыми джентльменами и выдающимися математиками»; он говорил: «для меня это источник большого наслаждения и поддержки — чувствовать, что они подтверждают справедливость и универсальность предложенного мной представления».

Для Фарадея идея о силовых линиях естественно вытекала из его опытов с магнитами. Когда он бросал иглообразные железные опилки на лист бумаги, лежащий на куске магнита, то замечал, что опилки выстраиваются по линиям, идущим в определенном направлении, в зависимости от их положения относительно магнита (рис. 13.5). Он думал, что магнитные полюсы связаны магнитными линиями и что эти линии становятся видимыми с помощью железных опилок, которые выстраиваются параллельно линиям. Для Фарадея эти линии были реальными, хоть и невидимыми. Свою идею о силовых линиях Фарадей распространил и на электрические силы; он считал, что и гравитацию можно интерпретировать подобным способом. Вместо утверждения, что планета каким-то неведомым образом узнает, как она должна двигаться по орбите вокруг Солнца, Фарадей ввел понятие гравитационного поля, которое управляет планетой на орбите. Солнце генерирует поле вокруг себя, а планеты и другие небесные тела ощущают влияние поля и ведут себя соответственно. Точно так же заряженные тела генерируют вокруг себя электрические поля, а другие заряженные тела чувствуют это поле и реагируют на него. Существуют и магнитные поля, связанные с магнитами.

Рис. 13.5. Магнитные силовые линии полосового магнита, обозначенные железными опилками на листе бумаги.

Ньютон считал, что основные объекты — это частицы, связанные между собой силами; а пространство между ними пустое. Фарадей представил себе и частицы, и поля, взаимодействующие друг с другом; а это вполне современная точка зрения. Нельзя сказать, что частицы более реальны, чем поля. Обычно мы изображаем поля в виде линий, указывающих направление силы в каждой точке пространства (рис. 13.6). Чем плотнее расположены линии, тем больше сила. Возьмем в качестве примера гравитацию Солнца. Можно сказать, что, приходя со всевозможных направлений, все силовые линии оканчиваются на Солнце. Мы можем нарисовать сферы разных радиусов с центром в Солнце, при этом каждая силовая линия будет пересекать каждую сферу. Площадь сфер возрастает как квадрат их радиуса, поэтому плотность линий уменьшается обратно пропорционально квадрату расстояний. Таким образом, идея о силовых линиях прямо приводит нас к закону гравитации Ньютона (а также и к кулоновскому закону обратных квадратов для электрического поля постоянного заряда; рис. 13.7).

Рис. 13.6. Силовые линии одиночного положительного заряда и силовые линии между положительным и отрицательным зарядами.

Рис. 13.7. Гравитационные силовые линии, связанные со сферически симметричным распределением массы. Количество силовых линий, пересекающих одинаковые площади, уменьшается обратно пропорционально квадрату расстояния от центра массы.

Используя идею силового поля (например, гравитационного), нужно следовать нескольким простым правилам.

1. Гравитационное ускорение происходит вдоль силового поля, проходящего через тело.

2. Величина ускорения пропорциональна плотности линий в заданной точке.

3. Силовые линии могут заканчиваться только там, где есть масса. Число линий, заканчивающихся в данной точке, пропорционально массе этой точки.

Теперь легко доказать утверждение, над которым Ньютону пришлось немало потрудиться. Сравнивая ускорения на поверхности Земли и на орбите Луны, Ньютон предполагал, что Земля воздействует на все тела так, как будто бы вся ее масса сконцентрирована в ее центре. Почему?

Предположим для простоты, что Земля совершенно круглая и симметричная. Тогда все части ее поверхности будут одинаково покрыты приходящими силовыми линиями. Согласно третьему правилу, число силовых линий зависит от массы Земли. Если бы вся масса была сосредоточена в центре планеты, все эти линии продолжались бы до центра. Таким образом, гравитационное поле Земли не зависит от того, как масса распределена под ее поверхностью в том случае, если имеется сферическая симметрия. В частности, вся масса Земли, сконцентрированная в ее центре, создает точно такую же гравитацию, как реальная Земля.

Точно такие же рассуждения применимы и к электрическому полю. Но поскольку существует два вида электрического заряда — положительный и отрицательный, — то при изменении знака заряда направление силовых линий меняется на противоположное. Силовые линии начинаются у положительного заряда и заканчиваются у отрицательного (как видно на рис. 13.6).

Электромагнитные волны.

Силовые линии Фарадей ввел в науку интуитивно, но он не смог оформить свое открытие в виде математической теории. Это в полном объеме сделал Джеймс Клерк Максвелл, великий физик-теоретик XIX века. Максвелл получил прекрасное образование: он поступил в Эдинбургский университет, когда ему было всего 15 лет, а через три года перешел в Кембриджский университет, который закончил в 1854 году. Еще через два года он стал профессором физики в Университете Абердина в Шотландии, откуда и переехал в Лондон. В 1865 году он перебрался в свое поместье Гленлэр близ Эдинбурга, где и написал свою знаменитую работу «Трактат об электричестве и магнетизме», изданную в 1873 году (рис. 13.8).

Тем временем Кембриджский университет получил крупное пожертвование от наследников Генри Кавендиша (1731–1810), известного своими исследованиями электричества. Деньги были предназначены для создания физической лаборатории. До того времени физики Университета проводили свои опыты в собственных кабинетах. На вновь учрежденную профессорскую должность в 1871 году был избран Максвелл. Он стал первым в знаменитой плеяде кавендишских профессоров, о которых мы поговорим позднее: Джон Стретт, более известный как лорд Рэлей, а также Джозеф Томсон и Эрнест Резерфорд. Около 30 ученых Кавендишской лаборатории стали в разные годы лауреатами Нобелевской премии по физике, химии и физиологии.

Рис. 13.8. Джеймс Клерк Максвелл (1831–1879), предвидевший электромагнитные волны, и Генрих Герц (1857–1894), продемонстрировавший их существование.

Максвелл объединил отдельные законы электромагнетизма, открытые Кулоном, Ампером и Фарадеем, в то, что теперь известно как уравнения Максвелла, представляющие электричество и магнетизм как единый феномен — электромагнетизм. Из уравнений Максвелла можно увидеть, что колеблющиеся электрическое и магнитное поля могут распространяться в пространстве с большой скоростью, которую вычислил Максвелл. Ее значение оказалось столь близким к скорости света, что Максвелл в длинном письме Фарадею (1861) писал: «Независимо от того, верна моя теория или нет, я думаю, мы сейчас имеем все основания считать, что светоносная и электромагнитная среда едина…» А в более позднем письме он говорил: «Совпадение результатов, по-видимому, доказывает, что свет и магнетизм являются свойствами одной и той же субстанции и что свет есть электромагнитное возмущение, распространяющееся по полю в соответствии с законами электромагнетизма».

Таким образом, свет состоит из электрического и магнитного полей, которые колеблются перпендикулярно к направлению распространения в соответствии с ранее обнаруженной поляризацией. В знаменитом эксперименте 1887 года Генрих Герц проверил гипотезу Максвелла об электромагнитных волнах. Он сумел создать и зарегистрировать иной вид электромагнитного излучения — радиоволны. Единственное различие между радиоволнами и светом состоит в том, что в потоке света колебания электрического и магнитного полей происходят с гораздо большей частотой, чем в радиоволне. При быстрых колебаниях длина волны получается малой: у обычного света гребни волн разделены половиной микрометра (= 0,0005 мм). В радиоволнах гребни волн разделены расстоянием от 1 мм и больше, вплоть до волн длиной в километры.

Между радио и светом находится инфракрасное тепловое излучение с длиной волн от микрометра до миллиметра. Очень короткие, невидимые глазу волны, лежащие сразу же за границей фиолетового света, называют ультрафиолетовым излучением. В 1895 году Вильгельм Конрад Рентген (1845–1923) случайно открыл рентгеновские лучи, легко проходящие сквозь любое вещество. Положив руку перед источником этих лучей и экраном, Рентген был удивлен, увидев кости своей руки (первое рентгеновское обследование). Но и рентгеновское излучение тоже оказалось электромагнитным с длиной волн короче ультрафиолетового. Самое коротковолновое излучение называется гамма-излучением; его открыли несколькими годами позже при исследовании радиоактивных элементов (рис. 13.9).

Рис. 13.9. Разные типы электромагнитных волн и их длина (рисунок: NASA).

Глава 14 Время и пространство

Обсуждая успехи небесной механики, мы уже цитировали Томаса Хаксли: «Наука — это не что иное, как обученный и организованный здравый смысл». За 1700-е и 1800-е годы здравый смысл добрался и до атома. Вслед за Ньютоном мы можем представить себе атомы в виде маленьких бильярдных шариков, взаимодействующих путем соударения друг с другом. Во многих случаях такого представления было достаточно. Но в начале прошлого века выяснилось, что при попытках описать природу на атомном уровне наши представления о некоторых явлениях микромира, а также о высокоскоростных явлениях «теряют смысл». Как гласит надпись при входе на один из физических факультетов в Англии: «Осторожно! Физика может развить ваши умственные способности![4]»

Странная скорость света.

Первый «бессмысленный» физический результат получили американские физики Альберт Майкельсон и Эдвард Морли в 1887 году, пытаясь измерить движение Земли в пространстве, определяя, с какого направления свет приходит с наибольшей скоростью. Естественно, ожидалось, что свет быстрее всего приходит с того направления, куда мы движемся. Это вытекает из нашего каждодневного опыта движения сквозь воздух. Майкельсон и Морли вычислили, что время, необходимое лучу света для преодоления пути туда и обратно между двумя параллельными зеркалами, должно иметь максимальное значение, когда линия, соединяющая центры зеркал, параллельна направлению движения Земли; и это время будет минимальным, когда луч света между зеркалами распространяется перпендикулярно движению планеты (рис. 14.1 и 14.2).

Рис. 14.1. (а) Альберт Майкельсон (1852–1931) и (б) Эдвард Морли (1838–1923).

Рис. 14.2. Интерферометр Майкельсона. Свет от источника расщепляется на два луча с помощью полупрозрачного зеркала. Лучи расходятся в перпендикулярных направлениях и отражаются от двух зеркал. Отраженные лучи направляются через тоже полупрозрачное зеркало в телескоп. Анализируя интерференционные полосы, возникшие при сложении этих двух лучей, можно определить, как зависит скорость света от движения Земли в пространстве.

По оценкам Майкельсона и Морли, разность времен прохождения света в их опыте должна быть маленькой, но измеряемой. Однако в эксперименте никакой разницы замечено не было. Пришлось сделать вывод, что свет распространяется всегда с одинаковой скоростью, независимо от движения измерительного прибора. Определяя скорость света, покоящийся наблюдатель получает такое же значение, как и те, которые приближаются или удаляются от источника света.

Путешествие на лодке по реке служит хорошей аналогией этого опыта, иллюстрирующего странную нечувствительность движения света к «эфирному потоку». В соревновании двух лодок одна из них движется туда и обратно поперек реки, а вторая проходит такое же расстояние вниз по течению и обратно. Предполагается, что обе лодки имеют одну и ту же скорость относительно воды. Скорость второй лодки увеличивается, когда она плывет вниз по реке, и уменьшается, когда она движется против течения. Простые вычисления показывают, что лодка, пересекающая течение, совершает свой заплыв быстрее, чем ее соперница, плывущая вдоль реки. Но свет не ведет себя так же «логично».

Майкельсон и Морли, а также и другие экспериментаторы, доказали, что свет не является обычной волной, распространяющейся в обычной среде. Если бы эти эксперименты проводились со звуковыми волнами или любыми другими волнами, распространяющимися в среде (типа воды), то всегда можно было бы определить разность скоростей и направление движения. Максвелл считал, что свет можно представить как колебания электромагнитного поля, и полагал, что эти колебания происходят в эфире. Но теперь возникла необходимость ввести новое представление о природе пространства и времени, что и было сделано Альбертом Эйнштейном.

Альберт Эйнштейн.

Эйнштейн родился в городе Ульм (Германия) в семье ювелира. Альберт с трудом вписывался в школьную систему и был вынужден покинуть школу в 16 лет. Его отец, надеясь, что сын займется бизнесом, искал иные пути продолжения его образования. Технический университет в Цюрихе принял Альберта без аттестата немецкой школы, но лишь со второй попытки. В 1900 году, в возрасте 21 года, он окончил университет, но далеко не сразу нашел работу. После двух лет поисков он стал техническим служащим в Патентном бюро г. Берн. Эта работа оказалась для него вполне подходящей: между делом Эйнштейн закончил свою диссертацию и защитил ее, преодолев некоторые проблемы.

Далее в карьере Эйнштейна не происходило ничего такого, что могло бы предвосхитить чудо 1905 года: три статьи в солидном журнале Annalen der Physik, сделавшие Эйнштейна, возможно, самым знаменитым ученым прошлого века и приведшие его к Нобелевской премии. Эти статьи были о броуновском движении, о «световом газе» и о частной (специальной) теории относительности. Первая статья приводила неопровержимые аргументы в пользу вещества, состоящего из атомов, факт, который никак не признавался в то время. Вторая статья давала новую интерпретацию природы света, и третья, наиболее известная статья, обсуждала новое виденье пространства и времени и, кроме всего остального, позднее привела к предсказанию огромных резервов энергии, скрытой в материи.

Исследования Эйнштейна не остались незамеченными, но понадобилось время, чтобы они приобрели широкую известность среди профессионалов. В 1908 году Эйнштейн стал доцентом в университете г. Берн, но его настоящая университетская карьера началась через год, когда он получил место адъюнкт-профессора в университете Цюриха. В 1911 году Эйнштейн переехал в Прагу. Проведенное там время стало знаменательным в карьере Эйнштейна, поскольку именно в Праге с помощью своего друга Георга Пика он познакомился с новыми математическими методами. Они были ему необходимы для следующего гигантского шага вперед в развитии физики.

Только через год Эйнштейн вернулся в Швейцарию, в свою alma mater в Цюрихе, где вместе с Марселем Гроссманом он начал разрабатывать общую теорию относительности. Это была новая теория гравитации, уточнявшая теорию Ньютона. Эйнштейн стал настолько знаменит, что в 1914 году его назначили главой физического отделения Института Кайзера Вильгельма в Берлине и выбрали членом Прусской академии. Здесь он в 1916 году опубликовал основы общей теории относительности. Во время солнечного затмения 1919 года британская экспедиция, организованная Артуром Эддингтоном, наблюдала искривление света, предсказанное Эйнштейном, и тем самым превратила теорию Эйнштейна в серьезного конкурента теории Ньютона.

Рис. 14.3. Альберт Эйнштейн (1879–1955) и Хендрик Лоренц (1853–1928) в Лейдене в 1921 году.

В наши дни имя Эйнштейна широко известно не только в связи с его научными открытиями (на рис. 14.3 изображен Эйнштейн в начале 1920-х годов). Против него велась кампания в связи с его еврейским происхождением. В 1922 году был убит его друг-еврей, и ходили слухи, что следующим будет он сам. Эйнштейн стал известен и своими антивоенными выступлениями. Но во время гитлеровского путча 1933 года Эйнштейн был уже в безопасности, в Калифорнии. Перед отъездом он отказался от своего германского гражданства. В Германии его поносили как врага государства, а его книги были сожжены среди другой литературы, считающейся опасной.

В 1934 году Эйнштейн поселился в Принстоне (штат Нью-Джерси) и прожил там весь остаток жизни, работая над объединением электромагнетизма и гравитации в рамках единой теории. Впрочем, ни ему, ни другим физикам это не удалось. В последние годы жизни Эйнштейн боролся за запрет ядерного оружия. Разработка этого оружия не только основывалась на эйнштейновском принципе эквивалентности массы и энергии, но и сама ядерная программа США началась в ответ на письмо Эйнштейна, посланное им в 1939 году президентур Рузвельту, где он предупреждал о работах по делению урана в Германии.

Известно немало анекдотов об Эйнштейне. Например, как-то вечером раздался телефонный звонок у президента Принстонского университета. Самого президента не оказалось на месте, и звонивший попросил: «Не могли бы вы мне сказать, где живет профессор Эйнштейн?» Ему ответили, что эта информация конфиденциальная и ее не разглашают, чтобы не докучали Эйнштейну. Тогда голос в трубке продолжил: «Пожалуйста, не говорите никому, но я и есть профессор Эйнштейн. Я вышел из дома немного пройтись и теперь не могу вернуться. Я забыл, где мой дом». Эйнштейн недавно переехал в новый дом и не успел запомнить его адрес.

Четырехмерный мир.

В своей частной теории относительности Эйнштейн основывался на результатах наблюдений Майкельсона и Морли о постоянстве скорости света (с) независимо от движения наблюдателя. Он не выяснял причин, а рассматривал следствия, вытекающие из этого странного факта. Что такое пространство и время? В нашей повседневной жизни постоянство скорости света не играет никакой роли; наше представление о том, что имеет значение, вытекает из повседневного опыта, для которого многие особенности окружающего нас мира скрыты. Фактически, привычная формула «скорость = расстояние/время» показывает, что скорость света может быть для всех одинаковой только в том случае, если пространство и время связаны между собой таким способом, который никто не мог предположить.

Взаимосвязь координат пространства и времени означает, что мы живем в четырехмерном мире особого типа (см. врезку 14.1). По своей природе время отличается от трех пространственных измерений (длина, ширина, высота), причем не только потому, что мы измеряем время с помощью часов, а расстояние — с помощью линейки. Герман Минковский (1864–1909), один из учителей Эйнштейна, объяснял это в 1908 году следующим образом: «Отныне пространство само по себе и время само по себе должны обратиться в фикции, и лишь некоторый вид соединения обоих должен еще сохранять самостоятельность».

У каждого наблюдателя есть его собственное четырехмерное пространство-время, которое тем сильнее отличается от пространства-времени другого наблюдателя, чем быстрее происходит их относительное движение. Обычно эта разница становится заметной, только когда относительная скорость приближается к скорости света. Но поскольку в обычной жизни таких скоростей не бывает, нам не удается заметить истинной связи между пространством и временем. Мы полагаем, что наше время течет с той же скоростью, что и время соседа, но это верно только до тех пор, пока мы движемся так же, как наш сосед.

Из теории относительности следует совершенно неожиданный факт. Два наблюдателя могут получать абсолютно разные результаты измерения расстояний в пространстве и интервалов во времени между двумя событиями, если они движутся друг относительно друга. Формулы для связи между разными значениями этих величин, так называемые преобразования Лоренца, были выведены еще в 1887 году Вольдемаром Фогтом (1850–1919) на основе уравнений Максвелла, а позднее — Хендриком Лоренцом (см. рис. 14.3), заложившим математический фундамент для теории относительности. Как мы помним, константа с появилась уже в уравнениях Максвелла. Любопытно, что первой релятивистской теорией была электромагнитная теория Максвелла, созданная еще до самой теории относительности! Когда Максвелл выводил свои знаменитые уравнения, он не подозревал, что в них скрыто сокровище — теория относительности.

Растяжение времени.

Течение времени измеряется интервалами между событиями, например колебаниями маятника. Оказывается, время течет медленнее для быстро движущихся часов по сравнению со временем, измеренным часами неподвижного наблюдателя. Часы наблюдателя измеряют «правильное» время (его называют собственным временем), тогда как движущиеся часы показывают удлиненные интервалы времени. Этот странный эффект называют растяжением времени.

Чтобы проверить реальность растяжения времени, в 1971 году американцы Джой Хафеле и Ричард Кетинг отправили четверо точных атомных часов на коммерческом самолете вокруг Земли — сначала на восток, затем на запад. Хотя скорость самолета значительно меньше скорости света, это должно было вызвать небольшое замедление времени по сравнению с тем, которое протекало на Земле. Различие можно определить при сравнении часов, совершивших путешествие вокруг Земли, с часами, остававшимися на Земле. Но поскольку поверхность Земли находится в состоянии быстрого движения, вызванного вращением Земли с запада на восток, растяжение времени зависит от того, куда летит самолет — на восток или на запад. Наблюдатель, летящий на запад, против вращения Земли, на самом деле движется вокруг Земли медленнее, чем наблюдатель, неподвижно стоящий на поверхности. Поэтому часы, летавшие вокруг Земли на запад, опередили наземные часы на 0,27 миллионных долей секунды. При движении на восток скорость самолета складывается со скоростью земной поверхности. В результате летавшие на восток часы после трехдневного путешествия отстали на 0,06 миллионных долей секунды. Эти измерения отлично согласуются с теорией Эйнштейна, согласно которой часы должны потерять 40 миллиардных частей секунды при движении на восток и выиграть 275 миллиардных секунды при движении на запад. Результат эксперимента отличался всего на 5 % при движении на восток и не более чем на 30 % при полете на запад.

Растяжением времени можно будет воспользоваться в будущих длительных космических путешествиях. Мы привыкли к земной силе тяжести. Поэтому, если космический корабль будет двигаться с постоянным ускорением равным земной силе тяжести, мы будет чувствовать себя вполне комфортно. Нам будет казаться, что пол, повернутый к корме корабля, давит на нас так же, как на Земле.

Если мы захотим остановиться у цели нашего путешествия, нам придется начинать торможение корабля с половины пути, развернув его кормой вперед. Используя для торможения такое же ускорение, как для разгона, мы вновь почувствуем себя как дома.

Если таким способом мы захотим посетить галактику Андромеда, расположенную в 2,5 млн световых лет от нас, то путешествие туда и обратно займет примерно 5 млн лет, поскольку большую часть пути мы будем лететь почти со скоростью света. Но время в самом корабле растягивается так сильно, что к моменту возвращения путешественники станут всего на 60 лет старше, чем при старте! Ну а на Земле за эти 5 млн лет произойдет непредсказуемая эволюция.

Растяжение времени остается незамеченным при нашей медленной повседневной жизни, но в лаборатории элементарные частицы могут двигаться с высокими скоростями. Альфа-частицы, излучаемые при радиоактивном распаде, движутся со скоростью около 10 % от скорости света. В физике высоких энергий растяжение времени и другие релятивистские явления проявляются ежедневно.

Врезка 14.1. Пространство, время и событие.

В теории относительности и в повседневной жизни мы используем пространство и время для описания событий. Пусть, например, событием является подписание документа. В этом случае «координаты» будут выглядеть следующим образом: в г. Турку (Финляндия) 26 марта 2007 года. Пространственное положение указано именем города Турку, а координата времени — 26.03.2007 (если не требуется слишком подробно указывать место и время подписания документа).

Пространство и время не имеют абсолютных значений. Они описываются с помощью координат, как положение точки на карте. Можно сказать, что город Пори находится на 115 км севернее и на 20 км западнее города Турку или же что Пори на о км севернее и на 105 км западнее города Тампере. Обе пары координат Пори — (115,20) и (0,105) — верны, но нужно помнить, что первые координаты указаны относительно Турку, а вторые — относительно Тампере. Однако расстояние между двумя точками не зависит от системы координат. Координаты этих городов, Турку (0,0) и Пори (115,20), говорят, что расстояние между ними по линии север-юг 115 км, а по линии восток-запад 20 км. Поэтому расстояние между ними (в километрах) будет равно квадратному корню из (1152 + 202), или 117 км.

Обсудив пространственные координаты и расстояния, давайте обратимся к координатам в пространстве-времени. В качестве примера вычислим пространственно-временной интервал между двумя событиями: пусть разница по времени составляет 40 секунд, а разность положений — 15 световых секунд, тогда интервал будет равен квадратному корню из (402 — 152). Это равно 37 секундам и не зависит от того, какую систему координат мы использовали. Заметим, что когда мы вычисляем интервал пространства-времени, то в подкоренном выражении применяем знак минус. Если бы мы работали в обычной пространственной системе координат, то в подкоренном выражении стоял бы плюс, в соответствии с теоремой Пифагора. Знак минус подчеркивает различие в природе пространства и времени; этот минус говорит о том, что растяжение пространства и времени не укладывается в «здравый смысл».

В формуле для вычисления интервала расстояние было выражено в единицах времени распространения света — в световых секундах. Эта единица соответствует расстоянию, которое свет проходит за 1 с, что немногим меньше расстояния от Земли до Луны. Можно использовать и световой год — расстояние, которое свет проходит за год; ближайшая звезда альфа Кентавра удалена от нас на 4 световых года. При использовании этих единиц интервал между двумя событиями тоже получается в единицах времени.

Особая природа интервала между двумя событиями хорошо видна на простом примере. Допустим, что первым событием будет момент, когда луч света звезды начинает распространяться из какой-то точки пространства, а вторым событием — момент прихода этого луча в другую точку пространства. Тогда интервал между этими двумя событиями окажется нулевым. Взрыв новой звезды в нашей Галактике и получение нами информации об этом взрыве являются двумя событиями, пространственно-временной интервал между которыми равен (как ни удивительно!) нулю.

Врезка 14.2. Приращение скорости в теории относительности.

Пусть скорость ракеты относительно поверхности Земли равна V, а скорость пули, пущенной вперед из ракеты, равна v. Тогда частная теория относительности дает скорость пули относительно поверхности Земли:

v' = (v + V)(1 + vV/с2),

где с — скорость света. Если v = 0,75с и V = 0,75с, то v' = 0,96с. Если вместо пули пустить луч света, то v = с и формула дает нам v' = с. Это согласуется с предположением Эйнштейна, что скорость света не зависит от скорости источника света (или приемника), и объясняет результаты эксперимента Майкельсона и Морли. Заметим, что если скорость света была бы бесконечной, то мы имели бы обычную формулу приращения скорости. Если скорости V и v намного меньше скорости света, то vV/с2 << 1 и результат получается тот же, что и в привычной формуле приращения скорости: v' = v + V.

Масса и энергия.

Знаменитый результат, полученный Эйнштейном, говорит о связи между массой и энергией. Любая материя обладает скрытой энергией в количестве

Энергия = масса x (скорость света)2.

Так как скорость света выражается очень большим числом, то эта формула показывает, что даже в маленьком количестве вещества содержится огромное количество энергии. Если бы 1 г вещества можно было бы полностью превратить в энергию, то это соответствовало бы 1014 Дж — примерно столько же энергии выделяется при сгорании 10 000 баррелей нефти. Огромное выделение ядерной энергии обусловлено превращением маленькой доли массы атомного ядра в энергию. В недрах Солнца энергия вырабатывается при ядерных реакциях, в ходе которых четыре протона сливаются в одно ядро гелия. Эту реакцию мы обсудим в главе 19.

Массу неподвижного тела называют массой покоя. Когда тело переходит в состояние движения, его масса увеличивается, пока не вырастет во много раз относительно массы покоя на очень больших скоростях, близких к скорости света. Увеличение массы помогает нам понять, почему материальные частицы не могут достичь скорости света. Согласно теории, масса (и энергия) тела, движущегося со скоростью света, бесконечно велика, а это, разумеется, невозможно.

Казалось бы, легко можно превысить скорость света, послав в космос ракету со скоростью 75 % от скорости света и выстрелив из ракеты вперед пулю со скоростью, скажем, те же 75 % от скорости света. При таких скоростях не возникает неразрешимых проблем с увеличением массы. Согласно обычной алгебре, скорость пули должна в 1,5 раза превысить скорость света относительно поверхности Земли. Но это не так, поскольку алгебра природы дает удивительный результат: 0,75 + 0,75 = 0,96, когда мы складываем скорости, выраженные в долях скорости света (врезка 14.2).

Принцип относительности.

Мы заканчиваем это знакомство с релятивистскими явлениями коротким описанием принципа относительности, лежащего в основе частной теории относительности. В главе 7 мы узнали о принципе относительности Галилея — наблюдатель, участвующий в равномерном движении, не может обнаружить это движение с помощью механических экспериментов. Майкельсон и Мор-ли показали, что невозможно обнаружить равномерное движение относительно абсолютного пространства (или «эфира»), даже если используются лучи света. Этот результат побудил математика Анри Пуанкаре (1854–1912) сформулировать в 1904 году принцип относительности, «согласно которому законы физических явлений должны быть одинаковы как для неподвижного наблюдателя, так и для наблюдателя, вовлеченного в равномерное прямолинейное движение; так что мы никаким образом не можем определить, вовлечены мы или нет в такое движение». Еще в 1902 году Пуанкаре говорил о «принципе относительного движения» (рис. 14.4) — В слове «относительный» (relative) мы видим тот же корень, что и в слове «релятивистский», — мы исследуем явления, измеряемые наблюдателями, движущимися с различными постоянными скоростями друг относительно друга.

Рис. 14.4. Анри Пуанкаре был пионером теории хаоса и сформулировал принцип относительности.

В статье 1905 года Эйнштейн подчеркивал, что «электродинамические явления, равно как и механические, не обладают свойствами, соответствующими идее абсолютного покоя» и «одни те же законы электродинамики и оптики пригодны для всех систем отсчета, в которых сохраняются уравнения механики». В дополнение к принципу относительности Эйнштейн утверждал, что «свет всегда распространяется в пустом пространстве с определенной скоростью с независимо от состояния движения излучающего тела». На этих двух постулатах Эйнштейн построил свою частную теорию относительности, где наличие «светоносного эфира» становится избыточным, а абсолютное пространство — лишним.

Глава 15 Искривление пространства и времени

Обычно мы представляем себе мировое пространство как нечто, напоминающее геометрию Евклида. И в самом деле, в рамках частной теории относительности пространственная часть четырехмерного пространства-времени плоская, то есть евклидова. Сам Евклид работал в Александрии примерно в 300 году до н. э.; практически ничего больше о нем не известно. Он создал геометрическую систему, которая до сих пор является непременной частью нашего математического образования. Геометрия Евклида основывается на пяти «безусловно истинных» аксиомах, на основе которых разработана целая система из 465 теорем (основной курс геометрии). Из этих пяти аксиом наиболее часто обсуждается последняя, утверждающая, что

• Через данную точку на плоскости можно провести одну и только одну прямую, параллельную данной прямой на той же плоскости.

Вспомним, что линии параллельны, если они лежат в одной плоскости и не пересекаются друг с другом. Евклид и многие его последователи испытывали сомнения насчет этого постулата параллельности. Хотя интуитивно он выглядит верным, экспериментального способа для подтверждения этого не было. Предположим, что есть прямая линия, проходящая через точку Р, параллельная другой прямой S. Если мы чуть-чуть повернем нашу линию, то откуда известно, что после такого поворота она действительно пересечет линию S? На практике мы всегда имеем дело с ограниченным отрезком прямой линии и не можем увидеть ее всю. Быть может, эту последнюю аксиому можно вывести из первых четырех? В течение двух тысячелетий математики пытались показать, что пятый постулат вытекает из остальных. Но все эти попытки провалились.

Открытие неевклидовых геометрий.

Вплоть до XIX века не было понятно, что пятую аксиому можно заменить и создать другие системы, в которых геометрические связи будут отличаться от привычных. Среди многих возможностей было два наиболее интересных варианта: гиперболическую геометрию независимо друг от друга разработали Карл Фридрих Гаусс, Николай Иванович Лобачевский и Янош Бойяи (рис 15.1), а автором сферической геометрии был Георг Риман. Этими двумя геометриями, наряду с евклидовой моской геометрией, исчерпываются все возможные описания Вселенной, которая однородна и изотропна, то есть — в которой все точки и направления равноправны. Поэтому все они очень важны для современной космологии.

Рис. 15.1. Создатели гиперболической геометрии: Карл Фридрих Гаусс (1777–1855) (в центре), Николай Лобачевский (1792–1856) (справа) и Янош Бойяи (1802–1860) (слева).


Русский ученый, профессор и ректор Казанского университета Николай Иванович Лобачевский создал логически стройную геометрическую систему, в которой постулат параллельности Евклида был заменен другой аксиомой.

• Через данную точку на плоскости можно провести бесконечное число линий, которые не пересекаются с данной линией на плоскости.

Он называл эту систему «воображаемой геометрией» (или «пангеометрией») и полагал, что нет таких областей математики, кроме самых абстрактных, для которых в один прекрасный день не нашлось бы применения в реальном мире. Гаусс, Бойяи и Лобачевский ничего не знали о работах друг друга. Но Лобачевский первым опубликовал статью о новой геометрии. Она появилась в 1829 году в «Казанском вестнике» на русском языке и осталась незамеченной. Пытаясь завоевать широкую известность, Лобачевский опубликовал свою статью в 1837 году на французском языке, затем в 1840 году на немецком, вновь в 1855 году на французском. Успешная работа Лобачевского привела к тому, что он стал ректором Казанского университета и даже был награжден Николаем I. Но в 1846 году он вышел на пенсию (некоторые считают, что его уволили из университета), и лишь после смерти имя Лобачевского стали связывать с разработкой неевклидовой геометрии. Последнюю благодарность от правительства Лобачевский получил за несколько месяцев до смерти за новый способ обработки шерсти.

В это же время, не зная о работе Лобачевского, венгр Бойяи «создал из ничего странный новый мир». Оба они — и Лобачевский, и Бойяи — пытались доказать пятый постулат, но со временем понимали, что решить эту задачу невозможно: Бойяи в 1823 году, а Лобачевский в 1826-м. Отец Яноша, Фаркаш, друживший с Гауссом, и сам — известный математик, работал над той же проблемой. Когда он прочитал труд сына, то заставил Яноша опубликовать его, включив в виде 26-страничного Дополнения в свою книгу, изданную в 1832 году.

Гаусс в письме к Фаркашу Бойяи одобрил труд сына, но заявил, что сам разработал ту же идею около 30 лет назад. Янош был сокрушен письмом Гаусса. Он потерял приоритет и впоследствии никогда ничего не писал на эту тему. Гаусс придумал термин «неевклидова геометрия», но ничего не публиковал по ней, поскольку он «очень не хотел заниматься чем-то таким, что навлекло бы на него критику» — так он говорил в письме от 1829 года. В частном письме от 1824 года Гаусс сообщал: «Предположение, что (в треугольнике) сумма трех углов меньше 180°, ведет к любопытной геометрии, полностью отличающейся от нашей, но совершенно последовательной, которую я разработал для собственного удовлетворения».

Математические методы, необходимые для вычислений в неевклидовой геометрии, разработал Риман. Эта область математики, которую со временем изучил даже Эйнштейн, называется сейчас тензорным исчислением. Тензоры — это сложные величины, напоминающие векторы, которые используют для описания электрических полей. Примером тензора служит тензор кривизны, который описывает, насколько искривлено пространство, то есть насколько оно отличается от евклидова пространства. В четырехмерном пространстве тензор кривизны имеет 20 компонентов. Сравните это с вектором электрического поля, имеющим всего 3 компонента.

Еще в детстве Георг Риман (1826–1866) отличался выдающимися математическими способностями. К тому же он прилежно изучал Библию и в 1846 году, следуя отцовской воле, поступил в Гёттингенский университет на отделение теологии. Однако, посетив несколько лекций по математике, он попросил отца разрешить ему заняться математикой. Отец был не против, и Риман начал учиться математике, в том числе и у Гаусса. Под руководством Гаусса он завершил диссертацию и был взят на работу в Гёттингенский университет для подготовки к профессорскому званию (то есть — в аспирантуру). По окончании подготовки он выступил с лекцией «О гипотезах, лежащих в основании геометрии», которая теперь среди математиков считается классической работой. В ней обсуждается определение тензора кривизны и рассматривается вопрос о связи геометрии с миром, в котором мы живем. Какова размерность реального пространства и какой геометрией описывается наше пространство? Риман полагал, что само пространство может иметь измеряемые характеристики (рис. 15.2).

Рис. 15.2. Георг Риман — математик, проложивший путь для общей теории относительности.

Эта лекция намного опередила свое время и не была оценена большинством ученых. Согласно общепринятому тогда мнению, которое разделял и Ньютон, пространство служит жестким фоном, относительно которого проводятся все изменения. В окружении Римана только Гаусс смог оценить глубину мысли юного математика. На собрании факультета он с большой похвалой отозвался о профессоре физики Вильгельме Вебере и хвалил за оригинальность работу Римана.

Свойства неевклидовых геометрий.

Вселенная конечна или бесконечна? Это не так-то просто «увидеть». Евклидова геометрия прекрасно описывает наши обычные измерения. Но в будничной геометрии трудно встретиться с бесконечностью. С другой стороны, испытываешь немалые трудности, пытаясь представить себе конечный мир со сферической геометрией, хотя его конечность легко описывается математически.

Обычно для демонстрации неевклидовой геометрии в качестве примера используют поверхности. Наша трехмерная Вселенная (мы не учитываем время) в практическом отношении плоская, поэтому в ней мы легко можем заметить кривизну обычных поверхностей. Но трудно представить четырехмерное пространство, не разбираясь в том, что означает кривизна. Наш мозг не привык решать такие задачи, поэтому лучше ограничиться рассмотрением двумерных поверхностей. Сферическая Вселенная имеет странное свойство — у нее конечный объем, хотя ни в каком направлении невозможно найти ее край. Это легче понять, если представить поверхность сферы, которая позволяет нам заметить и другое интересное свойство сферической геометрии: идущий вперед путешественник вернется в начальную точку своего пути после того, как обойдет вокруг света. Путешествуя по Земле, если вы движетесь все время вперед по большому кругу, вы тоже вернетесь в исходную точку. Странный результат, если вы считаете Землю плоской!

Как легко понять, двумерным аналогом сферической Вселенной служит поверхность сферы. Не обязательно иметь возможность взглянуть на нее из третьего измерения или же обходить сферу кругом, чтобы догадаться о кривизне сферической поверхности. Существо, живущее на сферической поверхности, не способное выйти в третье измерение над этой поверхностью и даже не имеющее представления об этом третьем измерении, все равно может проводить построения на этой поверхности, чтобы узнать ее геометрические свойства. Оно может нарисовать треугольник и измерить сумму его внутренних углов. Если результат получится больше 180°, это докажет, что существо живет на сферической поверхности (рис 15.3). Или так: можно нарисовать круг и измерить его. Если отношение длины окружности к ее диаметру меньше, чем ? (= 3,141592…), то существо будет знать, что оно живет в мире сферической геометрии.

В противном случае, если сумма внутренних углов треугольника меньше чем 180°, а отношение длины окружности к ее диаметру больше я и если через данную точку можно провести любое число линий, параллельных данной линии, то существо понимает, что оно живет в гиперболическом пространстве. Гиперболическое пространство тянется на бесконечное расстояние и не имеет аналога в обычной жизни. Форма седла, точнее — его центральной части, более или менее напоминает ограниченную область гиперболической поверхности.

Границей между сферическими и гиперболическими поверхностями служит плоская поверхность, или двумерное евклидово пространство. Привычные для нас законы евклидовой геометрии справедливы в этом и только в этом пространстве: сумма внутренних углов треугольника точно равна 180°, отношение длины окружности к ее радиусу в точности равно я, а через точку можно провести одну и только одну прямую, параллельную другой прямой (рис. 15.4).

Рис. 15.3. Треугольники в плоском, гиперболическом и сферическом пространстве. Сумма углов в разных пространствах неодинакова.

Рис. 15.4. Параллельные линии в разных пространствах. В плоском пространстве через данную точку Р можно провести только одну прямую, параллельную другой прямой. В гиперболическом пространстве можно провести любое количество таких прямых. В сферическом пространстве все прямые линии пересекаются, поэтому провести параллельную линию невозможно.

Значение кривизны пространства.

Математик Вильям Клиффорд (1845–1879) переводил труды Римана на английский язык и в процессе этой работы был очарован идеями Римана о связи между физическими явлениями и геометрией. Он стал развивать эти идеи. Читая лекцию в Кембриджском философском обществе, посвященную «науке о пространстве», он обсуждал нашу возможность судить о геометрии пространства на астрономических масштабах и на масштабах столь малых, что они недоступны для наблюдения (то есть в мире элементарных частиц). При этом он утверждал, что «малые области пространства фактически похожи на небольшие холмики на поверхности, которая в среднем плоская, таким образом, обычные законы геометрии к ним неприменимы». Он полагал, что «это свойство искривленности или искаженности непрерывно передается от одной области пространства к другой наподобие волны» и что «изменение кривизны пространства — это как раз то, что реально происходит в явлении, которое мы называем движением материи».

Клиффорд заключил, что весь физический мир (движение всей материи) есть результат этого свойства пространства. Для того времени его идеи были революционными, поскольку само понятие пространство еще не было осознано многими учеными. В год рождения Эйнштейна умер Клиффорд. Он был совсем молод и не сумел более глубоко разработать свою идею. Его видение мира опередило общую теорию относительности на 40 лет.

Отправной точкой для общей теории относительности Эйнштейна стал закон Галилея о том, что все тела падают с одинаковым ускорением независимо от их массы (если пренебречь трением о воздух). Это эмпирическое правило можно понять как следствие Второго закона Ньютона (сила равна массе, умноженной на ускорение) и Ньютонова закона гравитации (сила тяготения пропорциональна массе тела). Оба эти закона содержат один и тот же коэффициент пропорциональности — массу тела, поэтому ускорение падающего вниз тела не зависит от его массы. Но раз мы имеем дело с двумя независимыми законами природы, то должны поинтересоваться: как получилось, что оба они содержат один и тот же коэффициент.

Согласно Эйнштейну, эго неслучайно. Закон Галилея имеет глубокий смысл, он показывает, что гравитация не реальная сила, а лишь фиктивная. Нам уже знакомы фиктивные силы: например, Кориолисова сила, описанная французским физиком Гаспаром Кориолисом (1792–1843). В Северном полушарии ветры, дующие с юга, пытаю тся повернуть на восток, а дующие с севера поворачивают на запад. Это приводит к вращению воздушных потоков против часовой стрелки вокруг областей низкого давления. Сила Кориолиса — это всего лишь проявление вращения Земли вокруг оси, а вовсе не реальная сила. Для фиктивных сил свойственно, что они сообщают одинаковое ускорение всем телам независимо от их характеристик, таких как масса, электрический заряд и т. п.

Точно так же ускорение силы тяжести не зависит от свойств тела. Фиктивную силу легко исключить (в принципе); например, если остановить вращение Земли, то сила Кориолиса пропадет. А гравитация исчезает при свободном падении. В свободно падающей кабине мы не чувствуем свой вес, например — в кабине лифта, когда рвется его трос, а тормоза отказывают. Вдали от Земли можно искусственно создать такую же силу тяжести, как на земной поверхности, если заставить космический корабль двигаться с ускорением 9,8 м/с2, равным тому ускорению земной гравитации, которое мы обычно испытываем (рис. 15.5).

Рис. 15.5. Ньютон и Эйнштейн размышляют о падении яблока. Оба находятся в закрытой комнате. Ньютон — на Земле, а Эйнштейн — в космическом корабле, летящем с ускорением 9,8 м/с2. В обоих случаях падение яблока происходит одинаково.


Эйнштейн пришел к выводу, что если ускорение силы тяжести так легко создать и уничтожить, то оно должно быть отражением какого-то более глубокого явления. Этим явлением, по мнению Эйнштейна, является кривизна пространства. Материя заставляет окружающее пространство искривляться, а тела реагируют на эту кривизну таким образом, что это выглядит как действие гравитации.

Следствия общей теории относительности.

Зная геометрию пространства, можно вычислить орбиту тела, на которое не действует ничто кроме гравитации. Теперь мы не считаем гравитацию силой, а говорим о свободном движении. В плоском пространстве такое движение происходит по прямой линии, но в искривленном пространстве свободное движение может происходить практически по замкнутой орбите. Возьмем обращающуюся вокруг Солнца планету. Она движется вперед по прямой, то есть по кратчайшему пути, но так как Солнце искривило пространство, орбита планеты становится эллипсом. Рисунок 15.6 иллюстрирует это в виде растянутого горизонтально куска резины («плоское пространство»). Тяжелый шар, помещенный в центр этой поверхности, образует на ней впадину. Теперь покатим по ней маленький шарик. Подтолкнув этот шарик в нужном направлении, вы сможете заставить его прокатиться вокруг большого шара, возможно, по эллиптической орбите. Это выглядит так, будто существует центральная сила, притягивающая шарик, в то время как орбита возникает из-за формы поверхности. Эта аналогия не совсем точная, так как существует еще дополнительная сила — притяжение Земли.

Для планет, обращающихся вокруг Солнца, как теория Ньютона, так и теория Эйнштейна дают почти одинаковый результат. Наибольшее различие наблюдается для Меркурия, обращающегося вблизи массивного Солнца. Как мы уже говорили, большая ось орбиты Меркурия медленно прецессирует под влиянием остальных планет. Но теория Эйнштейна предсказывает дополнительную, по сравнению с теорией Ньютона, прецессию, равную 43" за 100 лет. В действительности это мизерное расхождение теории Ньютона с наблюдениями уже было обнаружено и считалось серьезной проблемой в годы создания теории Эйнштейна (рис. 15.7).

Рис. 15.6. Тяжелый шар образует углубление в растянутой резине. Кривизна поверхности позволяет маленькому шарику катиться вокруг большого шара так, как если бы между шарами действовала сила гравитационного притяжения. Показаны три разные орбиты маленького шарика.

Рис. 15.7. Прецессия орбиты Меркурия. Так как центральная сила, притягивающая Меркурий к Солнцу, не в точности обратно пропорциональна квадрату расстояния, орбитальный эллипс незамкнут. Наиболее удаленная от Солнца точка орбиты (афелий) медленно прецессирует. На самом деле эта точка смещается гораздо меньше, чем на этом рисунке.

Объяснение движения Меркурия стало первым успехом новой теории гравитации, созданной Эйнштейном. Другим ее следствием было отклонение лучей света, проходящих близ поверхности Солнца. Из-за этого звезды кажутся сдвинутыми от своего реального положения на небе, когда Солнце наблюдается вблизи них. Обычно мы не можем увидеть звезды и Солнце одновременно, но в момент солнечного затмения это возможно. Когда во время солнечного затмения 1919 года сдвиг звезд на ожидаемую величину был обнаружен, это расценили как победу теории Эйнштейна (рис. 15.8). В то время были известны только два конкурента общей теории относительности: теория финского физика Гуннара Нордстрёма (см. главу 18) вообще не предсказывала отклонения лучей света, а по теории Ньютона лучи должны были отклоняться, но вдвое слабее, чем по Эйнштейну. В наши дни при наблюдении космических радиоисточников точность измерений стала еще выше: прогноз теории Эйнштейна подтверждается с точностью 1 %.

Третье предсказание общей теории относительности подтвердилось гораздо позже. Согласно этой теории, время течет медленнее в искривленном пространстве, то есть — в сильном гравитационном поле. Следовательно, на первом этаже дома время течет медленнее, чем на чердаке, поскольку чердак дальше от центра Земли и притяжение там немного слабее. В 1960 году американцы Роберт Паунд и Глен Ребка измерили это различие в скорости течения времени на расстоянии по вертикали в 22,5 м. Результат совпал с прогнозом теории Эйнштейна с точностью 10 %; результаты современных измерений совпадают с предсказанием с точностью 0,01 %.

Рис. 15.8. Проходя мимо поверхности Солнца, луч света отклоняется от первоначального направления на 1,75" (на рисунке отклонение завышено).

Странные свойства черных дыр.

В нашем мире, как описывает его общая теория относительности, есть много странного; одно из самых удивительных — черная дыра. Если тело сжимается все сильнее и сильнее, то гравитация на его поверхности усиливается. Давайте для примера рассмотрим Землю. Ее средний диаметр 12 742 км. Скорость убегания с поверхности Земли, необходимая космическому кораблю для путешествия, например, к Луне, составляет около 11 км/с. Если бы какой-нибудь гигант смог сжать Землю до размера теннисного мяча, то скорость убегания возросла бы до 70 000 км/с.

Если гигант продолжит сжатие Земли, то скорость убегания будет увеличиваться все больше и больше и в какой-то момент станет равной скорости света (300 000 км/с). В этот момент диаметр Земли будет меньше 2 см. При этом гигант очень удивится: свет уже не сможет убегать от Земли, и она станет невидимой. Дальше Земля будет сжиматься уже сама, пока не окажется сдавленной в точку. Некоторые оценки говорят, что плотность в этой точке достигнет 1094 г/см3; это число выходит за рамки воображения. Но в этой истории припасен еще один сюрприз: Земля стала невидимым шаром, черной дырой, которая начала срывать вещество с близких к ней пальцев гиганта. В этот момент ему, возможно, захочется освободиться от чудовища, которое он сотворил.

Многие детали описанной выше картины можно вывести из теории Ньютона. Джон Мичелл (1724–1793), пастор церкви Св. Михаила и Всех Ангелов в Торнхилле, близ Дьюсбери в Англии, еще в 1784 году говорил о возможности существования черных дыр. Такой объект увидеть невозможно, но если черная дыра является членом двойной системы, ее можно отождествить по движению звезды-спутника. Вильям Гершель интересовался черными дырами Мичелла. Он даже думал, что обнаружил одну из них, но оказалось, что он ошибся. Лаплас в своей работе «Изложение системы мира» в 1796 году высказал такую же идею об объектах с мощным притяжением, которые являются ловушками для света.

Первым, кто применил общую теорию относительности к проблеме черных дыр, был Карл Шварцшильд (1873–1916). Накануне Первой мировой войны он возглавлял Потсдамскую обсерваторию и был ведущим астрономом Германии. Но его призвали в армию; сначала он воевал на Бельгийском, а затем на Русском фронте. Именно там в 1916 году он написал две работы по исследованию новой теории Эйнштейна, где дал определение так называемого радиуса Шварцшильда. Эта величина пропорциональна массе тела и указывает минимальный радиус тела, сжавшись до которого, оно становится черной дырой. Для Солнца этот критический радиус составляет около 3 км, а для звезды, в десять раз более массивной, он равен 30 км. Позднее в том же году Шварцшильд заболел и умер на фронте.

Некоторые особенности черных дыр можно понять, только используя общую теорию относительности. Пространство там так сильно искривлено, что пространство-время замыкается вокруг черной дыры. В некотором смысле оно становится собственной вселенной, связанной с внешним миром только гравитацией. Черная дыра затягивает в себя окружающее вещество. В результате ее масса возрастает, а ширина «глотки» черной дыры измеряется радиусом Шварцшильда. Так что заглатывание окружающего вещества только усиливает аппетит черной дыры!

Чтобы понять особенности черной дыры, мы можем вернуться назад к растянутому куску резины (см. рис. 15.6). Предположим, что лежащий на нем тяжелый шар постепенно уменьшается в размере. Поскольку давление на единицу поверхности увеличивается, вмятина под шаром становится все глубже и глубже. В конце концов резиновая поверхность изогнется вокруг шара, и он окажется на дне узкого горлышка. Поверхность резины вдали от шара уже почти не чувствует его влияния, но локальное искривление поверхности сильно увеличилось в процессе сжатия шара. Часть поверхности с максимальным искривлением имитирует пространство вокруг черной дыры.

Условия внутри радиуса Шварцшильда черной дыры весьма экзотические. Роли координат пространства и времени там меняются. Например, в обычном мире время течет только в будущее, но в черной дыре оно может течь как вперед, так и назад. Зато в пространстве под радиусом Шварцшильда мы можем передвигаться лишь в одном направлении — только к центру черной дыры. Нашему мозгу не под силу представить такой мир, хотя математически построить его мы в состоянии.

Из-за сильного искривления пространства вблизи черной дыры время замедляется. Если бы мы смогли проследить за падающими на черную дыру часами, например — в телескоп, и если бы, падая, часы продолжали тикать, то мы увидели бы, что, приближаясь к черной дыре, они идут все медленнее. Наконец мы увидели бы, что на расстоянии радиуса Шварцшильда часы вообще остановились. Таким образом, удаленному наблюдателю время кажется застывшим на границе черной дыры. Но наблюдатель, падающий в черную дыру вместе с часами, не заметит в течении времени ничего особенного.

Это еще один пример отсутствия жесткого абсолютного времени; каждый наблюдатель видит течение времени по-своему.

Вблизи черной дыры странно ведут себя и лучи света. Они могут сильно изгибаться и даже наматываться вокруг черной дыры. Некоторые лучи навсегда исчезают в черной дыре. Нам трудно понять, что мы видим вблизи черной дыры, так как «обработка данных» нашего зрения предполагает, что лучи света должны распространяться прямолинейно. Порою даже небольшое отклонение от прямой линии, как это бывает при наблюдении миража, сбивает нас с толку.

Черные дыры имеют еще одну особенность, которую мы пока не упоминали. Они могут вращаться, причем даже очень быстро. Искривление пространства вокруг вращающейся черной дыры впервые вычислил математик из Новой Зеландии Рой Керр в 1963 году.

Вращение черной дыры проявляется как вращение близлежащего пространства: черная дыра тащит за собой пространство, как водоворот. В плоскости вращения скорость водоворота может быть очень высокой и достигать скорости света на радиусе Шварцшильда. Следовательно, неподвижное в этом пространстве тело будет выглядеть издалека как вращающееся вокруг черной дыры со скоростью света. Вдали от радиуса Шварцшильда черной дыры или вблизи обычного вращающегося объекта движение обращающегося по орбите тела будет испытывать сравнительно небольшое возмущение. Но вблизи черной дыры завихрение очень велико. Даже движение в обратную сторону со скоростью света не может спасти тело от втягивания его в круговое движение в направлении вращения черной дыры.

Для каждой черной дыры существует максимальная скорость, с которой она может вращаться. Критическая поверхность для черной дыры, вращающейся с максимальной скоростью, лежит на половине радиуса Шварцшильда от ее центра. Вне критической поверхности лежит область, называемая эргосферой, где скорость пространственного вихря превышает скорость света. При благоприятных обстоятельствах частицы могут поглощать немного вращательной энергии черной дыры в этой области и вылетать из нее, унося энергию с собой.

Обращение одного тела вокруг другого тела в пространстве легко можно понять. Но как понять, что само пространство вращается вокруг центрального тела? Это выходит за рамки здравого смысла.

Обычно мы думаем о пространстве как о жестком фоне, относительно которого мы измеряем движение. Но из общей теории относительности следует, что реальное пространство эластично, и это его свойство имеет наблюдательные проявления.

Увлечение пространства вокруг вращающихся тел долго оставалось лишь гипотезой, высказанной австрийскими физиками Джозефом Лензе и Гансом Тиррингом в 1918 году. До 2004 года не было возможности измерить этот эффект в пространстве, окружающем вращающуюся Землю. Изучая движение двух искусственных спутников Земли — LAGEOS I и II, группа под руководством Игнацио Куифолини из университета Лечче (Италия) и Эррикос Павлис (Мэрилендский университет) обнаружила, что плоскости орбит спутников поворачиваются примерно на два метра в год в направлении вращения Земли. Этот результат согласуется с прогнозом Лензе и Тирринга с точностью 10 %. Недавно запущенный спутник «Gravity Probe В», специально сконструированный в Стэнфордском университете и НАСА для измерения вращения пространства, сейчас пытается подтвердить этот результат.

Гравитационные волны

Одним из явлений, связанных с эластичностью пространства, являются гравитационные волны — небольшие изменения кривизны пространства, распространяющиеся со скоростью света. Хотя американский физик Джозеф Вебер (1919–2000) еще в 1967 году утверждал, что открыл гравитационные волны, в действительности до сих пор нет прямого подтверждения их обнаружения.

На протяжении многих лет Вебер был единственным исследователем в этой области. Его детектор представлял собой 1,5-тонный алюминиевый цилиндр, подвешенный в вакуумном контейнере, изолированный от внешних воздействий, насколько это было возможно. Когда гравитационная волна пронизывает цилиндр, он начинает колебаться с характерной для него частотой. Амплитуда колебаний должна быть очень маленькой, не более 10–15 см, или 1 % диаметра протона. Понятно, что очень трудно измерить такое крохотное расстояние. Более того, любые происходящие поблизости вибрации — от проходящего транспорта до землетрясения — тоже могут заставить цилиндр колебаться. Поскольку никто другой не смог обнаружить гравитационные волны, считается, что колебания Вебера были вызваны внешними толчками. Тем не менее ожидаемый эффект от этой пространственной ряби настолько мал, что наша неспособность обнаружить гравитационные волны вовсе не означает, что их не существует.

В новом типе детектора лазер измеряет расстояние между свободно подвешенными массами (зеркалами). Антенна LIGO (лазерная интерферометрическая гравитационная обсерватория) в США состоит из двух таких детекторов, разделенных расстоянием в 1000 км. В отличие от локальных «шумов» каждого детектора, истинные гравитационные волны, проходящие через Землю, будут отмечены обоими детекторами (рис. 15.9). Похожая гравитационноволновая обсерватория VIRGO действует в Италии.

Рис. 15.9. Гравитационноволновая обсерватория LIGO в США: вид с воздуха на антенну в Хенфорде, состоящую из двух вакуумных труб протянувшихся каждая на 4 км от лаборатории. Такая же антенна работает в Ливингстоне. Фото: LIGO Laboratory.

К настоящему времени уже получены косвенные доказательства существования гравитационных волн. Двойная нейтронная звезда PSR 1913+16, судя по всему, излучает гравитационные волны. Наблюдения за движением звезд показывают, что эта двойная система теряет энергию, и ничем другим кроме излучения гравитационных волн это объяснить нельзя. Темп потери энергии хорошо согласуется с прогнозом общей теории относительности. Это совпадение рассматривают как подтверждение существования гравитационных волн, хотя излучение PRS 1913+16 прямо не удается измерить гравитационноволновыми антеннами.

Перспективным объектом для прямого наблюдения считается двойная черная дыра в квазаре OJ287, которую мы обсудим ниже. Это далекий внегалактический объект, причем один из компонентов этой системы массивнее обычной звезды в 1010 раз. Скорость потери энергии этой двойной системой недавно была подтверждена международной группой исследователей под руководством астрономов обсерватории Туорла (Финляндия). Подтверждение удалось получить 13 сентября 2007 года, в тот драматический момент, когда OJ 287 внезапно усилил свой блеск до уровня светимости 10 000 млрд Солнц. Следующее поколение гравитационноволновых антенн должно быть способно подтвердить излучение гравитационных волн квазаром OJ 287. Новое важное окно во Вселенную готово распахнуться.

Глава 16 Атомы и ядра

Свет мы сейчас представляем как колебания электрического и магнитного полей, которые каким-то образом распространяются в пространстве. Разумеется, далее мы еще будем обсуждать природу света, но сейчас мы зададим себе вопрос: «Что такое вещество?» Древнегреческий философ Эмпедокл (см. главу 2) высказывал много интересных идей об устройстве природы. Например, он предвидел, что свет распространяется с конечной (очень высокой) скоростью, и спустя многие века это подтвердилось. Он говорил также, что вещество состоит из четырех элементов — земли, воды, воздуха и огня. И эта идея оставалась ведущей еще в Средневековье, вплоть до XVII века.

Идею о четырех элементах критиковал Роберт Бойль. Он считал, что вещество состоит из часгиц различного рода, что плотное вещество образуется из скоплений часгиц и что химические изменения происходят в результате перестройки этих скоплений. В своей работе «Sceptical Chymist» (1661) Бойль критиковал алхимиков, пытавшихся получать золото из других элементов. Он определил элемент как субстанцию, которая не может быть никак раздроблена на более мелкие части; так он заложил основу химии как научной дисциплины.

Сохранение энергии.

Бойль также понимал, что тепло является показателем внутренних движений частиц вещества. Попробуйте вбить гвоздь в деревянный брусок. Пока гвоздь продвигается вперед, вы не заметите его нагрева. Но если продолжать бить по гвоздю после того, как он по шляпку ушел в дерево, то гвоздь начнет нагреваться. Удары по гвоздю уже не продвигают его дальше, а вызывают быстрые движения внутри гвоздя, которые проявляются как нагрев, или тепловая энергия (рис. 16.1).

Гораздо позже немецкий врач Юлиус Роберт фон Майер (1814–1878) объяснил тепло как форму энергии. Приход фон Майера в фи-зику был достаточно необычен. Будучи судовым врачом, во время путешествия к острову Ява он заметил, что венозная кровь моряков стала краснее, чем дома. Он знал о предложенной Лавуазье теории, что нагрев тела вызывается процессом горения, для которого кровь выделяет кислород. Возможно, кровь стала краснее потому, что в тропиках горение не такое сильное? Это заставило Майера задуматься о связи тепла с механической работой, производимой мускулами. Он пришел к выводу, что тепло и работа являются двумя формами энергии. Существуют разные виды энергии, и их сумма сохраняется в физических процессах и, в конце концов, во Вселенной в целом. Таким образом, он стал первым ученым, утверждавшим, что сохранение энергии имеет всеобъемлющий характер. Но идея Майера, опубликованная в частных брошюрах, осталась незамеченной. Позже он очень переживал, когда похожие идеи приписывались Джоулю.

Рис. 16.1. Роберт Бойль (1627–1691) рассматривал тепло как проявление движения частиц. В горячем газе скорости хаотически движущихся молекул в среднем больше, чем в холодном газе.

Впрочем, Джеймс Джоуль (1818–1889) пришел к таким же выводам независимо от Майера. Его искусные опыты с теплом, электричеством и механической работой были необходимы научной общественности для признания сохранения энергии. Этот богатый английский пивовар смог посвящать большую часть времени своему увлечению, сравнивая различные формы энергии.

Достижения химии.

В XVIII веке считалось, что горящее вещество теряет огненный элемент флогистон и что именно это служит причиной уменьшения свечи при горении. Заслуга в открытой истинной природы горения принадлежит Антуану Лорану Лавуазье, универсальному ученому, который был и математиком, и метеорологом, и геологом (рис. 16.2). В возрасте всего лишь 25 лет его избрали членом Академии наук в Париже. Примерно тогда же он получил удобную работу сборщика налогов. Химией он занялся позднее, когда работал в Королевском управлении пороха, где проводил различные опыты, в том числе — с горением фосфора и серы. Он обнаружил, что продукты сгорания весят больше исходного вещества и что эта разница как раз равна уменьшению веса воздуха. Лавуазье опознал активную составляющую воздуха и назвал ее кислородом. Флогистон теперь стал не нужен.

Рис. 16.2. Антуан Лоран Лавуазье (1743–1794) и его жена Мария Анна Пьеретта Польз (1758–1836). Она так тесно сотрудничала с мужем, что трудно отделить вклад одного из супругов от вклада в науку другого (картина Жака Луи Давида).

Свои результаты Лавуазье опубликовал в 1789 году в работе Traite El?mentaire de Chimie («Начальный курс химии»). В этом классическом труде он обобщил новую химическую теорию и разъяснил понятие элемента как простого вещества, которое невозможно расщепить никакими известными химическими методами. Там же была представлена теория того, как элементы формируют химические смеси, и утверждалось, что вещество не возникает и не исчезает (то есть масса сохраняется).

Лавуазье продолжал собирать налоги даже после начала Французской революции. В период Царства Террора он вместе с другими 27 сборщиками налогов был приговорен к смерти на гильотине и казнен 8 мая 1794 года в Париже. Не последнюю роль в этом сыграло и то, что несколькими годами ранее Лавуазье критиковал революционного лидера Жана-Поля Марата и его идеи о процессе горения.

После Лавуазье продолжались поиск и систематизация новых элементов. Наибольшую активность в этом проявили Жозеф Гей-Люссак (1778–1850) во Франции и Гемфри Дэви в Англии. Особое внимание они уделяли относительному количеству элементов, входящих в соединения. Стало понятно, что соединение всегда состоит из элементов в определенной пропорции. Например, чтобы получить 9 граммов воды (H2O), нужно 8 граммов кислорода (O) и 1 грамм водорода (H); только в такой пропорции не останется лишнего водорода или кислорода.

Этим химическая реакция отличается, скажем, от приготовления кекса, где не так уж важно, если мы смешиваем ингредиенты в не совсем точной пропорции: кекс будет иметь немного другой вкус, но он в любом случае остается кексом. Открытие химического закона постоянных отношений принадлежит шведскому химику Йёнсу Якобу Берцелиусу (1779–1848). Он показал, что неорганические вещества состоят из различных элементов в постоянной весовой пропорции. На основе этих результатов в 1828 году он составил таблицу относительных атомных весов, включающую в себя все известные к тому времени элементы. Эта работа свидетельствовала в пользу гипотезы атомов: химические соединения содержат атомы в целочисленных количествах. Для описания своих экспериментов он разработал систему химических знаков, в которой каждый элемент обозначался буквой, например, О — для кислорода, H — для водорода и т. д. Эту систему мы используем и сегодня.

Закон постоянных отношений помог Джону Дальтону (17661844) разработать теорию атомов. Он проводил исследования в разных областях науки — от метеорологии до физики, но теория атомов пробудила в нем интерес к химии. В своей «Новой системе химической философии» (1808) Дальтон утверждал: «Подобные наблюдения[5] привели всех к молчаливому соглашению, что тела, обладающие заметной величиной, будь они жидкими или твердыми, состоят из громадного числа необыкновенно маленьких частиц, или атомов вещества, удерживаемых вместе силой притяжения…» И далее он писал: «Следовательно, мы должны заключить, что мельчайшие частицы любого однородного тела совершенно похожи друг на друга по весу, по форме и т. п. Иными словами, каждая частица воды похожа на все другие частицы воды; каждая частица водорода похожа на любую другую частицу водорода и т. д.». Однако он признавал, что атомы различных элементов разные и имеют разный вес.

Дальтон жил на доходы от работы учителем в Манчестере. В 1800 году он стал секретарем Манчестерского литературно-философского общества и продолжал давать уроки, как в школе, так и частным образом. Позже его избрали президентом Философского общества, и эту почетную он должность занимал вплоть до смерти.

Согласно Дальтону, атомы в химическом соединении объединяются друг с другом всегда одинаковым образом. Это порождает новые идентичные комбинации атомов, которые теперь называются молекулами. Отсюда следует закон постоянных отношений: эти пропорции заложены уже в молекулах. Мы знаем, что два атома Н, соединяясь с одним атомом О, образуют воду Н2O. Но представления Дальтона о том, как из атомов сложены молекулы, часто были ошибочными.

Правильные химические формулы и атомные веса были найдены после того, как в 1808 году Гей-Люссак установил, что элементы объединяются не только в данном весовом соотношении, но также в данном отношении объемов в том случае, если элементы находятся в газообразном состоянии. Например, 2 литра водорода и 1 литр кислорода всегда дают 2 литра водяного пара (а не три!). Правило Гей-Люссака объяснил профессор физики Туринского университета Амедео Авогадро (1776–1856). В 1811 году он опубликовал статью о различиях между молекулой и атомом, указав, что Дальтон пере-путал понятия атомов и молекул. «Атомы» водорода и кислорода Дальтона на самом деле являются «молекулами», каждая из которых содержит по два атома — Н2 и О2. Таким образом, две молекулы водорода могут объединиться с одной молекулой кислорода, чтобы образовать две молекулы воды.

Авогадро предположил, что одинаковые объемы любых газов при одинаковых температуре и давлении содержат одинаковое число молекул; теперь это называют законом Авогадро. Используя это правило, мы можем сразу догадаться, что молекула воды содержит два атома водорода на каждый атом кислорода, то есть химическая формула воды — Н2O. Если добавить к этому, что отношение весов кислорода и водорода в молекуле воды 8:1 = масса одного атома О, деленная на массу двух атомов Н, то получим, что О/Н = 16, то есть, что вес атома кислорода в 16 раз больше веса атома водорода.

Периодическая таблица элементов.

Новые элементы с их измеренными атомными весами начали демонстрировать интересную регулярность своих свойств. Британский химик Джон Ньюлендс (1837–1898) заметил, что если расположить элементы в соответствии с их атомными весами, то химические свойства начинают повторяться через семь элементов. Он назвал это «законом октавы», но музыкальная аналогия не усилила доверия к идее. Поскольку в то время еще не было известно о благородных газах, в каждом ряду из семи элементов не хватало одного.

Периодическую систему химических элементов предложил Дмитрий Менделеев в двухтомном учебнике «Основы химии» (1868–1870). Менделеев вырос в Тобольске, в Сибири. Он был четырнадцатым ребенком учителя тобольской гимназии. Высшее образование получил в Санкт-Петербурге и Париже. В 1863 году стал профессором химии в Санкт-Петербургском университете (рис. 16.3).

Рис. 16.3. Дмитрий Иванович Менделеев (1834–1907).

С помощью своей таблицы Менделеев смог предсказать новые элементы, заполнив пробелы в системе. Первым элементом, подтвердившим его прогноз, стал открытый в 1875 году галлий. Независимо от Менделеева похожую систему разработал немецкий химик Лотар Мейер (1830–1895).

Врезка 16.1. Периодическая таблица и атомные веса первых 56 элементов.

Жирным шрифтом указаны элементы, открытые после Менделеева. Полную современную версию этой таблицы можно найти на сайте http://www.chemicool.com/.

Английский химик Уильям Праут (1785–1850) еще в 1815 году предположил, что атомы состоят из более мелких единиц. Такой единицей, по-видимому, является атом водорода. Однако некоторые атомные веса не кратны атомному весу водорода, например, атом хлора весит 35,5 в единицах веса атома водорода (Врезка 16.1). Эту проблему разрешил в 1913 году Фредерик Содди (1877–1956). Он обнаружил изотопы, то есть химически одинаковые атомы, имеющие разный вес. Например, выяснилось, что атомы хлора бывают двух видов: 77,5 % из них весят 35,0 единиц, а 22,5 % весят 37,0 единиц числа, почти точно равного весу атома водорода. Среднее значение для хлора равно 35,5 единицам.

Хотя пустые клетки в таблице Менделеева постепенно заполнялись, оставалось неясным, все ли элементы в точности укладываются в эту систему. Почему бы не предположить, например, что между водородом (атомный вес 1) и гелием (атомный вес 4) существует еще один или два элемента. До 1913 года, когда Генри Мозли (1887–1915) предложил атомные номера, не существовало точного определения элемента. Мозли работал в Манчестерском университете, где изучал рентгеновские лучи. Исследуя рентгеновское излучение разных элементов, он выявил целые атомные номера для каждого элемента. Вскоре после этого открытия молодого ученого призвали в армию, и он погиб в битве при Галлиполи.

Согласно измерениям Мозли, атомное число кальция равно 20. Поскольку это же порядковый номер кальция в периодической таблице, то очевидно, что неизвестных элементов легче кальция в таблице нет. Во времена Мозли не хватало четырех атомных номеров, но соответствующие элементы с тех пор были обнаружены. Периодическая система сейчас содержит 117 известных элементов, 94 из которых формируются на Земле естественным путем. Нептуний (93) и плутоний (94) найдены на Земле в следовых количествах. Более тяжелые элементы очень нестабильны и производятся искусственно в ускорителях частиц. Самый легкие из них — технеций (43) и прометий (61), они очень редко встречаются на Земле и тоже входят в эту группу искусственных элементов.

Открытие электрона.

Атомное число оказалось связано с электрическими характеристиками атома; впервые это обнаружилось в процессе электролиза. Этот метод открыли в 1800 году Уильям Николсон и Энтони Карлайл, которые опустили в воду два провода, присоединенные к разным полюсам электрической батареи. При этом они обнаружили, что вокруг отрицательного электрода начал выделяться газообразный водород, а вокруг положительного электрода — кислород. Стало очевидно, что в этом процессе молекулы воды расщепились на составные элементы (рис. 16.4).

Гемфри Дэви экспериментировал с электролизом, а его коллега по Королевскому институту Майкл Фарадей дал следующее объяснение этому явлению: малая часть молекул воды всегда диссоциирована на две электрически заряженные группы — на атомы водорода с положительным зарядом и на молекулы, состоящие из водорода и кислорода, с отрицательным зарядом. Фарадей назвал эти заряженные частицы «ионами». Провод, соединенный с отрицательным электродом, притягивает положительно заряженные ионы водорода. Касаясь провода, они отбирают у него отрицательный заряд и превращаются из ионов в нейтральные атомы водорода. После этого водород начинает пузырями выходить из воды. Немного более сложный процесс происходит с кислородом у провода, соединенного с положительным полюсом батареи.

Рис. 16.4. Электролиз. Два провода соединены с источником постоянного тока (батареей) и помещены в воду. На положительном электроде (аноде) выделяется газообразный кислород и собирается в трубке, а на катоде выделяется водород. Как показал Фарадей, количество выделившегося газа прямо пропорционально величине электрического заряда, прошедшего через провод. Кроме того, согласно закону Авогадро объем водорода вдвое превышает объем кислорода.

Заряд, передающийся атомам жидкости, замещается новым зарядом посредством тока, текущего от электрической батареи. Собрав и изучив возникшие в этом процессе газы, можно определить количество газа на единицу заряда этого тока. Имея дело с водородом, мы можем вычислить отношение массы к заряду у ионов водорода. Если в качестве единиц массы и заряда использовать килограммы и кулоны, то это отношение примерно равно 10-8. При этом невозможно по отдельности определить массу и заряд, но только лишь их отношение.

Мы можем определить массу иона водорода, играющего роль единицы атомного веса, если узнаем его заряд, но во времена Фарадея это было невозможно. Неясно было, какие частицы несут заряд. Для единичного заряда при электролизе в 1874 году Джордж Стоней предложил название электрон. Частицы с таким зарядом (и названные так же) открыл в 1897 году Джозеф Томсон (рис. 16.5).

Рис. 16.5. Джозеф Томсон (1865–1940), открывший электрон.


Томсон учился в Кембриджском университете и, заняв вторую ступень на экзамене по математике, обеспечил себе место в Тринити-колледже, где работал и Ньютон. Всю оставшуюся жизнь Томсон трудился в этом колледже и под конец стал его ректором. Томсон начинал как математик, поэтому его назначение в 1884 году в Кавендишскую лабораторию на должность профессора экспериментальной физики оказалось неожиданным. Он никогда не занимался экспериментами; один из его ассистентов говорил, что «у него были очень неуклюжие руки, поэтому я старался держать его подальше от эксперимента». Тем не менее Томсон стал одним из ведущих физиков-экспериментаторов, поскольку обладал интуицией в выборе направления исследований.

Получив должность профессора в Кавендише, Томсон начал изучать электрические разряды в вакуумной трубке. Наиболее знакомый нам разряд — это молния, но ее трудно использовать для опытов! Еще в XVIII веке заметили, что можно создавать мощные разряды в стеклянной трубке, из которой откачан воздух. Цвет разрядов зависит от того, какой газ содержится трубке; это используют в неоновой рекламе и для других целей.

Генрих Гейсслер (1814–1879) изобрел насос, способный уменьшить давление газа внутри трубки до одной тысячной доли атмосферы. Используя такой насос, Юлиус Плюккер (1801–1868) изготовил разрядную трубку и подсоединил ее к мощному источнику электрического напряжения. Свечение в трубке прекратилось, за исключением окрестности отрицательного электрода (катода), как если бы некоторые частицы, выброшенные из катода, были причиной свечения. После этого они пролетали по трубке и собирались на положительно заряженном электроде. Эуген Гольдштейн (18501930) продемонстрировал, что материал, из которого изготовлен катод, не имеет никакого значения: следовательно, катодные лучи не являются атомами, вырванными из катода.

Плюккер показал, что катодные лучи можно отклонить, используя магнит, то есть это должны быть заряженные частицы. Затем Томсон, пропуская частицы через магнитное или электрическое поле, научился менять направление их полета. Дальше он позволил потоку частиц двигаться свободно, вплоть до столкновения с противоположным концом трубки (рис. 16.6). Измеряя расстояние точки столкновения от центральной оси трубки, Томсон смог вычислить как скорость, так и отношение массы к заряду частиц. Подобный поток частиц возникает и в телевизионной трубке, где поток катодных лучей быстро бегает по экрану, создавая изображение. В телевизионной трубке для управления пучком катодных лучей используется электрическое поле.

Рис. 16.6. Схема эксперимента Томсона. Частицы вылетают из катода С. Их поток отклоняется от прямолинейной траектории полем, созданным пластинами D u E. (Из публикации Томсона 1897 года.).

В своей статье, напечатанной в Philosophical Magazine («Философский журнал») в 1897 году, Томсон привел вычисления, доказывающие, что скорость катодных лучей составляет около 10 % скорости света, а отношение массы к заряду электрона близко к 10-11 кг/Кл. Предположим, что ионы водорода и катодные лучи имеют одинаковый заряд. Поскольку отношение массы к заряду у иона водорода составляет 10-8 кг/Кл, масса заряженных частиц катодных лучей не может быть больше 1/1000 массы иона водорода (современное значение: 1/1840). Томсон делает вывод:

«В катодных лучах мы имеем вещество в новом состоянии — состоянии, в котором дробление вещества зашло намного дальше обычного газообразного состояния; в состоянии, в котором все вещество… стало субстанцией одного и того же сорта; той самой субстанцией, из которой сформированы все химические элементы».

К его результатам вначале отнеслись с недоверием, но последовавшие за этим эксперименты подтвердили существование электрона. Томсон и его коллеги измерили заряд электрона: 10-10 Кл. Теперь мы знаем более точное значение 1,602 х 10-19 Кл. При современном значении отношения массы к заряду 0,57 x 10-11 кг/Кл мы можем сделать вывод, что вес электрона составляет всего 9 x 10-28 г. Атом водорода примерно в 1840 раз тяжелее.

К атомному ядру: радиоактивность.

Заряд электронов отрицательный, но атомы, которые, очевидно, включают в себя электроны, нейтральны. Значит, где-то в атоме должен быть положительный заряд, чтобы нейтрализовать отрицательные электроны. Следующей задачей стало определение того, где внутри атома расположен положительный заряд. Томсон предложил модель «булочки с изюмом», согласно которой положительный заряд заполняет весь атом, а электроны в нем как изюминки в булочке. Японский ученый Хантаро Нагаока (1865–1950) предположил, что в середине атома находится положительно заряженная частица, вокруг которой обращаются более легкие электроны, как планеты вокруг Солнца. В обоих случаях притяжение между положительным и отрицательным зарядами удерживает электроны в атоме.

Выяснить, какая из этих двух моделей верна, выпало Эрнесту Резерфорду. Он вырос в Новой Зеландии и приехал учиться в Кавендишскую лабораторию в 1895 году. Через три года он стал профессором в университете Мак-Гилла, в Канаде, где и работал до 1906 года. Затем он перебрался в Манчестер, который был одним из ведущих центров физических исследований. Там он занялся изучением структуры атома. В 1919 году Резерфорд вернулся в Кавендишскую лабораторию, став ее директором (рис. 16.7).

Рис. 16.7. (а) Анри Беккерель (1852–1908) и (б) Эрнест Резерфорд (1871–1937).

После приезда в Кембридж Резерфорд занялся исследованием радиоактивности, открытой еще в 1896 году Анри Беккерелем в Париже. Пытаясь вызвать рентгеновское излучение у различных материалов, Беккерель выставлял их на солнце. Одним из этих материалов оказалось соединение урана. Этот образец даже без предварительного облучения на солнце «засветил» фотографическую пластинку, которая тоже лежала в темноте. Уран испускал какие-то лучи! Через несколько лет Мария Склодовская-Кюри и Пьер Кюри, терпеливо переработав тонну урановой руды (урановой смолки) в своей скромной парижской лаборатории, открыли элемент радий. Он излучает в миллионы раз сильнее урана (рис. 16.8). Резерфорд обнаружил три типа радиоактивных лучей и назвал их альфа-лучами, бета-лучами и гамма-лучами. Они дали ключ к атомному ядру. Как мы уже знаем, гамма-лучи — это коротковолновое электромагнитное излучение; а что такое альфа-лучи и бета-лучи?

Беккерель измерил у бета-лучей отношение массы к заряду и обнаружил, что у этих отрицательно заряженных частиц оно такое же, как у электронов. Следовательно, бета-лучи — это электроны, испущенные радиоактивным веществом. Резерфорд сумел измерить и отношение массы к заряду у положительно заряженных альфа-частиц. Оказалось, что оно вдвое больше, чем у положительного иона водорода. Если заряд альфа-лучей составляет одну единицу, то их масса должна вдвое превышать массу атома водорода. Но Резерфорд сделал правильный вывод, что заряд альфа-частиц составляет две единицы, а это приводит к четырем единицам атомной массы. Значит, альфа-частицы — не что иное, как ионизованные атомы гелия. Это подтвердили коллеги Резерфорда по университету Мак-Гилла — Уильям Рамзай (1852–1916) и Фредерик Содди (1877–1956), обнаружившие гелий, выделяющийся из соединения радия.

Рис. 16.8. Мария Склодовская-Кюри (1867–1934) и Пьер Кюри (1859–1906).

В своем исследовании 1903 года Резерфорд и Содди объяснили радиоактивность: это процесс, в котором один химический элемент превращается в другой. Когда атом излучает альфа-частицу, его атомный номер в периодической таблице уменьшается на два, а если он излучает электрон, его атомный номер увеличивается на единицу. Это была радикальная идея: с эпохи смерти алхимии постоянство элементов никогда не подвергалось сомнению. Это считалось базовой аксиомой — элементы не могут ни возникать, ни разрушаться. Но предположение Резерфорда и Содди было основано на точных измерениях, показавших, что независимо от внешних условий радиоактивный элемент всегда одинаковым путем превращается в другой элемент. Например, радиоактивный торий превращается в газ радон, который сам радиоактивен. Но активность радона быстро снижается: через 1 минуту она составляет уже половину, через 2 минуты — одну четверть, через 3 минуты — одну восьмую, и т. д. Резерфорд и Содди показали, что это связано с распадом самого радона: за минуту распадается половина исходного газа, за следующую минуту распадается половина от оставшегося газа, и т. д. Можно сказать, что радон имеет время полураспада, равное одной минуте (точнее — 54,5 секунды). Время полураспада сильно меняется от одного радиоактивного вещества к другому. Оно составляет 1600 лет у радия, 1,4 x 1010 лет у тория и 4,5 x 109 лет у урана. Распадом радиоактивных элементов пользуются для определения возраста. Мы вернемся к этому вопросу при обсуждении возраста Земли (см. главу 29).

Резерфорд открывает ядро атома.

После возвращения из Канады Резерфорд начал ставить новые эксперименты: бомбардировать атомы альфа-частицами. Эти столкновения происходят в таком малом масштабе, что наблюдать их непосредственно мы не можем. Но можно о многом догадаться, наблюдая за их последствиями. В результате столкновений скорость и направление альфа-частиц меняются; то же самое происходит и с атомами, подвергшимися бомбардировке. Этот процесс называют рассеянием. Скорость и направление движения альфа-частиц до и после столкновения можно измерить соответствующей аппаратурой. По этим данным можно рассчитать, что произошло с атомами мишени.

В эксперименте Резерфорда альфа-частицы испускались из радиоактивного образца. Узкий пучок этих частиц формировался с помощью экрана из толстого листа свинца с дырочкой. За дырочкой был установлен лист золота так, чтобы альфа-частицы ударялись в атомы золота. Поскольку скорость альфа-частиц была очень высокой, то ожидалось, что они будут проходить сквозь лист золота, почти не меняя траекторию. В качестве детектора альфа-частиц использовался лист из сульфида цинка, который при столкновении с ним частицы дает небольшую вспышку света (рис. 16.9).

У Резерфорда был помощник из Германии Ганс Гейгер. В 1909 году к их группе присоединился студент Эрнест Марсден. О том, что случилось в следующем 1910 году, рассказал сам Резерфорд:

«Однажды Гейгер предложил дать Марсдену тему для самостоятельного исследования. Я ответил: «Почему бы ему не посмотреть, будут ли некоторые частицы рассеиваться под большим углом? Скажу тебе по секрету — я думаю, что не будут, ведь мы знаем, что альфа-частицы очень массивны и несут большой запас энергии». Насколько я помню, через два или три дня Гейгер пришел ко мне очень взволнованный и сказал: «Некоторые альфа-частицы у нас возвращаются обратно». Это было самое невероятное событие, случившееся за всю мою жизнь. Это было так же невероятно, как если бы вы выстрелили 15-дюймовым снарядом в лист папиросной бумаги, а снаряд отскочил бы обратно и ударил вас».

Рис. 16.9. Эксперимент по рассеянию, поставленный Гансом Гейгером (1882–1945) и Эрнстом Марсденом (1889–1970). Альфа-частицы рассеиваются в золотой фольге и затем ударяются в экран, покрытый сульфидом цинка, вызывая на нем вспышки света.

Спустя несколько недель, в течение которых Резерфорд размышлял над этой загадкой, он заявил: «Теперь я знаю, что произошло в эксперименте, и, кроме того, я знаю структуру атома». Он сказал, что почти вся масса и весь положительный электрический заряд сконцентрированы в ядре атома, размер которого не более 1/10 000 размера атома. Остальная часть атома пуста, за исключением электронов с их отрицательным зарядом (рис. 16.10).

Теория Нагаока о строении атома оказалась в принципе верной. В нашей Солнечной системе основная доля массы сосредоточена в Солнце. Так же и в ядре атома сосредоточена большая часть его массы. Как Солнечная система в основном состоит из «пустого» пространства между Солнцем и планетами, так же и атом «пустой» между ядром и электронами. В атоме концентрация вещества к центру даже более сильная: в масштабе Солнечной системы размер атомного ядра не больше размера планеты. Точных данных о размере электрона пока не существует, но в этом масштабе он наверняка не больше самого мелкого астероида.

Рис. 16.10. Модель атома Резерфорда. Тяжелое ядро состоит из многих ядерных частиц, а вокруг него обращаются электроны.

Глава 17 Странности микромира

Проникнув в тайны строения вещества, мы вновь можем вернуться к свету. Как нам уже известно, в XIX веке волновая теория восторжествовала над более ранней теорией Ньютона о частицах света — корпускулах. Но для волны нужна среда, в которой может распространяться волна. Для звуковых волн нужен воздух, а в космосе нет ни звуковых волн, ни воздуха. Предполагалось, что средой для световых волн служит эфир, заполняющий космос, но эта идея лишь усложняла проблему. Важнейшим шагом вперед стала первая статья Эйнштейна, вышедшая в 1905 году, в которой он показал, что в некоторых ситуациях свет ведет себя странно: его поведение напоминает поведение частиц, которые сейчас называют фотонами.

Единство волн и частиц

Теория Максвелла рассматривает свет как электромагнитные колебания. Но при использовании этой теории для объяснения спектра излучения абсолютно черного тела возникли проблемы. Было известно, что излучение черного тела обладает наибольшей силой на определенной длине волны и ослабевает по обе стороны от этого максимума в спектре. Но классическая теория не могла объяснить уменьшение интенсивности на высоких частотах. Немецкий физик Макс Планк понял, как можно объяснить наблюдаемый спектр черного тела: нужно предположить, что атом может излучать энергию только порциями определенного размера. Связанная с излучением энергия похожа на частицы: излучиться может одна, две, три и т. д. «частицы», но доля «частицы» излучиться не может.

Минимальная порция энергии, по предположению Планка, пропорциональна частоте волны: чем выше частота, тем больше энергии в каждой порции. Коэффициент пропорциональности называют постоянной Планка. Таким образом,

Энергия = Постоянная Планка x частота.

Поскольку частота и длина волны обратно пропорциональны друг другу, порция энергии обратно пропорциональна длине волны. Постоянная Планка очень мала, поэтому в быту мы не замечаем отдельных порций света, как не замечаем, что на вид сплошное вещество состоит из крошечных атомов.

Макс Планк был родом из Киля, но большую часть своих исследований провел в Мюнхене, где и защитил диссертацию (рис. 17.1). До этого Планк слушал лекции Кирхгофа и Гельмгольца в Берлине. Довольно неожиданно его избрали преемником Кирхгофа в Берлине. Планк исследовал излучение черного тела, и в 1900 году это привело его к важнейшему открытию. Похоже, Планк не очень высоко оценивал значение своего открытия, что энергия может излучаться только определенными порциями, называемыми квантами. Он считал, что это свойство атомов, и думал, что нет причин, мешающих электромагнитной волне переносить любое количество энергии.

Рис. 17.1. (а) Макс Планк (1858–1947) и (б) Нильс Бор (1885–1962).

Следующий шаг сделал Эйнштейн, который показал, что квантование энергии в порции связано не только с колебаниями в атоме, но и с самим электромагнитным излучением. Доказательством существования квантов света (фотонов) стало объяснение, которое Эйнштейн дал фотоэлектрическому эффекту — испусканию металлом электронов под действием падающего на него света. Это явление в 1880-х годах неожиданно открыл Генрих Герц во время экспериментов с радиоволнами. Ультрафиолетовые фотоны с высокой энергией могут выбивать электроны из металла, даже если свет имеет очень малую интенсивность. Даже один высокоэнергичный квант высокочастотного излучения способен совершить работу по «выдергиванию» электрона из металла. Но отдельные низкоэнергетичные кванты красного или инфракрасного низкочастотного излучения (даже если таких квантов много при ярком освещении) не могут выбить электрон. Грубый аналог этого явления — бросок в лицо пригоршни песка или тяжелого камня; ясно, что последствия этих ударов будут разными.

Свет состоит из своего рода частиц, как полагал Ньютон, но нельзя игнорировать и признаки волновой природы света. Наш повседневный опыт затрудняет понимание этой двойственной, «корпускулярно-волновой» природы света и вообще электромагнитного излучения. Мы по привычке связываем волны и частицы с совершенно разными явлениями. Но почему-то в масштабе атомов оба этих понятия ассоциируются с одними и теми же явлениями. Бесполезно пытаться представить себе нечто, одновременно являющееся и волной, и частицей.

Еще больше усложнил ситуацию французский герцог и физик Луи де Бройль (1892–1987), который в 1924 году предположил, что электрон является не только частицей, но и волной. В 1922 ГОДУ он защитил диссертацию под названием «Исследования в области квантовой теории». В ней была изложена его теория электронных волн. Вскоре это подтвердилось экспериментально: электроны во многих случаях ведут себя как световые волны. Например, уже описанная выше интерференция, когда волны в одной и той же фазе колебаний усиливают друг друга, а в противофазе — гасят, проявилась в экспериментах с использованием пучков электронов, падающих на кристаллы. Волны де Бройля регулярно используются в электронных микроскопах для получения более резкого изображения, чем в оптике, поскольку длина волны у электронов короче, чем у света.

Атом Бора.

Датский физик Нильс Бор применил новую квантовую концепцию к атому. Бор родился в Копенгагене, в богатой семье. В юности он был известным футболистом: вместе с братом играл в лучших национальных командах. Бор учился в Копенгагенском университете и защитил диссертацию в 1911 году. Поворотной точкой в его карьере стала работа в Англии после защиты диссертации. Вначале Бор поехал в Кембридж, но после знакомства с Резерфордом решил переехать в Манчестер. Это было как раз то время, когда Резерфорд подтвердил своими экспериментами с альфа-частицами «модель солнечной системы» для атома.

Все атомы одного элемента одинаковы, однако простая модель Солнечной системы не указывает точно, где должны располагаться электроны в этих атомах. В самой Солнечной системе нет жестких физических ограничений того, на каких расстояниях от Солнца могут располагаться планеты. Скажем, орбита Земли могла бы быть немного больше или немного меньше, чем она есть. И еще одна проблема этой модели: обращающийся по орбите электрон похож на колеблющийся заряд в антенне и поэтому должен излучать энергию с частотой своего орбитального движения. Но, в отличие от антенны радиостанции, у электрона нет внешнего источника энергии. В конце концов потеря энергии должна привести к падению электрона на ядро атома.

Именно над этими проблемами Бор размышлял в Манчестере. Только через два года он смог найти решение. Один из друзей уговорил его посмотреть на формулу спектральных линий водорода, которые Бальмер открыл на несколько десятков лет ранее. «Когда я увидел формулу, то сразу же все понял», — сказал Бор год спустя. Он предположил, что в атоме водорода электрон находится на орбите вокруг протона и их связывает электрическое притяжение. По мнению Бора, в отличие от планет Солнечной системы, у всех атомов данного элемента возможны только определенные радиусы орбит. Во всем остальном электрон может подчиняться законам механики.

Другим отклонением от стандартной физики было требование Бора, чтобы электрон, двигаясь по разрешенной орбите, не излучал. Это противоречит теории электромагнитного излучения. Но Бор связал излучение с другим явлением — с изменением орбиты электрона. Каждая круговая орбита электрона обладает определенной энергией, которая тем больше, чем дальше от протона находится эта орбита. Электрон может перепрыгнуть с верхней (то есть более далекой) орбиты на нижнюю, излучив при этом фотон, энергия которого соответствует разности энергий этих двух орбит. И наоборот, электрон может захватить пролетающий мимо фотон с энергией, необходимой для его перехода на более высокую орбиту.

А поскольку разрешены орбиты только с определенной энергией, то между ними возможны только определенные разности энергий и соответствующие им фотоны. Вспомните ступеньки лестницы: вы не сможете стоять на или перепрыгнуть через половину ступени, вы можете шагать только через целое число ступеней. Так как вели-чина энергии фотона связана с его длиной волны, то лишь определенные длины волн могут присутствовать в излучении атома воден рода. Формула Бальмера связывает длины волн с целыми числами. Бор понял, что это номера орбит в порядке увеличения их расстояния от ядра. Например, серия бальмеровских линий излучается, когда электрон в атоме водорода прыгает на орбиту номер 2 с более высоких орбит (рис. 17.2).

Рис. 17.2. Электронные орбиты Бора в атоме водорода и переходы электронов с одной орбиты на другую. Возникающие при этих переходах спектральные линии группируются в серии, соответствующие наиболее внутренней орбите. Например, бальмеровские линии возникают при переходах со второго уровня на верхние (линии поглощения) или при переходах с верхних уровней на второй (линии излучения).

После возвращения в Данию Бор написал статью о своем открытии и послал ее Резерфорду. Резерфорд немного сомневался в теории Бора, но переслал статью в Philosophical Magazine для опубликования. Отклики на статью были самые разные, начиная с замечания лорда Рэлея: «Я не вижу в статье ничего полезного» до восторга, с каким принял статью Эйнштейн. Эйнштейн признался, что у него были такие же мысли, но не хватило смелости дать им ход.

В 1919 году Бор стал профессором теоретической физики в Копенгагене. Для продолжения его исследований был создан специальный институт, впоследствии один из ведущих центров по развитию атомной физики, место, где могли встречаться ученые из разных уголков мира, что было непросто после Первой мировой войны.

Модель Бора настолько хорошо описывает излучение атома, что постепенно ее стали считать реальной (врезка 17.1). Но потребовалось ее развитие. Арнольд Зоммерфельд (1868–1951) начал использовать модель атома с эллиптическими орбитами электронов. Он считал, что, наряду с круговой орбитой, электрон может иметь и эллиптическую орбиту того же диаметра. Позже от движения электронов по орбитам вообще отказались, и от первых моделей с орбитами осталась лишь идея об энергетических уровнях. Атом может перейти на уровень с большей энергией, то есть — возбудиться. После того как пройдет возбуждение, атом испускает фотон.

Врезка 17.1. Модель Бора и спектроскопические законы Кирхгофа.

Модель атома Бора прекрасно объясняет экспериментальные законы спектроскопии, открытые Кирхгофом.

В тонком слое горячего газа атомы сталкиваются друг с другом, забрасывая электроны на высокие орбиты. Вскоре они спрыгивают на орбиты нижних уровней. В результате атом излучает фотоны, энергия которых соответствует разности энергий орбит. Поэтому спектр газа состоит из ярких эмиссионных линий (II закон Кирхгофа). Когда излучение проходит через тонкий слой газа, в нем поглощаются только те фотоны, которые обладают энергией, необходимой электрону для подъема с нижней на верхнюю орбиту. Таким образом, линии поглощения образуются на тех же местах в спектре, где возникают яркие эмиссионные линии (III закон Кирхгофа). В плотном слое газа и в твердом теле атомы расположены очень близко друг к другу, поэтому они возмущают электронные орбиты друг друга. Орбиты сдвигаются со своих обычных расстояний от ядра. В результате происходят переходы разных типов и излучаются фотоны со всевозможными длинами волн. Так возникает непрерывный спектр (I закон Кирхгофа).

Хотя идеи Бора были верны, предложенная им конкретная картина строения атома, как выяснилось, не имеет реального физического основания. Многие физические законы микромира совершенно не похожи на те, которым подчиняются окружающие нас предметы. Ни механику Ньютона, ни электромагнитную теорию Максвелла нельзя напрямую применять к явлениям атомного масштаба.

Механика атомов.

Новая теория для механики атомных явлений была названа квантовой механикой. Первый шаг к ее открытию сделал немецкий физик Вернер Гейзенберг. Немного позже была разработана квантовая электродинамика для описания электромагнитных явлений в мире атомов. Эти новые теории связаны со старой, так называемой классической физикой таким образом, что если двигаться от масштаба атомов к обычным размерам, то в пределе получаются результаты классической физики. В этом смысле квантовая физика предлагает более глубокий взгляд на реальность, чем классическая физика.

Вернер Гейзенберг (рис. 17.3) работал в Геттингенском университете в группе, которой руководил Макс Борн (1882–1970), занятый изучением странного поведения электронов в атоме. В июне 1925 года в воздухе витал оптимизм: все ждали прорыва. Но именно тогда у Гейзенберга случился сильный приступ сенной лихорадки, вынудивший его уехать из Геттингена. Он отправился путешествовать по суровому острову Гельголанд в Северном море, где его сенная лихорадка прошла. Там 23-летний Гейзенберг продолжал думать о работе. Наконец все сошлось, и родилось точное математическое описание поведения электрона. Позже Гейзенберг рассказал, что как-то под утро, в три часа…

«Я уже не сомневался в логике и стройности той части квантовой механики, которой касались мои вычисления. Вначале я был очень встревожен: я чувствовал, что смотрю сквозь поверхности атомных явлений в их странную и прекрасную суть, и у меня кружилась голова оттого, что я могу исследовать эти математические структуры, природа которых великодушно раскрылась предо мной».

После возвращения в Геттинген Гейзенберг постеснялся рекламировать свое открытие. Он описал результаты в научной статье и дал копии рукописи Борну и своему другу из Мюнхена Вольфгангу Паули. Борн послал статью в журнал Zeitschrift filr Physik («Физический журнал») для публикации. Гейзенбергу нужно было уехать, и он оставил Борна размышлять над смыслом таблиц в этой статье.

Рис. 17.3. (а) Вернер Гейзенберг (1901–1976) и (6) Эрвин Шрёдингер (1887–1961).

Борн обратил внимание, что таблицы Гейзенберга были матрицами — основными величинами раздела математики, называемого матричной алгеброй. Вместе со своим коллегой Паскуалем Иорданом Борн начал переводить теорию Гейзенберга на язык матриц. Сам Гейзенберг, бывший в то время в Копенгагене, принял участие в завершении этой теории. Примерно тогда же Поль Дирак в Кембридже создал такую же теорию, но в иной математической форме, а через год Эрвин Шрёдингер разработал еще один вариант (о нем мы расскажем ниже). Для квантовой физики это была бурная эпоха!

Расплывчатые частицы: принцип неопределенности Гейзенберга.

Главная особенность квантовой механики заключена в ее вероятностной природе, сформулированной Максом Борном в 1926 году. Вместо того чтобы говорить о точных значениях физических величин, есть возможность описать только распределение вероятности этих значений. Связано это с принципом неопределенности, опубликованным Гейзенбергом в 1927 году. Гейзенберг понял, что одновременное существование частицы как материального тела и как волны требует фундаментальных ограничений в положении частицы. Невозможно сказать, на каком расстоянии от атомного ядра расположен электрон в данный момент времени. Одновременно знать об этих двух вещах невозможно. Электрон «размазан» по окрестности ядра. Можно только сказать, что наиболее вероятно обнаружить электрон на таком-то расстоянии и в таком-то направлении, а не на других расстояниях и не в других направлениях. В этом смысле «планетные орбиты» из простой модели Бора теперь представляют только наиболее вероятные области, где можно найти электрон. Это касается не только электрона, связанного в атоме, но и всех электронов и вообще всех частиц. Общее правило гласит: частица «размазана» тем сильнее, чем она легче. «Размазанность» обычных предметов, типа теннисного мяча, совершенно незаметна.

«Размазанность частицы» — звучит абстрактно, но на деле имеет конкретные следствия. Например, при испускании альфа-излучения частица выходит из радиоактивного ядра путем туннелирования. Альфа-частица связана с ядром сильным ядерным взаимодействием, надежно удерживающим ее в ядре. Но мы видим, как время от времени альфа-частицы покидают ядро. Георгий Гамов (изучавший также космологию и генетический код; см. главы 24 и 28), используя квантовую теорию, объяснил это тем, что альфа-частицы «размазываются» не только по ядру, но и выходят немного за его пределы. «Размазывание» означает, что с некоторой вероятностью частицу можно обнаружить в любом месте той области, по которой она «размазана». Следовательно, альфа-частица находится внутри ядра с вероятностью немного меньше 100 %, и в то же время она с небольшой вероятностью находится вне ядра. Поэтому время от времени положительно заряженная альфа-частица материализуется вне ядра, вне области сильного ядерного взаимодействия, где электрическое отталкивание от положительно заряженного ядра выталкивает ее наружу.

На эффекте туннелирования основан и синтез гелия в недрах Солнца, дающий такой любимый нами солнечный свет. Ядра гелия образуются при объединении ядер водорода — протонов, которые должны сблизиться настолько, чтобы их связало сильное ядерное взаимодействие. Сближению протонов мешает их электрическое отталкивание, преодолеть которое протоны могли бы при очень высокой скорости движения. Но в недрах Солнца их скорости довольно малы. Как же разрешается эта дилемма? Поскольку протоны тоже «размазаны» вблизи своего среднего положения, временами они материализуется ближе друг к другу, чем на это указывает их среднее положение. Так что протоны, к своему удивлению, вдруг могут оказаться в области сильного ядерного взаимодействия, хотя ожидать этого было невозможно.

Рассмотрим теперь такой случай. Мы сильно бьем в кирпичную стену дома теннисным мячом. Неожиданно мяч проходит сквозь стену и оказывается внутри здания. А в стене как не было дырки, так и нет; мяч туннелировал сквозь стену. То, что этого никогда не может произойти, обусловлено большой массой теннисного мяча по сравнению с массой протона! Теперь понятно, почему электрон не может быть составной частью ядра. Как легкая частица, электрон размазан по такой большой области, что не может удержаться в ловушке внутри ядра.

Структура атомов.

Развитие квантовой теории позволило понять структуру атома: почему атомы каждого элемента обладают характерными химическими свойствами, как атомы объединяются в химические соединения и многое другое. Вычисления в квантовой механике основаны на уравнении Шредингера, выведенном в 1926 году австрийцем Эрвином Шрёдингером, работавшим тогда в Цюрихе (см. рис. 17.3). Поскольку тогда уже было ясно, что электроны можно рассматривать как волны, Шредингер представил электроны в атомах как колебательное явление. Он показал, что только определенные виды колебаний могут длиться долго, как у музыкального инструмента с долго звучащей отдельной нотой. «Ноты» в атоме соответствуют электронным орбитам Бора (рис. 17.4).

Рис. 17.4. Волны электронов, циркулирующие вокруг атомного ядра. Если на одном обороте укладывается целое число волн, то волна усиливается и возникает разрешенная электронная орбита. Если фазы волны после одного оборота не совпадают, интерференция приводит к их затуханию. Поэтому в модели Бора такой орбитальный радиус невозможен.

Модель Бора для атома водорода далее была развита в оболочечную модель атома, которая объясняет периодическую систему элементов. Вместо предложенных Бором орбит мы сейчас говорим об оболочках атома. Элементы тяжелее водорода имеют несколько электронов, находящихся в разных оболочках. Но электроны не могут свободно выбирать оболочку, в которой они могли бы находиться; в наиболее спокойном состоянии оболочки атома заполняются электронами снизу вверх (от ядра наружу), до тех пор, пока все электроны не найдут свое место. Химические свойства определяются уровнем заполнения самой внешней оболочки. Атомы пытаются до конца заполнить свою внешнюю оболочку, захватывая электроны у соседей или используя электроны совместно с ними. Это приводит к химическим связям. У химически инертных благородных газов внешняя оболочка заполнена, поэтому им не требуется соединение с другими атомами.

Например, связь двух атомов водорода, позволяющая существовать молекуле водорода, основана на совместном использовании двух электронов обоими атомами. Это называется ковалентной химической связью, ее открыли в 1927 году немецкие физики Вальтер Гайтлер и Фриц Лондон. Ковалентная связь играет важную роль в сложных молекулах, таких, на которых основана жизнь (мы обсудим структурные элементы жизни в части IV). Причина в том, что каждый атом при этом может иметь несколько связей с другими атомами, по-разному ориентированными относительно него. К тому же ковалентная связь очень крепкая. Особенно важны атомы углерода, у которых не хватает четырех электронов во внешней оболочке. Атомы углерода заполняют свою внешнюю оболочку разными способами, которые могут давать сложные цепочки атомов с прочными связями (рис. 17.5).

Причину, по которой в каждой оболочке может находиться ограниченное число электронов, и само это максимальное число электронов в каждой оболочке определил в 1925 году швейцарский физик Вольфганг Паули (1900–1958). Еще раньше над этой проблемой работали Арнольд Зоммерфельд и Нильс Бор. Хотя причина строения оболочек еще не была известна Бору, он смог предсказать, что неизвестный элемент под номером 72 (гафний) должен химически быть похожим на цирконий (40). Вскоре, воодушевленные этим прогнозом, датский физик Дирк Костер и венгерский химик Георг фон Хевеши, в Институте Нильса Бора открыли новый элемент.

Но решил проблему электронных оболочек Паули: он сделал вывод, что число электронов в разных оболочках ограничено тем, что стали называть принципом запрета Паули: два электрона в атоме не могут быть в одинаковом квантовом состоянии.

Рис. 17.5. Схема ковалентных связей в молекуле метана. Ядра показаны символами элементов С и H, а электронные оболочки — кругами. Электроны показаны темными кружочками (углерод) и темными квадратами (водород). Каждый из четырех атомов водорода делит свой электрон с углеродом для образования ковалентной связи и создания молекулы метана. Заметим, что в результате все оболочки заполнены: два электрона на внутренней оболочке и восемь электронов на внешней.

Состояния электрона описываются целыми числами, которые соответствуют орбитам электрона Бора и Зоммерфельда. Кроме того, электрон обладает спином, или состоянием вращения. На каждой орбите может быть не более двух электронов, один из которых вращается вокруг своей оси в направлении своего обращения по орбите вокруг ядра (как и большинство планет в Солнечной системе), а другой электрон — в обратном направлении. Вращение электрона вокруг своей оси нельзя понимать буквально; это лишь способ описать два спиновых состояния. Явлению атомных уровней нет точного аналога в нашей повседневной жизни.

Принципом запрета Паули определяется структура электронного облака вокруг атомного ядра и различие в химических свойствах элементов. Он также превращает атомы в твердые сферы, которые не могут легко проникнуть друг в друга, несмотря на то что про атом, следуя модели Бора, можно сказать, что в основном он состоит из пустоты.

Здравый смысл и реальность.

Квантовая физика оказалась очень точной в объяснении свойств материи, и в этом смысле она «правильная». Однако концептуальные основы квантовой теории все еще обсуждаются и изучаются. Явления микромира настолько отличаются от тех, к которым мы привыкли в макроскопическом мире, и от «здравого смысла», что нас изумляет то, как более глубокий слой действительности отражен в квантовой физике. Одним из наиболее влиятельных мыслителей в области философских аспектов квантовой механики был Нильс Бор.

Основой старой физики была свободная частица, движущаяся с постоянной, точно известной скоростью. Но затем принцип неопределенности Гейзенберга сообщил нам, что мы ничего не знаем о положении частицы: она везде, и в то же время ее нет нигде во Вселенной! Классическая частица просто не может жить в квантовом мире. Равно как и знакомое нам понятие орбиты становится неопределенным.

Рассмотрим электрон, который покинул точку А и позже наблюдался в точке В (рис. 17.6). Лаплас, защитник механики Ньютона, вычислил бы орбиту между этими двумя точками и мог бы точно сказать вам, где на орбите был электрон в каждое мгновение своего путешествия и с какой скоростью он двигался. Принцип неопределенности не позволяет так подробно описать движение этой частицы. Электрон наблюдался в точках А и В, но мы действительно не знаем, где он был в промежутке. Самое большее, что мы можем сделать, это вычислить вероятности любой траектории электрона между этими двумя точками.

Если у электрона нет определенной орбиты, то откуда он знает, куда двигаться? Можно сказать, что электрон пробует одновременно все пути. Каждый путь представлен электронной волной. Когда волны всех путей складываются друг с другом, то в большинстве точек они гасятся. Только в некоторых точках они в результате интерференции усиливаются, там и возникает высокая вероятность найти электрон. Точка В как раз такая. Но каким же был реальный путь от А до В? Ответ: все пути или ни один из них, как вам больше нравится. Идея орбиты потеряла свой смысл. Когда мы говорим о более массивных телах, то подходим к классической орбите. Для них интерференционная картина всех траекторий дает высокую вероятность тонкой линии, соединяющей точки А и В. Поэтому в повседневной жизни мы спокойно можем использовать концепцию Лапласа.

Рис. 17.6. Путь частицы от точки А к точке В. Чтобы найти самую короткую траекторию, частица проверяет все возможные пути. Волна, связанная с частицей, разрушительно интерферирует с любой другой, за исключением прямой линии (пунктир), соединяющей А и В. Согласно квантовой теории, частицу можно найти с наибольшей (но не 100 %-ной) вероятностью именно на этой линии.

А что случилось со Вселенной Лапласа в виде часового механизма, который, будучи однажды заведенным, работает «как часы»? Принцип неопределенности разрушает этот механизм еще до того, как вы смогли бы запустить его. Предположение Лапласа, что «если бы положения и скорости всех тел были известны в начальный момент времени», не может осуществиться, так как и в положениях, и в скоростях есть неопределенность: даже если бы одно из них можно было в какой-то момент измерить, второе осталось бы неопределенным. Случайная материализация частицы даже за непроницаемой стеной, как при туннелировании, делает предсказание будущего невозможным.

В это трудно поверить, и для многих физиков «старой гвардии» это было неприемлемо. Даже используя математические методы квантовой физики, они не могли принять концепции, стоящие за этими формулами. В некоторой степени это было похоже на первые годы после Коперника, когда его методы вычислений широко использовали, а систему мира с Солнцем в центре не признавали.

Возможно, самым сомневающимся в интерпретации квантовой механики был Альберт Эйнштейн, который говорил: «Бог не играет в кости». Для опровержения «неопределенного характера» квантовой физики он придумал мысленные эксперименты, в которых можно было бы обойти принцип неопределенности. У Бора и других сторонников квантовой философии на эти аргументы всегда имелся ответ. Но был один эксперимент, который требовалось провеет», чтобы выяснить, кто прав, а кто нет. Этот эксперимент предложили Эйнштейн и его коллеги Борис Подольский и Натан Розен.

Идея Эйнштейна, Подольского и Розена по сути была такой (сами они представляли ее немного иначе): пусть две частицы сталкиваются и затем удаляются друг от друга. В результате столкновения положения и скорости обеих частиц становятся взаимозависимыми. Если мы измерим скорость частицы 1, то скорость частицы 2 легко вычислить без измерения. Положение же частицы 2 можно при этом точно измерить. Тогда окажется, что для частицы 2 мы можем точно определить и скорость, и положение в любой момент времени после столкновения. Этот явный конфликт с принципом неопределенности Эйнштейн, Подольский и Розен использовали как пример, чтобы показать, что система квантовой механики неполна. Однако в ответ на это Нильс Бор заметил, что, когда измеряется скорость частицы 1, сам процесс этого измерения изменяет состояние измерительного прибора. По этой причине точное измерение координаты частицы 2 тем же прибором будет уже невозможным. Так действует здесь принцип неопределенности.

В 1964 году ирландский физик Джон Белл (1928–1990) перевел описанный выше мысленный эксперимент в форму, пригодную для реальных измерений. В 1982 году Ален Аспе осуществил эксперимент в Париже. Опыт показал, что Эйнштейн с коллегами ошибался. Вы не можете обмануть частицу 2. Она знает об измерении частицы 1, даже если эти частицы не успевают обменяться информацией со скоростью света. Эти две частицы являются частями одной системы.

Так было показано, что принцип неопределенности — это фундаментальное свойство природы, и вы не можете обойти его. Но что самое интересное, на него можно опереться в ситуации, которую без него трудно было бы понять. Примером служит вакуум.

Что такое вакуум? Уберите из пространства все вещество, излучение, силовые поля, тогда все, что останется, можно назвать вакуумом. Вы думаете, что это скучно? Напротив — вакуум полон событий. По Гейзенбергу, энергия любого «события» тем более неопределенна, чем короче происходящее. Если даже средняя энергия вакуума может быть нулевой, то на коротких интервалах времени принцип неопределенности позволяет частицам возникать ниоткуда и исчезать никуда. Говорят, что такие частицы живут за счет «займа Гейзенберга».

Таким образом, вакуум заполнен частицами. Хотя каждая частица живет крошечный промежуток времени, на замену им постоянно рождаются новые. Все обычные постоянные частицы плавают в этом «море» частиц (рис. 17.7. Позже мы обнаружим, что вакуум может иметь еще более странные свойства, которые управляют эволюцией всей Вселенной.

Рис. 17.7. Пары частица-античастица рождаются и аннигилируют даже в космическом вакууме.

Глава 18 Элементарные частицы

К 1932 году сложилось довольно простое представление о структуре вещества. Считалось, что атомное ядро состоит из протонов и нескольких электронов. Эти электроны служили для нейтрализации электрического заряда некоторых протонов, поскольку атомный вес всех элементов, за исключением легкого изотопа водорода, превышает их атомный номер, указывающий электрический заряд ядра. Явление бета-излучения, когда электрон вылетает из ядра, поддерживало мнение о том, что электроны входят в состав ядра. Все вещество состоит из двух типов элементарных частиц: из легких отрицательно заряженных электронов и массивных положительных протонов. Из комбинаций этих частиц можно собрать ядро любого элемента. Добавив нужное число обращающихся вокруг ядра электронов, можно получить любой элемент. А химические соединения элементов дают все многообразие вещества во всех его формах.

Эта простая картина рухнула в «сумасшедшем» для физиков 1932 году. Первым значительным событием этого года стало открытие новой элементарной частицы — нейтрона. Главная заслуга в этом принадлежит Джеймсу Чедвику (1891–1974). Он был студентом Резерфорда в Манчестере, а в момент открытия нейтрона работал заместителем директора Кавендишской лаборатории.

Ядерная сила.

Если бериллиевую мишень бомбардировать быстрыми альфа-частицами, то бериллий начинает испускать неизвестные глубоко проникающие лучи. Сначала Чедвик обнаружил, что эти лучи не являются электромагнитным излучением, а состоят из частиц. Затем он сделал вывод, что эта частица не может иметь электрического заряда, поскольку она проникает в вещество гораздо легче, чем протоны. И, наконец, его опыты со столкновениями показали, что масса этой частицы примерно равна массе протона. Чедвик назвал эту частицу нейтроном из-за ее электрической нейтральности. Написанная им тогда фраза висит в Библиотеке Тринити-колледжа в Кембридже: «Эврика! Я нашел ее!» Но он не верил, что это была элементарная частица, а считал, что она состоит из протона и электрона (то же самое предполагал Резерфорд еще в 1920 году).

В 1932 году в журнале Nature Чедвик высказал подозрение, что нейтрон может быть элементарной частицей. Эта мысль укрепилась спустя два года, когда Чедвик и Морис Гольдхабер измерили массу нейтрона: он оказался немного тяжелее, чем протон и электрон вместе взятые. Это противоречило модели сложной частицы. Более того, вскоре обнаружилось, что между ядерными частицами действует раннее неизвестная сила, которая не различает протоны и нейтроны. Следовательно, нейтрон такая же элементарная частица, как протон.

Эта ядерная сила должна быть силой притяжения, чтобы заряженные протоны не смогли вытолкнуть друг друга из ядра. Внутри ядра эта сила должна превосходить электрическое отталкивание протонов. По современным данным, ядерная сила притяжения между двумя протонами превышает их электростатическое отталкивание примерно в 100 раз. С другой стороны, действие этой силы не может распространяться далеко за пределы атомного ядра, где доминирует электрическая сила, удерживающая электроны в атоме. Поэтому ядерная сила должна ослабевать с расстоянием быстрее, чем по закону обратных квадратов ослабевает электростатическая (кулоновская) сила.

Эту странную ядерную силу объяснил Хидеки Юкава (1907–1981), первый японец, получивший Нобелевскую премию в 1949 году. Чтобы объяснить, как влияние ядерной силы передается между частицами, Юкава предложил новую идею: частица «сообщает» вокруг о своем существовании, излучая частицы-вестники. Когда вестник встречает другую частицу, он передает информацию о своем источнике, и получающая ее частица знает, как на это реагировать. Когда частицы связаны между собой посредством вестников, они знают, что нужно держаться вместе и не разбегаться.

Эта идея была не такой уж необычной для объяснения ядерной силы: электромагнитную силу можно объяснить точно так же. «Кусочки» электромагнитного поля — энергетические пакеты — летают между зарядами, неся свои сообщения. С этой точки зрения, поле электромагнитных сил состоит из фотонов.

Согласно Юкаве, главное различие между электромагнитным полем и полем ядерной силы состоит в массе вестника. Фотоны электромагнитного поля не имеют массы, в то время как вестники поля ядерной силы являются частицами с массой, отличной от нуля. Юкава предсказал, что эти частицы в 200–300 раз тяжелее электрона. Таким образом, вестник ядерной силы должен располагаться по массе между ядерными частицами и электроном (протон в 1836, а нейтрон в 1839 раз тяжелее электрона). Частицы такого типа называют мезонами, из греческого «meso» — средний. Область влияния частицы-вестника зависит от ее массы: чем тяжелее вестник, тем меньше область. Только частицы без массы, такие как фотоны, могут распространять свое влияние на любое расстояние.

В современной физике метание частиц-вестников взад и вперед заменило собой вихри Декарта, действие на расстоянии Ньютона, силовые линии Фарадея и волны в эфире. Разумеется, теориями Ньютона и Фарадея все еще пользуются для вычисления гравитационной и электромагнитной силы. Однако новые силы, открытые в XX веке, лучше описываются методом Юкавы, и сильное ядерное взаимодействие стало первым тому примером.

Юкава предсказал свои частицы-вестники в 1935 году. Через два года в потоках космических лучей (частицы, приходящие на Землю из космоса) была обнаружена новая частица в 207 раз тяжелее электрона; она была хорошим кандидатом в вестники. Время ее жизни оказалось маленьким: в среднем за две микросекунды она разрушается на другие частицы. Однако дальнейшие исследования показали, что эта частица, названная мюоном, скорее является тяжелой формой электрона, а не вестником. Прошло еще 12 лет, и группа Сесила Пауэлла (1903–1969) в Бристольском университете впервые увидела частицу Юкавы — пион. Существуют два типа пионов — заряженный (в 273 раза массивнее электрона) и нейтральный (264 массы электрона).

По нашим меркам, заряженный пион живет очень мало: в среднем 2,6 x 10-8 с. Но нам следует сравнивать время его жизни с «ядерным годом» — временем, необходимым ядерной частице для одного оборота вокруг ядра, а оно составляет всего 10-22 с. Так что пион живет в 1014 раз дольше ядерного года, что выглядит вечностью в ядерной шкале времени. В этой шкале даже нейтральный пион, распадающийся в среднем за 10-16 с, тоже живет очень долго. Если предположить, что «предназначением» пионов в природе является передача ядерной силы, то им нет необходимости жить так долго.

Явления в атомных ядрах и слабая сила.

Мы дошли до картины, в которой атомное ядро содержит одну или нескольких ядерных частиц, движущихся друг вокруг друга в маленьком объеме ядра под действием притяжения ядерной силой. Существует два типа ядерных частиц: протоны и нейтроны. Можно представить облако пионов, мечущихся между этими частицами и создающих ядерную силу. Ядро также может обладать плотными скоплениями двух протонов и двух нейтронов, которые могут выбрасываться из ядра как альфа-частицы. По аналогии с электроном, прыгающим между энергетическими уровнями, ядерные частицы могут так перестраивать свои орбиты, что энергия высвобождается в виде высокоэнергичного гамма-излучения. Энергия ядерных процессов значительно больше, чем атомных, примерно в миллион раз. Этим объясняется преимущество (на единицу веса) ядерного топлива, используемого на атомных электростанциях, по сравнению с химическим топливом обычных электростанций. Этим же объясняется гигантская мощь ядерных взрывов.

Если в ядре нет электронов, то как быть с бета-излучением, когда из ядер вылетают электроны? Это объяснил блестящий итальянский физик Энрико Ферми всего через год после открытия нейтрона (рис. 18.1).

Рис. 18.1. Энрико Ферми (1901–1954) внес значительный вклад в ядерную физику.

Ферми предположил, что внутри атомного ядра действует еще и другая ядерная сила, названная слабой силой. Она приводит сначала к рождению электрона, а затем к его выбросу из ядра; при этом нейтрон превращается в протон. Мы поймем этот процесс лучше, когда познакомимся с внутренней структурой нейтрона и протона.

Теория Ферми замечательна еще и тем, что она предсказала существование новой элементарной частицы — нейтрино. На этот «маленький нейтрончик» не действуют ни электромагнитная сила, ни сильное ядерное взаимодействие. Его единственная связь с внешним миром осуществляется посредством слабой силы. Область действия слабой силы очень мала — всего 1 % диаметра протона, а по своему усилию она в 100 000 раз уступает сильному ядерному взаимодействию. Так что нейтрино должно очень тесно приблизиться к своему соседу, чтобы они почувствовали влияние друг друга. Поэтому вначале о существовании нейтрино догадались косвенно, заметив странную потерю энергии при бета-распаде. Вольфганг Паули понял, что потерянная энергия ускользает в виде неуловимых частиц. Нейтрино обычного типа имеет массу менее 10-4 массы электрона; существует и другие виды нейтрино (мы с ними познакомимся), массы которых еще меньше.

Для нейтрино столкновение с другими частицами настолько маловероятно, что оно может свободно пройти сквозь свинцовую стену толщиной в световые годы! Только при огромном количестве нейтрино некоторые из них удается захватить приборами. Впервые в 1955 году нейтрино было зарегистрировано вблизи ядерного реактора в Саванна-Ривер (США). За последние десятилетия были обнаружены нейтрино из «термоядерного реактора» в центре Солнца и из других астрономических источников. Считается, что нейтрино — одни из самых многочисленных частиц во Вселенной, но их очень трудно наблюдать.

Всего лишь через день после того, как Чедвик послал свою статью об открытии нейтрона в журнал Nature, другой журнал, Physical Review, получил известие о втором важнейшем открытии 1932 года, сделанном группой ученых из Колумбийского университета (Нью-Йорк) под руководством химика, физика и астронома Гарольда Юри (1893–1981).

Вспомним объяснение странного атомного веса хлора — 35,46, лежащее почти посередине между двумя целыми числами. В природе существует два вида хлора, два «изотопа», с весами 35 и 37. Вообще, у большинства химических элементов есть по нескольку изотопов. Всего химических элементов известно немногим более ста, а число изотопов превышает 2000, хотя стабильны из них только 280. В ядре хлора 17 протонов соединяются с 18 или 20 нейтронами. Таким образом, атомное число, определяющее химические свойства, в обоих случаях равно 17, но атомные веса различаются: 17 + 18 и 17 + 20; кроме того, существуют редкие изотопы хлора: 17 + 19 = 36 и 17 + 23 = 40.

Еще до 1932 года появилось предположение, что водород может иметь несколько изотопов, так как атомный вес водорода в природе превышает вес протона. Различие настолько мало (относительное превышение составляет около 10-4), что сказать что-либо определенное было невозможно. Требовалось выделить в чистом виде тяжелую форму водорода, но это очень трудно, поскольку химические свойства изотопов одинаковые. Юри с коллегами смог сделать это. Теперь уже не составляло труда показать, что тяжелый водород имеет атомный вес 2, а значит, его ядро содержит один протон и один нейтрон. Это вещество назвали дейтерием, хотя по сути это водород, точнее — его тяжелая разновидность. Но дейтерий заслужил свое «отдельное» название: он играет ключевую роль в изучении ядерной силы, так как движение двух тел легче исследовать, чем движение трех тел (вспомним о сложной задаче трех тел, движущихся под действием гравитации; см. главу и).

В ядрах элементов возможны не любые комбинации протонов и нейтронов. В массивных ядрах число нейтронов немного больше числа протонов. Если мы пытаемся искусственно уменьшить число нейтронов настолько, что оно выйдет за рамки возможных значений, ядро станет неустойчивым и начнет меняться за счет радиоактивности до тех пор, пока не превратится в стабильное ядро (рис. 18.2).

Рис. 18.2. Ядра состоят из протонов (серые шарики) и нейтронов (темные шарики). Ядро урана состоит из 92 протонов и 146 нейтронов. Это одно из самых тяжелых среди известных атомных ядер.

Частицы и ускорители.

Хотя о существовании атомного ядра было известно с 1911 года, настоящее рождение ядерной физики произошло в 1932 году. В тот «сумасшедший» год, кроме уже упомянутых открытий, начал действовать самый важный прибор ядерной физики — ускоритель частиц. До этого момента атомные ядра исследовали путем их бомбардировки частицами, вылетающими из радиоактивных веществ. При стоимости, например, радия в 100 000 долларов за грамм это делало создание сильного потока частиц чрезвычайно дорогам. Кроме того, для расщепления тяжелых ядер требуется поток частиц, имеющих скорость гораздо выше той, с которой частицы испускаются природными источниками.

Заряженные частицы можно ускорить, если дать им пройти через большую разность потенциалов. Если электрон пролетает через разность потенциалов 1 вольт, он ускоряется до энергии в 1 электронвольт (эВ, удобная единица энергии). В химических реакциях изменение энергии на атом обычно составляет около 1 эВ. А в ядерных реакциях типичная энергия на атомное ядро составляет миллионы электронвольт (МэВ).

Джон Кокрофт (1897–1967) и Эрнест Уолтон (1903–1995) построили в Кавендишской лаборатории ускоритель с разностью потенциалов в 700 000 вольт. В 1932 году, используя эту разность потенциалов, они ускорили протоны и бомбардировали ими литиевую мишень, за которой поместили экран из сульфида цинка, регистрирующий вспышки, вызванные альфа-частицами. Бьющие по литию протоны расщепляют ядра лития на альфа-частицы (ядра гелия). Это и было первым искусственным превращением одного атомного ядра в другое (рис. 18.3).

Тогда же американец Эрнест Лоуренс (1901–1958) разработал более мощный ускоритель, названный циклотроном (рис. 18.4). Лоуренс закончил Йельский университет и затем перебрался в Калифорнийский университет. Там он обнаружил статью норвежца Рольфа Видерое, который считал, что частицы легко можно ускорять шаг за шагом, если они движутся по кругу отклоняемые магнитным полем. На каждом обороте частицы проходят сквозь разность потенциалов и увеличивают свою скорость. В 1932 году Лоуренс со своим студентом построили такой ускоритель и использовали его для разгона частиц до энергий более 1 МэВ. Они смогли подтвердить результаты Кокрофта и Уолтона. Циклотроны вскоре стали широко использоваться: через пять лет в мире работало уже около двадцати таких ускорителей.

Рис. 18.3. В первых ускорителях частиц умножитель напряжения Кокрофта-Уолтона создавал необходимый перепад напряжения. Здесь показано такое устройство, созданное в 1937 году фирмой «Филипс» и сейчас хранящееся в Национальном музее науки в Лондоне.

В начале 1950-х годов циклотрон получил дальнейшее развитие в виде синхротрона, в котором энергия столкновений превзошла 1000 МэВ (это 1 ГэВ, гигаэлетронвольт). Сейчас самый мощный ускоритель находится в Европейском центре ядерных исследований (ЦЕРН) в Женеве. К тому же в ЦЕРНе заканчивается строительство нового коллайдера (ускоритель на встречных пучках) — Большого адронного коллайдера (БАК), занимающего круговой туннель длиной 27 км. Этот туннель находится на глубине около 100 метров между Женевским аэропортом и ближайшими Юрскими горами. Прежде чем попасть в это огромное кольцо, частицы будут ускоряться поэтапно, каждый раз увеличивая свою скорость и энергию: предварительные стадии включают в себя линейный ускоритель, бустер, протонный синхротрон и протонный суперсинхротрон. В главном круговом ускорителе, двигаясь в противоположных направлениях по двум трубам, протоны будут разгоняться до скорости в 0,99 999 999 от скорости света! БАК будет сталкивать протоны с энергией 7 ТэВ (ТэВ = 1000 ГэВ) каждый, с полной энергией столкновения 14 ТэВ. Каждый протон будет обладать кинетической энергией летящего комара — для протона это гигантская энергия! При таких энергиях, в миллионы раз превышающих те, которые достигал Лоуренс, могут рождаться частицы совершенно нового типа (рис. 18.5).

Рис. 18.4. Схема работы циклотрона из патента Лоуренса 1934 года.

В 1932 году частицы детектировались с помощью камеры Вильсона, заполненной водяным паром в сверхкритическом состоянии, так что капельки воды конденсировались вдоль траекторий заряженных частиц. С помощью фотографии можно было обнаружить траекторию заряженной частицы, которая только что пролетела сквозь камеру. Магнитное поле в камере меняло направление траектории: определив, насколько сильно и в каком направлении искривилась траектория, можно было отождествить частицу. В 1950-е годы стал использоваться более совершенный детектор — пузырьковая камера. В ней траектории частиц представлены в виде четких линий из пузырьков в жидкости. Их можно сфотографировать с разных направлений и проанализировать. Сейчас применяется много новых высокоавтоматизированных методов детектирования.

Четвертое крупное открытие в 1932 году сделал Карл Андерсон (1905–1991), изучавший траектории космических лучей в камере Вильсона. Среди прочих частичек американский физик нашел одну, траектория которой была в точности как у электрона, но в магнитном поле она отклонялась в другом направлении, то есть частица имела положительный заряд (рис. 18.6). Андерсон многими способами проверил этот удивительный результат и затем опубликовал его. Так был открыт позитрон.

Рис. 18.5. Компоненты Большого адронного коллайдера в ЦЕРНе. Несколько последовательных систем постепенно ускоряют протоны до высоких скоростей. В туннеле коллайдера находятся крупные детекторы для регистрации взаимодействия пучков протонов, летящих по кругу навстречу друг другу (рис. с домашней страницы ЦЕРН: http://public.web.cern.di/Public).

Андерсон не знал, что английский физик Поль Дирак (1902–1984) много лет назад предсказал существование позитрона. Не только электрон, но и другие элементарные частицы должны иметь двойников с противоположным зарядом. Такие двойники называются античастицами. Наряду с электроном, протон должен иметь свою античастицу. В принципе, должен существовать целый «антимир», в котором атомные ядра имеют отрицательно заряженные антипротоны, а вокруг ядра обращается облако положительно заряженных позитронов. Все химические реакции должны проходить там так же, как в нашем мире.

Антивещество, состоящее из античастиц, не существует в значительных количествах. Это легко понять: вещество и антивещество не могут мирно сосуществовать. Когда встречаются электрон и позитрон, они уничтожают друг друга, превращаясь в гамма-излучение. Точно так же уничтожают друг друга протоны и антипротоны (которые были обнаружены в 1955 году). Поскольку каждая частица должна иметь свою античастицу, список известных частиц сразу стал вдвое длиннее. Благодаря открытиям необычного 1932 года, Чедвик, Андерсон, Юри, Лоуренс, Кокрофт и Уолтон стали лауреатами Нобелевской премии 1934 и 1951 годов.

Рис. 18.6. Гамма-квант проникает в пузырьковую камеру сверху и рождает пару электрон-позитрон. Под действием магнитного поля орбита позитрона заворачивает налево, а орбита электрона — направо. Из той же точки выходит траектория еще одного электрона, более быстрого. Ниже видно рождение еще одной электрон-позитронной пары. Рисунок основан на фотографии, полученной пузырьковой камерой Лоуренсовской лаборатории в Беркли.

Кварк: самая элементарная частица?

Некоторое время протоны и электроны считались настоящими неделимыми «атомами». Но оказалось, что природа не настолько проста. По мере увеличения мощности ускорителей росло и число обнаруженных элементарных частиц. Как и столетие назад в случае с химическими элементами, в ряду элементарных частиц тоже наметилась некоторая систематика. Частицы делятся на три основных группы: лептоны, адроны и фотоны. Лептоны не чувствуют сильного ядерного взаимодействия, и размер их настолько мал, что во всех проведенных до сих пор экспериментах со столкновениями они вели себя как точечные массы («лепто» по-гречески означает «маленький»). К лептонам относятся электрон, мюон и тау-лептон (тауон). Последний был открыт в 1977 году. Хотя он в 3500 раз тяжелее электрона, он входит в состав лептонов из-за других своих характеристик. Кроме этих трех частиц, к лептонам относят и три типа соответствующих им нейтрино, которые увеличивают число известных лептонов до шести; а если к этому прибавить и античастицы, то число лептонов увеличится до 12.

Адроны чувствуют сильное ядерное взаимодействие. К ним относятся ядерные частицы (протоны и нейтроны) с их родственниками, называемые барионами, а также «вестники» ядерного взаимодействия, пионы с их родственниками, называемые мезонами. В 1960-е годы стало ясно, что адроны не являются истинно элементарными частицами, а состоят из более мелких частей — кварков. Когда протоны и нейтроны бомбардируются электронами и мюонами, они ведут себя как если бы они в основном были пустыми, за исключением нескольких точечных центров (похоже на эксперимент Резерфорда!) Диаметр протона около 10-12 мм; это как раз та область, где движется кварк. Сам кварк намного меньше; вероятно, он точечный.

Начиная с 1950-х годов Мюррей Гелл-Манн стал искать порядок среди элементарных частиц и, как и Менделеев до него, обнаружил закономерности и предсказал новые частицы. Гелл-Манн и Джордж Цвейг — оба из Калифорнийского технологического института — в 1964 году независимо друг от друга предположили, что протон и нейтрон состоят из трех кварков. Вообще-то вначале на кварки смотрели как на удобный математический прием для проведения вычислений в сложной физике элементарных частиц. Идея кварков не получила широкого одобрения, поскольку сами кварки не были найдены.

Казалось бы, заметить кварки было несложно, ведь они обладают дробным электрическим зарядом. Самые важные кварки — это верхний кварк (up quark) с электрическим зарядом +2/3 и нижний кварк (down quark) с зарядом -1/3 (как обычно, заряд электрона в этих единицах равен -1). Но в пузырьковой камере не видно никаких дробных зарядов: все частицы имеют либо заряд электрона, либо кратный ему заряд. Тем не менее твердые ядра внутри протона и нейтрона хорошо согласуются с теорией кварков; похоже, что по крайней мере там кварки существуют. Сейчас считается, что кварки прочно связаны в ядерных частицах. В отличие от других частиц, кварки не могут существовать по отдельности: им требуется один или два партнера.

В модели кварков барион состоит из трех кварков. Так, протон сложен из двух верхних кварков и одного нижнего кварка, а нейтрон состоит из двух нижних кварков и одного верхнего кварка. Мезон же состоит из двух кварков, один из которых является обычной частицей, а второй — античастицей. Например, нейтральный пион — это комбинация верхнего кварка со своим антикварком, а положительный пион состоит из верхнего кварка и нижнего антикварка (рис. 18.7). В исходной кварковой модели был и третий кварк, названный странным кварком (strange quark). Он был нужен для объяснения так называемых странных частиц.

Рис. 18.7. Протон (слева) состоит из двух верхних кварков (u) и одного нижнего кварка (d). Справа показан пион (?-мезон), состоящий из верхнего кварка и нижнего антикварка.

До начала 1970-х годов было достаточно трех видов кварков для объяснения всех известных адронов. Затем группа Бартона Рихтера из Стенфордского университета и группа Самюэля Тинга из Брукхейвенской национальной лаборатории открыли новую частицу, которая не укладывалась в систему Гелл-Манна и Цвейга. Рихтер назвал ее ? («пси»), а Тинг — J («джей»). Даже если частица J/? («джей-пси») является мезоном, ее масса примерно втрое превышает массу протона. Чтобы понять это, потребовалось ввести новый кварк, названный очарованным кварком (charm quark). Таким образом, J/? состоит из очарованного кварка и очарованного антикварка. Реальность очарованного кварка вскоре была подтверждена: обнаружились и другие частицы, в состав которых входит очарованный кварк.

Всего лишь через два года пришлось ввести еще один кварк, прелестный кварк (bottom quark). Группа под руководством Леона Ледермана из лаборатории им. Ферми близ Чикаго нашла частицу, названную и (ипсилон), масса которой в десять раз превышает массу протона. Это массивный мезон, комбинация двух кварков — прелестного кварка и прелестного антикварка. Последним кварком — хотелось бы в это верить! — стал истинный кварк (top quark), открытый в 1995 году в лаборатории им. Ферми. Таким образом, полное число кварков равно шести, как и число лептонов (или 12, если считать античастицы). Три из них — верхний, очарованный и истинный — имеют электрический заряд +2/3, а остальные три — нижний, странный и прелестный — обладают зарядом —1/3.

Удивительно, что из всех базовых частиц только четыре необходимы как строительные блоки для обычного вещества: из лептонов — только электрон и электронное нейтрино, а из кварков — только верхний и нижний. Остальные элементарные частицы, похоже, лишние. Эти четыре важнейшие частицы называются частицами первого поколения; остальные восемь от носят ко второму и третьему поколениям. Мы не знаем, почему природа копирует себя еще двумя поколениями частиц большей массы (врезка 18.1).

Врезка 18.1 Поколения частиц

Обычное вещество состоит из частиц поколения I: электрона, электронного нейтрино, верхнего и нижнего кварков. Массы (в массах электрона) указаны в скобках. Массы кварков сомнительны, массы нейтрино практически неизвестны. Заметим, что верхний и нижний кварки гораздо легче протона и нейтрона, которые из них состоят. Большая часть массы ядерных частиц обусловлена связью кварков друг с другом.

Вестники слабой силы.

Что такое эта уже упомянутая слабая сила, действующая на нейтрино? В 1960 году Стивен Вайнберг из Гарвардского университета и Абдус Салам (1926–1996) из Имперского колледжа в Лондоне независимо предложили теорию, согласно которой слабая сила и электромагнитная сила являются двумя сторонами одного явления, получившего название электрослабое взаимодействие. Когда-то Максвелл доказал, что электрические и магнитные явления — это две стороны единого электромагнитного взаимодействия; а теперь в эту компанию попала и слабая ядерная сила.

Из теории Вайнберга-Салама следовал важный прогноз: слабую силу должны переносить сверхтяжелые частицы («W» и «Z» конце 1970-х годов в ЦЕРНе физики под руководством Карло Руббиа и Симона ван дер Меера начали работу по повышению энергии столкновения пучков настолько, чтобы могли родиться эти частицы. В январе 1983 года появились первые свидетельства о частице W, а через несколько месяцев была найдена и Z-частица.

W заряжена либо отрицательно, либо положительно и весит как 88 протонов, а частица Z нейтральна и немного тяжелее — ее масса примерно как у 99 протонов. Если вестник слабой силы имеет такую большую массу, то неудивительно, что сама эта сила такая слабая. Действие силы вызвано метаниями частиц-вестников туда-сюда. Тяжелая частица не может отлетать далеко, и она не может метаться слишком часто. Поэтому вероятность того, что проходящая мимо частица может столкнуться с одной из таких частиц-вестников — W или Z, очень мала, а значит, сила слаба.

На первый взгляд может показаться, что с добавлением к нашему списку еще трех более тяжелых частиц все только усложняется. Но оказалось, что это обеспечивает объединение электромагнитной и слабой сил, отчего существенно упрощается вся физическая картина. Мы видим, что электрослабая сила переносится четырьмя разными частицами: фотоном, положительным W, отрицательным W и Z. Поскольку у фотона нет массы, ее влияние простирается на огромные расстояния; остальные три «фотона» распространяют свою силу на очень короткое расстояние. Откуда эти «фотоны» берут свою массу, пока не ясно. Теория Питера Хиггса предсказывает существование «частиц Хиггса», которые пока не найдены (это одна из задач Большого адронного коллайдера в ЦЕРНе). Именно они должны «давать взаймы» свою массу фотонам слабого взаимодействия.

Нобелевскую премию за идею объединения электромагнитной и слабой сил Вайнберг и Салам разделили с Шелдоном Глэшоу (Гарвардский университет), высказавшим идею о четырех типах фотонов в 1961 году. Руббиа и ван дер Меер были отмечены Нобелевской премией через год после открытия ими частиц W и Z.

С помощью кварков и слабой силы можно объяснить радиоактивное бета-излучение. В этом процессе внутри нейтрона один нижний кварк под действием слабой силы превращается в верхний кварк. В результате имевший нулевой заряд нейтрон становится положительно заряженным протоном. А отрицательно заряженный электрон и нейтрино с нулевым зарядом вылетают прочь, так что в этом процессе сохраняются электрический заряд и полная энергия. Эта реакция подчиняется одному из основных законов физики — закону сохранения электрического заряда. Полный заряд всех частиц до и после реакции должен оставаться неизменным. Излучаемое при бета-распаде нейтрино называют электронным нейтрино, поскольку оно связано с электроном. У него должна быть античастица — антинейтрино (рис. 18.8).

Рис. 18.8. Радиоактивный бета-распад. Нейтрон состоит из верхнего кварка и двух нижних кварков. Один из них выбрасывает наружу отрицательную W-частицу. При этом нижний кварк превращается в верхний кварк, а нейтрон становится протоном. Частица W распадается на электрон и антинейтрино.

Смотрим еще глубже: гравитация живет в многомерии?

Гравитационная сила тесно связана с кривизной и размерностью пространства. Оказывается, что силы в природе могут быть связаны с более высокими размерностями. Как мы можем определить количество пространственных измерений? Просто проведем прямые линии так, чтобы они были взаимно перпендикулярны друг другу. На листе бумаги вы можете начертить только две перпендикулярные друг к другу линии, поэтому на плоскости два измерения, плоскость двумерна. Можно представить третью линию, проведенную от плоскости прямо вверх, перпендикулярно тем двум линиям на плоскости; эта линия определит третье измерение (рис. 18.9). Но сколько бы мы ни старались, нам не удастся провести линию четвертого измерения, перпендикулярную трем уже имеющимся линиям. Таким образом, наше пространство имеет три измерения. Даже если четвертое пространственное измерение существует, оно скрыто от нас.

Рис. 18.9. Ребра прямоугольной коробки образуют три линии, перпендикулярные друг другу. В трехмерной Вселенной нельзя найти четвертую прямую, перпендикулярную всем этим трем линиям.

Идея Эйнштейна представить гравитацию как кривизну пространства выглядит настолько элегантно, что физики задумались — а нельзя ли и другие силы представить так же? К моменту завершения общей теории относительности была известна еще только одна сила — электромагнитная, которая хорошо описывалась теорией Максвелла. Эйнштейн чувствовал, что гравитация и электромагнетизм должны быть как-то связаны друг с другом. Остаток жизни он потратил на поиск единой теории.

Эту точку зрения разделял и финский физик Гуннар Нордстрём (1881–1923), опубликовавший в 1914 году в журнале Physikalische Zeitschrift общую теорию гравитации и электромагнетизма, согласно которой пространство четырехмерно (а не трехмерно), а время является пятым измерением. Нордстрём впервые ввел дополнительное измерение в наше пространство-время, так что гравитация стала всего лишь проявлением электромагнитного взаимодействия в пяти измерениях. В проекции на известные четыре измерения гравитация и электромагнетизм кажутся разными силами. Эта теория, к сожалению, оказалась ошибочной. Но сама идея унификации с использованием дополнительных пространственных измерений была рождена.

Гуннар Нордстрём был современником Альберта Эйнштейна. Инженер по образованию, он заинтересовался химией, и это привело его в Геттинген, где он учился у Вальтера Нернста. В Геттингене молодой Нордстрём стал искренним приверженцем релятивизма. После единственной статьи по химии все остальные статьи Норд-стрёма были посвящены релятивизму, электродинамике и гравитации. Свою первую релятивистскую теорию гравитации, предшественницу общей теории относительности, Нордстрём представил в 1912 году и усовершенствовал в 1913 году, во время совместной работы в Цюрихе с Эйнштейном. В 1914 году Эйнштейн и А. Д. Фоккер переформулировали эту теорию. Ее главный недостаток состоял в том, что она не предсказывало отклонения света, проходящего вблизи массивных тел. Этот эффект был открыт в 1919 году, после чего Нордстрём отказался от своей теории и работал над общей теорией относительности Эйнштейна.

После возвращения в Хельсинки Нордстрём стал доцентом теоретической физики в университете и преподавал курс элементарной физики в старших классах. В 1916–1918 годах он работал в Лейдене (Голландия). В 1918 году он занял должность профессора физики в Технологическом университете Хельсинки. До Нордстрёма в Хельсинки не было традиции заниматься теоретической физикой, поэтому его работа не находила понимания. На просьбу выделить ему деньги на заграничную командировку он получил отказ с формулировкой: «Четвертое измерение можно изучать и дома, без путешествий за границу».

В 1921 году немецкий физик Теодор Калуца (1885–1954) независимо пришел к идее объединенной теории, использующей пятое измерение. В работе Калуцы электромагнетизм тоже является следствием кривизны пространства-времени, и теперь перед нами искривленное пятимерное пространство, так что электромагнетизм становится одним из видов гравитации.

Можно ли иметь пять измерений — четыре пространственных плюс время — в противовес четырехмерной гравитации (три измерения в пространстве плюс время), с которой мы ознакомились в теории Эйнштейна? Все бы было неплохо, если бы добавление еще одного обычного пространственного измерения не усложнило задачу. В 1747 году Иммануил Кант показал, что закон гравитации связан с размерностью пространства. Если гравитация ослабевает с расстоянием обратно пропорционально некоторой его степени (n), то число пространственных измерений будет n + 1. В законе Ньютона эта степень составляет n = 2, а размерность пространства равна 2 + 1 = 3. Если бы тело двигалось в другом силовом поле, с другим значением n, то можно показать, что его орбита при n больше 2 была бы очень неустойчива. Например, если бы сила гравитации с удалением от Солнца уменьшалась так, что n равнялось бы 3, то небольшие возмущения вынудили бы Землю либо упасть на Солнце, либо улететь от него. И если бы для электрической силы n равнялось 3, то вокруг ядра атома не могли бы существовать электронные оболочки. Сложные химические соединения и жизнь на Земле стали бы невозможны.

После Нордстрёма и Калуцы шведский физик Оскар Клейн (1894–1977) сформулировал теорию пятимерной гравитации. Для решения вышеупомянутых проблем Клей предположил «уплотнить» дополнительное пространственное измерение. А именно — он закрутил пятое измерение так сильно, что оно стало круговым; этот круг до того мал, что его невозможно непосредственно наблюдать даже внутри атомов. Замечательным результатом теорий пятимерной гравитации Нордстрёма-Калуцы-Клейна стало то, что они объединили гравитацию с электромагнетизмом.

Как закручены измерения в теории Клейна? В качестве примера рассмотрим кусок проволоки. Если смотреть на него издалека, то он кажется одномерным, его единственным измерением служит длина. Но если мы приблизимся к нему, то увидим, что у проволоки есть и толщина, поэтому требуется еще одно измерение для указания положения точки на окружности, охватывающей проволоку. Вот это измерение закручено (рис. 18.10).

С точки зрения Клейна, существует четвертое измерение, связанное с каждой точкой нашего трехмерного пространства. Это искривленное четвертое измерение закручено в маленькую окружность. Мы не замечаем эти окружности вокруг себя из-за их малого размера: они меньше протона настолько же, насколько сам протон меньше планеты. Даже если такое измерение существует, то неудивительно, что мы не можем его наблюдать.

С годами теория Нордстрёма-Клейна-Калуцы оказалась забыта. Но когда были открыты новые силы, физики задумались — а почему бы не описать все силы как явления кривизны пространства в более высоких измерениях? Это было сделано в теории супергравитации, которая связана с очень абстрактной и детально разработанной теорией струн. В ней утверждается, что вся материя и энергия состоят из необычайно коротких нитей, называемых струнами (вместо точечных частиц, которые обычно представляют), а также мембранных образований, называемых бранами. Заменяя точечные частицы струнами, можно объединить известные силы — электромагнитные, гравитационные, слабые и сильные ядерные. При таком подходе нет реальных сил, а только искривление пространства, которое проявляется в разных формах или влияниях («силах»).

Рис. 18.10. Свернутое измерение. Верхняя линия выглядит одномерной, но если мы увеличим на ней точку Р, то увидим, что в действительности это двумерная трубка. Второе свернутое измерение было скрыто. В теории Клейна измерения выше трех скрыты таким же образом.

До сих пор не существует окончательного варианта теории супергравитации; современные модели используют до десяти пространственных измерений (плюс время). Все измерения пространства, кроме трех, должно быть каким-то образом компактифицированы (упакованы) в крошечный объем, например закручены в семимерный шар размером в 10-32 см. Не нужно даже пытаться представить себе этот клубок измерений в нашем пространстве; все дополнительные измерения находятся вне нашего трехмерного мира.

Несколько лет назад Савас Димопулос из Стэнфордского университета и его коллеги Нима Аркани-Хамед и Георгий Двали сделали смелое предположение: возможно, что некоторые из этих дополнительных измерений не так уж сильно скручены. Заметив, что нет экспериментальных фактов, ограничивающих эту возможность, они предположили, что дополнительные измерения могут быть относительно большими, радиусом до 1 мм, то есть размером с маковое зернышко.

В этой новой гипотезе о больших дополнительных измерениях скрыта возможность решения старой загадки. Почему гравитация намного слабее других сил? Хотя электромагнетизм, а также слабое и сильное взаимодействия по силе сравнимы друг с другом, все они гораздо мощнее гравитации: как гора в сравнении с фантастически малым размером, фигурирующим в теории струн. Чтобы понять этот гигантский пробел, Димопулос с коллегами предположили не только эти большие дополнительные измерения, но и что гравитация является единственной силой, проникающей во все эти измерения (например, фотон, несущий электромагнитную силу, не может «утечь» из нашего трехмерного пространства). Следовательно, гравитация не такая уж слабая. Просто мы ощущаем ее такой слабой, поскольку она существует во многих измерениях. Гравитация «разжижается» в этом огромном дополнительном пространстве, которого мы не чувствуем.

Итак, вы бегло познакомились с некоторыми сложными областями физики и получили представление о том, какие идеи вдохновляют современных физиков. «Многомерное пространство» звучит фантастически, но нужно помнить, что корни современной супергравитации и теории струн уходят в 1910-е годы, когда рождалась общая теория относительности.

Микрокосмос связан с очень малыми размерами. Диаметр протона равен примерно 10-12 мм, но он чудовищно велик по сравнению с пространственным масштабом 10-31 мм, присутствующим в теории супергравитации. А если мы поднимем взгляд к небу, то придется в степенях десятки заменить знак «-» на «+». Например, диаметр Солнца около 10+12 мм, а диаметр наблюдаемой части Вселенной около 10+30 мм. В этом смысле человеческие существа на шкале размеров располагаются между миром субатомных частиц и миром звезд и галактик.

ЧАСТЬ III ВСЕЛЕННАЯ
Глава 19 Звезды: космические термоядерные реакторы

Теперь, овладев тайнами микромира элементарных частиц, мы можем вернуться к Большой Вселенной. Для начала обратимся к наиболее распространенным космическим объектам — звездам. Наше Солнце — типичная звезда; изучая Солнце, мы можем узнать многое о звездах. Но существуют разные типы звезд, и некоторые из них очень сильно отличаются от Солнца. Впрочем, именно эти различия помогают нам понять структуру звезд и физические процессы, определяющие их жизненный цикл. Начнем со спектров их излучения.

Спектральная классификация звезд.

В спектрах звезд часто видны линии водорода. Их интенсивность можно использовать для классификации звезд. В 1863 году иезуит отец Анджело Секки из Ватиканской обсерватории разделил звезды на четыре спектральных класса, став, таким образом, пионером астрономической спектроскопии. В 1886 году в США, в обсерватории Гарвардского колледжа, Эдуард Пикеринг (1846–1919) начал спектроскопический проект, затянувшийся на десятилетия. Для этой работы перед объективом телескопа установили призму и фотографировали небо. При этом одновременно получались спектры всех звезд, попавших в поле зрения телескопа. Были получены спектры тысяч звезд, большинство из которых отличались от спектра Солнца.

Основываясь на этом уникальном материале, сотрудницы Гарварда, среди которых выделялась Энни Джамп Кэннон (1863–1941), разработали систему спектральной классификации, которой пользуются и в наше время. Сама Кэннон исследовала и классифицировала более 250 000 спектров! В исходной системе, имеющей в основе латинский алфавит, звезде приписывался класс А, если линии Бальмера в спектре были особенно сильны. Немного более слабые бальмеровские линии определяли звезду в класс В и т. д. Если эти линии оказывались настолько слабы, что замечались с трудом, звезде приписывался класс M или даже О.

Легко заметить, что звезды имеют разный цвет. Бетельгейзе в Орионе явно красная, а наблюдаемый невдалеке от нее Сириус сияет голубым светом. Довольно быстро выяснилось, что спектральный класс и цвет звезды связаны друг с другом. Это привело к изменению системы классификации. Если расположить звезды в соответствии с их цветом, то спектральные классы О, В и А окажутся у более голубых, а классы К и M — у красных звезд. Желтое Солнце имеет спектральный класс G. Некоторые буквы алфавита выпали из списка. В итоге гарвардская система стала такой: О, В, A, F, G, К, M. Многие поколения студентов запоминают эту последовательность с помощью мнемонической фразы О, Be A Fine Girl, Kiss Me (Врезка 19.1 и рис. 19.1).

Врезка 19.1. Спектральные классы звезд.

а Глаз различает цвет звезды, только если она достаточно яркая.

в Некоторые характерные спектральные линии.

Цвет звезды очень важен: он говорит о температуре ее поверхности. Как мы уже знаем, горячее твердое тело или плотный газ излучают свет всех длин волн, или всех цветов — от фиолетового до красного, но пик цветового излучения зависит от степени нагрева тела. Если мы нагреваем кусок железа, вначале он достигает красного каления (с пиком на длинных волнах). При повышении температуры пик цвета становится желтоватым. У очень горячих тел пик излучения приходится на короткие волны, а наш глаз воспринимает цвет такого объекта как бело-голубой.

Рис. 19.1. Спектры звезд, расставленные в соответствии с температурой их поверхности. Указаны спектральные линии некоторых элементов и соединений. Звездные спектральные классы делятся на подклассы, обозначенные цифрой, следующей за буквой, указывающей спектральный класс звезды. Обратите внимание на постепенное изменение интенсивности бальмеровских линий водорода (H?, Н? и т. д.) в звездах разных спектральных классов — от горячих к холодным звездам. У звезд типа Солнца (класс G) бальмеровские линии довольно слабые.

Самыми горячими среди звезд являются О-звезды; температура их поверхности может превышать 25 000 °C. На другом конце этой шкалы находятся M-звезды: они могут быть холоднее 3200 °C. Свет от звезды класса О в основном голубой, но не чистый. В свете звезды содержатся все цвета, но в разной пропорции: у звезд класса О доминирует голубой конец спектра, а у M-звезд перевешивает красный цвет. Практически спектры звезд ведут себя так же, как спектр абсолютно черного тела. Поэтому для классификации звезды мы можем использовать только один параметр — температуру поверхности. Впрочем, этого еще недостаточно для описания всех звезд.

Мы знаем, что звезды в основном состоят из водорода. Но это не всегда было очевидно: сто лет назад считалось, что Солнце в основном состоит из железа. За прорыв в исследовании строения звезды мы должны благодарить Сесилию Пейн-Гапошкину (1900–1979). Она была урожденной Сесилией Пейн из Англии, а в 1934 году вышла замуж за Сергея Гапошкина. Защищенная ею в 1925 году в Рэдклифском колледже Гарвардского университета диссертация считается одной из лучших в астрономии XX века. Не теряя мужества и работая на непрестижных и низкооплачиваемых должностях, она стала первой женщиной, избранной профессором в Гарварде. В своей диссертации она доказала, что сильные вариации интенсивности линий в спектрах звезд в основном вызваны не различием их химического состава, а различием температуры поверхности.

С учетом температурных эффектов можно определить химический состав звезд и увидеть, что водород, несомненно, самый распространенный элемент; за ним следует гелий, которого намного меньше, и совсем мало остальных элементов. Такой «космический состав» типичен для звезд и совершенно не похож на состав Земли. Это стало великим открытием.

Карлики и гиганты.

В конце XIX века обсуждались два альтернативных взгляда на эволюцию звезд. Согласно одной точке зрения, звезды рождаются горячими и голубыми, а затем, в процессе эволюции, постепенно остывают и краснеют. Другая идея заключалась в том, что в начале своей жизни звезды большие и красные, а затем они постепенно сжимаются, становясь горячее и голубее.

Из наблюдений невозможно понять, какая из этих двух версий правильная. Но можно попробовать решить проблему математически. Одним из первых попытавшихся сделать это был американский физик Джонатан Лейн (1819–1880) из Патентного бюро США, который задался вопросом, что случится с газовым облаком размером с Солнце, которое удерживается от расширения за счет собственной гравитации. Он обнаружил, что такой газовый шар не будет похож на Солнце. Тем не менее это была первая модель звезды: она указывала давление, температуру и плотности газа внутри облака на разных расстояниях от центра. Несмотря на первое разочарование, изучение газового шара продолжалось. В 1907 году Роберт Эмден из Мюнхенского технического университета опубликовал работу под названием «Газовые шары», в которой он собрал все известное по этому поводу. К тому времени теория атома была еще недостаточно разработана, чтобы с ее помощью описывать звезды в виде газовых шаров. К тому же оставалось неясно, что заставляет звезды светиться.

Датский астроном Эйнар Герцшпрунг (1873–1967) обнаружил, что одни звезды имеют умеренный размер, как у Солнца, а другие намного больше — их назвали красными гигантами. Этот вывод был сделан косвенным путем, так как видимый размер звезд на небе слишком мал, чтобы различить их диски. Чем меньше температура звезды, тем меньше энергии она излучает в секунду с квадратного метра своей поверхности. Но некоторые красные (то есть относительно холодные) звезды излучают в сотни раз больше энергии за секунду, чем наше Солнце. Значит, площадь их поверхности гораздо больше, чем у Солнца. В 1906 году Герцшпрунг рассчитал, что звезда Арктур имеет такой же размер, как орбита Марса вокруг Солнца. Лишь через много лет эти расчеты удалось подтвердить наблюдениями с помощью специальной техники, а затем и прямыми снимками с космического телескопа «Хаббл», на которых виден огромный диск красного гиганта Бетельгейзе. Генри Норрис Рассел (1877–1957) из Принстонского университета сравнил особенности гигантов и других звезд. Он обнаружил, что, несмотря на разницу в размерах, массы этих звезд близки. Это означает, что звезды-гиганты состоят из газа, который намного сильнее разрежен, чем солнечный газ, и даже более разрежен, чем земная атмосфера. Но ядра гигантов могут быть плотными.

Эти исследования привели Герцшпрунга и Рассела к выводу, что существует два типа звезд: звезды главной последовательности и красные гиганты. Можно построить так называемую диаграмму Герцшпрунга-Рассела (ГР-диаграмму), где по горизонтальной оси отложен спектральный класс или температура поверхности звезды, а по вертикальной оси — ее светимость (то есть полная мощность излучения). Чем голубее (горячее) звезда главной последовательности, тем мощнее ее излучение. На ГР-диаграмме эти звезды четко отделены от звезд-гигантов. На рис. 19.2 представлена ГР-диаграмма с некоторыми широко известными звездами. Мы видим, что Бетельгейзе находится среди звезд-гигантов, а Сириус — на главной последовательности, среди звезд, более горячих, чем Солнце. В нижней части ГР-диаграммы видны белые карлики, о которых мы расскажем позднее.

Почему на ГР-диаграмме существует узкая полоса звезд? Быть может, звезды эволюционируют вдоль главной последовательности: остывают и смещаются слева направо? Но при этом они должны были бы терять огромную массу, так как горячие звезды главной последовательности намного массивнее холодных. Поэтому выглядит невероятным, что одна и та же звезда в процессе своей эволюции может пройти вдоль всей главной последовательности. Артур Эддингтон, ставший профессором астрономии Кембриджского университета в 1913 году, был одним из пионеров исследования звезд в эпоху квантовой механики (рис. 19.3). Он вычислил, что светимость звезды в первую очередь зависит от ее массы: чем массивнее газовый шар, тем ярче он светит. Но главная последовательность как раз и является последовательностью масс. Светимость, масса и температура поверхности возрастают справа налево — от маломассивных звезд главной последовательности к более массивным ее звездам.

Рис. 19.2. На диаграмме Герцгипрунга-Рассела звезды разделены на группы: звезды главной последовательности, красные гиганты и белые карлики занимают отдельные места на диаграмме. Горизонтальная ось указывает температуру поверхности (и спектральный класс), а вертикальная — светимость звезды в единицах светимости Солнца. Разгадка смысла этой диаграммы стала одним из достижений астрономии XX века.


Отметим, что в то время все это было не так уж и очевидно, и работа Эддингтона вызвала жаркие дебаты на собрании Королевского астрономического общества между самим Эддингтоном и ведущим английским астрономом-теоретиком того времени Джеймсом Джинсом (1877–1946). В итоге прав оказался Эддингтон, хотя многие детали звездной эволюции и для него остались непонятными.

Рис. 19.3. Артур Эддингтон (1882–1944).

Внутренняя структура типичной звезды главной последовательности — Солнца.

Примерно 4,6 млрд лет назад Солнце родилось из газа, содержащего 73 % (по массе) водорода, 25 % гелия и небольшое количество более тяжелых элементов. Радиус Солнца сейчас составляет 694 000 км, мощность излучаемой им энергии равна 3,90 х 1026 Вт. Этот «светящийся шар», по-видимому, сохраняет свою светимость и размер на протяжении истории человечества, а судя по ископаемым остаткам — и на протяжении большей части геологической истории Земли.

Мы не можем заглянуть в недра Солнца, но царящие там условия можно вывести из того факта, что Солнце не расширяется и не сжимается. Чтобы удержать Солнце от коллапса, в его центре должна быть высокая температура и большая плотность вещества. Внутренние характеристики Солнца, вычисленные в модели газового шара, приведены в табл. 19.1. Изучив эту таблицу, мы видим, что температура и плотность очень круто падают от центра к поверхности, тогда как доля водорода остается неизменной во внешних двух третях солнечного радиуса и уменьшается только в самых глубоких слоях солнечного ядра (результат «сгорания» водорода).

У Солнца нет твердой поверхности. Его свет излучается с различных глубин слоя толщиной около 300 км, называемого фотосферой. Когда говорят о температуре Солнца, обычно называют цифру 5500 °C, но это средняя температура разных слоев фотосферы.

Самая холодная часть Солнца находится в верхней части фотосферы, температура там около 4300 °C. Над фотосферой лежит хромосфера, слой толщиной 2000 км. Там газ разрежен, а температура в верхней ее части достигает 100 000 °C. Над хромосферой простирается корона с температурой в миллионы градусов. Формирующий обширную корону газ очень разрежен. Он излучает мало видимого света, и увидеть его можно во время солнечного затмения, когда Луна закрывает фотосферу (см. рис. 19.10).

Мощность излучения Солнца 3,90 x 1026 Вт. Если бы эта энергия не возмещалась, Солнце не оставалось бы в равновесии. Теперь мы знаем, что энергия звезд главной последовательности вырабатывается в ядерных реакциях, в ходе которых ядра водорода объединяются в ядра гелия. В маломассивных звездах главной последовательности, включая Солнце, основной реакцией служит протон-протонная цепочка, а в более массивных звездах происходит цепь более сложных реакций.

Эти разные пути превращения водорода в гелий впервые обнаружил немецко-американский физик Ханс Бете (1906–2005) в своих теоретических работах конца 1930-х годов. Эти процессы кратко называют горением водорода (здесь «горение» в смысле ядерного процесса выделения энергии). Бете был одним из тех ученых с еврейскими корнями, кого вынудили покинуть родину. В 1967 году он получил Нобелевскую премию по физике за работы по ядерному синтезу в звездах.

Таблица 19.1. Современные внутренние характеристики Солнца.

Жизнь после главной последовательности.

Большую часть жизни звезда проводит на главной последовательности, превращая и превращая водород в гелий. Изучая табл. 19.1 с характеристиками недр Солнца, мы видим, что солнечная фотосфера сохраняет свои исходные 73 % массы водорода. Но чтобы построить равновесную модель ядра, нужно взять только 36 % водорода и 62 % гелия. Это согласуется с теоретической картиной, в которой водород в ядре превращается в гелий на протяжении всей жизни Солнца, а в фотосфере слишком холодно для реакций термоядерного синтеза.

Достаточно спокойная жизнь звезд на главной последовательности заканчивается, когда водородное топливо истощается в горячем ядре звезды.

Массивные звезды сжигают свое топливо гораздо быстрее, чем маломассивные, несмотря на то что вначале запас топлива у них был больше. Это означает, что массивные звезды проводят на главной последовательности намного меньше времени, чем, например, Солнце, которое в этой фазе находится 10 млрд лет своей жизни. Причина в том, что запас топлива в звезде пропорционален ее массе, а скорость сгорания топлива (то есть светимость звезды) пропорциональна массе в четвертой степени. Поэтому время жизни звезды главной последовательности с массой, равной 10 массам Солнца, составляет всего 1/1000 от времени жизни Солнца. Звезды с массой в 30 масс Солнца светят ярче Солнца в 140 000 раз и остаются на главной последовательности около 5 млн лет. Маленькие звезды с массой вдвое меньше, чем у Солнца, имеют светимость всего 4 % от солнечной, зато на главной последовательности они остаются очень долго, около 30 млрд лет.

Когда запас топлива в самом центре звезды подходит к концу, ядро звезды начинает сжиматься, и температура в нем от этого повышается. Тогда звезда использует новое водородное топливо из оболочки, окружающей горячее гелиевое ядро. На внутреннем крае водородного слоя он превращается в гелий, который как пепел скапливается в центре звезды. Радиус горящего слоя постепенно растет. Вообще интенсивность энерговыделения в недрах звезды увеличивается со временем, и для того, чтобы иметь возможность излучать эту энергию с возрастающей интенсивностью, звезда раздувает свою поверхность. Ее внешние слои раздуваются настолько, что звезда превращается в красный гигант. Такая судьба ждет и наше Солнце (рис. 19.4).

Рис. 19.4. Через 5 млрд лет Солнце расширится и станет красным гигантом. В конце концов оно заполнит всю внутреннюю область Солнечной системы и проглотит Землю.

После главной последовательности температура в ядре звезды повышается. Значение максимальной температуры зависит от массы звезды. В табл. 19.2 приведен список основных ядерных реакций, генерирующих энергию при разных температурах. Первая строка соответствует стадии главной последовательности.

Для того чтобы звезда успешно прошла через все стадии ядерного синтеза, указанные в этой таблице, ее начальная масса должна быть по крайней мере в 15 раз больше, чем у Солнца. В менее массивных звездах температура никогда не поднимается достаточно высоко для синтеза кремния. Горение углерода и реакции, возможно, следующие за этим, требуют, чтобы звезда была хотя бы втрое массивнее Солнца. Звезда с массой в четверть массы Солнца или еще меньше никогда не уйдет дальше горения водорода и останется гелиевой звездой. Звезды, масса которых заключена между 1/4 и 3 массами Солнца, начинают сжигать гелий на поздней стадии своей эволюции и превращаются в углеродно-кислородные звезды. Дальше этой ядерной реакции они уже никогда не смогут продвинуться.

Таблица 19.2. Ядерные реакции, генерирующие энергию в звездах.


Маленькие зеленые человечки или белые карлики?

В начале 1960-х годов уже было известно несколько «радиозвезд» (как выяснилось — квазаров, см. главу 26). Новый метод их поиска разработал Энтони Хьюиш из Кавендишской лаборатории (Кембриджский университет), используя эффект мерцания. Обычные звезды мерцают, гак как их свет идет через неспокойные слои атмосферы. Радиозвезды тоже мерцают, поскольку на пути к Земле радиоволны проходят сквозь неоднородный солнечный ветер. Хьюиш заполнил антеннами поле площадью 2 га и начал систематический обзор всего неба в поиске мерцающих радиозвезд, которые могли бы оказаться квазарами. Каждый день присоединенный к радиоприемнику самописец выдавал 30-метровую бумажную ленту с записью принятых сигналов. С этой лентой работала студентка Хьюиша — Джоселин Белл, отвечавшая за работу аппаратуры и анализ данных. Она заметила, что один из радиоисточников мерцал довольно необычно. Странность заключалась в том, что импульсы излучения приходили с постоянным интервалом в 1,3 с. Вначале Хьюиш подумал, что это искусственный источник, но вскоре стало ясно, что он расположен не на Земле, а на небе. Потом возникла еще одна захватывающая идея, что эти импульсы передают иные разумные существа с планеты, обращающейся вокруг далекой звезды.

Но вскоре в другой части неба Белл обнаружила еще один пульсирующий сигнал. На этот раз она решила: «Маловероятно, чтобы две разных компании маленьких зеленых человечков одновременно на одной и той же частоте пытались подать сигнал на одну и ту же планету Земля!» Когда новые похожие источники были найдены по всему Млечному Пути, пришлось признать, что это естественное явление (рис. 19.5).

Рис. 19.5. Импульсы от пульсара PSR В0329 по наблюдениям радиотелескопа обсерватории в Нансэ, во Франции (см. рис. 1 на цветной вкладке). Интервал между импульсами составляет ровно 0,714 с.

Прежде чем эти результаты в начале 1968 года были опубликованы в журнале Nature, Хьюиш провел в Кембридже семинар, на котором предположил, что сигналы идут от белых карликов. Сидевший в зале Фред Хойл, руководивший Институтом теоретической астрономии, заметил: «Я не верю, что это белые карлики. Я думаю, что это остатки сверхновых». Никто другой не смог сделать столь правильный вывод всего за несколько минут мысленного анализа данных.

Таблица 19.3. Сравнение характеристик Солнца и белых карликов.

Что же такое на самом деле эти белые карлики, сверхновые звезды и остатки сверхновых, о которых говорил Хойл? В начале XX века астрономические наблюдения начали свидетельствовать, что существуют фантастически плотные звезды размером примерно с Землю, но с массой как у Солнца. К примеру — спутник Сириуса, называемый Сириусом В (табл. 19.3). Плотность таких звезд примерно в миллион раз выше плотности обычного камня. Артур Эддингтон вспоминал, как реагировала на это научная общественность: «Сообщение спутника Сириуса после его расшифровки гласило: «Я состою из вещества, плотность которого в 3000 раз выше, чем у всего, с чем вам когда-либо приходилось иметь дело; тонна моего вещества так мала, что поместится в спичечном коробке». Что можно сказать в ответ на такое послание? В 1914 году большинство из нас ответило так: «Полно! Не болтайте вздор!»

Вплоть до 1926 года так никто и не понял, что послание Сириуса не было вздором. Американец Ральф Фаулер применил недавно открытый принцип запрета Паули к электронному газу в белых карликах. В чрезвычайно плотном газе белых карликов электронам не хватает места для обращения вокруг атомных ядер, и они сами образуют газ. Белый карлик похож на огромный атом, покрытый облаком из бесконечного числа электронов. К электронам этого облака можно применять принцип Паули точно так же, как и к электронам обычных атомов. Электроны не могут занять состояние, которое совпадает с состоянием любого другого электрона в этом облаке. Когда звезда остывает, все электроны не могут замедлиться, поскольку нет достаточного числа состояний, соответствующих медленному движению. Некоторые электроны обязаны иметь высокие скорости, так что возникающее от этого давление останавливает дальнейшее сжатие звезды, даже если температура стремится к абсолютному нулю.

Вернувшись к ГР-диаграмме (см. рис. 19.3), в ее нижней левой части мы увидим белые карлики: они горячие, но имеют малую светимость по сравнению с Солнцем.

На пути к белым карликам и нейтронным звездам.

Ядерные реакции поддерживают высокую плотность и температуру, что мешает гравитации раздавить звезду. Но рано или поздно топливо закончится, равновесие внутри звезды нарушится, и она начнет сжиматься. Что будет дальше, зависит от массы светила. У звезд с массой от трех масс Солнца и меньше на стадии красного гиганта образуется углеродно-кислородное ядро. Оно очень горячее, его масса сравнима с массой Солнца, а размер сравним с размером Земли. Это ядро окружено чрезвычайно разреженной оболочкой красного гиганта. В результате сложных процессов эта оболочка мягко сбрасывается, оставляя «голое» ядро. Белый карлик как раз и формируется в результате остывания этого ядра. Газовые оболочки, разлетающиеся от будущих белых карликов, астрономы наблюдают как «планетарные туманности»: внешне они немного похожие на диски планет, если смотреть на них в старые, не слишком качественные телескопы.

Как и звезды малой массы, массивные звезды тоже становятся красными гигантами в конце своей эволюции на главной последовательности. У массивных звезд ядро сжимается и становится настолько горячим (>500-1000 млн °С), что в нем может продолжаться ядерный синтез из углерода, кислорода и т. д. Па этой стадии звезда может стать цефеидой (рис. 19.6) — полезным объектом для измерения расстояний в звездных системах, что мы обсудим в дальнейшем.

Рис. 19.6. Знакомая нам Полярная звезда в Ковше Малой Медведицы на самом деле является тройной звездой. Главная звезда А — это гигант (см. рис. 19.3), который в 2000 раз ярче Солнца. К тому же это переменная звезда-цефеида. Ее тусклый спутник В можно увидеть в небольшой телескоп. Но третью звезду Ab, свет которой тонет в сиянии яркой главной звезды, удаюсь сфотографировать только в 2006 году с помощью космического телескопа «Хаббл». Маленькие компаньоны В и Ab являются звездами главной последовательности.

Ядерные реакции продолжаются, пока центр звезды не станет железо-никелевым. Синтез более тяжелых ядер из железа и никеля не дает выхода энергии, а лишь потребляет ее, и это не мешает сжатию. В конце концов ядро становится таким тяжелым, что оно сжимается уже под действием собственного веса и начинается взрыв сверхновой. Во время взрыва почти все вещество звезды разлетается. Сжавшееся ядро становится либо нейтронной звездой, либо (если звезда была достаточно массивна) черной дырой. Теперь мы детальнее познакомимся с нейтронными звездами.

Еще плотнее: нейтронные звезды.

В 1930 году Субраманьян Чандрасекар (1910–1995) вычислил, что даже давления электронного газа недостаточно для остановки сжатия звезды, если ее масса более чем в 1,44 раза превышает массу Солнца. Что случится со звездой, когда она сожмется до плотности больше, чем у белого карлика? Российский физик Лев Ландау (19081968) предположил, что такая звезда будет сжиматься, пока не достигнет плотности как у атомного ядра; при этом она в основном будет состоять из нейтронов. Швейцарский астроном Фриц Цвикки позднее высказал мнение, что такие нейтронные звезды рождаются при взрывах сверхновых, происходящих в конце эволюции звезд; и он оказался прав. Затем, в 1939 году, Роберт Оппенгеймер (1904–1967) и его студент, эмигрант из России Георгий Волков обнаружили, что такая звезда способна удержаться от дальнейшего коллапса, если ее масса не слишком велика. Современные расчеты дают предел в 3,2 массы Солнца. Но если масса звезды больше, то ничто не сможет остановить коллапс, и она превращается в черную дыру.

Типичная нейтронная звезда имеет диаметр около 30 км. Отсюда легко вычислить, что плотность нейтронной звезды превышает плотность воды в 100 000 млрд раз. Такая звезда в некотором смысле напоминает огромное атомное ядро, покрытое невероятно прочной железной оболочкой, плотность которой в 10 000 раз превосходит плотность воды. У пульсаров и, возможно, других нейтронных звезд очень сильное магнитное поле, которое у поверхности В 10 000 млрд раз сильнее магнитного поля у поверхности Земли. Свойства нейтронных звезд выходят далеко за рамки нашего опыта, но нужно помнить, что эти ужасные создания когда-то были обычными звездами. При сжатии звезды ее магнитное поле усиливается в такое же число раз, во сколько раз больше магнитных силовых линий пронизывает единицу ее поверхности. В соответствии с обычным законом сохранения момента возрастает и скорость вращения сжимающейся звезды обратно пропорционально ее радиусу.

Пульсирующая звезда, открытая Белл и Хьюишем, оказалась нейтронной звездой. Нейтронные звезды настолько малы, что способны сделать оборот вокруг своей оси всего за секунду, и при этом они излучают один или два импульса. Дело в том, что излучение сконцентрировано в узком луче, мри попадании которого на Землю мы наблюдаем вспышку от звезды, как от мощного маяка; этот «маяк» называют пульсаром. Первый пульсар получил обозначение СР 1919 (СР — Кембриджский пульсар, а 1919 — число, указывающее небесную координату объекта). В течение нескольких месяцев в Кембридже были обнаружены еще три пульсара, а к нашим дням количество открытых пульсаров превысило 1800. Интервал между импульсами (вероятный период вращения нейтронной звезды) лежит в пределах от 0,001 до 4 с. Пульсары рождаются с быстрым вращением, вероятно, с периодом около 0,001 с. Сильное магнитное поле связывает пульсар с окружающим пространством, где электроны ускоряются до очень высоких энергий и затем излучают в направлении луча пульсара (рис. 19/7)/ Этот процесс тормозит вращение нейтронной звезды. Чем быстрее вращение, тем сильнее излучение. Когда вращение замедляется примерно до одного оборота за 4 с, луч пульсара так слабеет, что с Земли он уже не виден.

Рис. 19.7. Нейтронная звезда быстро вращается вокруг оси (на рисунке — вертикальная). Обычно магнитная ось звезды не совпадает с осью ее вращения. Поэтому исходящие из магнитных полюсов звезды пучки излучения сканируют небо из-за вращения звезды вокруг оси.

Пульсары можно использовать как точные часы, так как их импульсы очень регулярны. Но нужно помнить, что эти часы замедляются, очень слабо, но постоянно. Более того, у этих часов бывают случайные скачки, которые могут быть связаны со «звездотрясениями» поверхности нейтронной звезды (соответствующими примерно 23 баллам по шкале Рихтера!). Из-за огромной плотности коры нейтронной звезды обрушение на ее поверхности даже сантиметровой «горы» может вызвать заметное изменение скорости вращения.

За открытие пульсаров Хьюишу дали Нобелевскую премию. А соучастница этого открытия Джоселин Белл (в замужестве — Барнел) позже получила награды от различных организаций. В 2007 году королева Елизавета II пожаловала ей один из высших орденов Британской империи и титул дамы-командора, соответствующий мужскому рыцарскому титулу.

Крабовидная туманность: результат взрыва сверхновой.

Среди всех пульсаров особенно известны два: PRS 0833-45 в созвездии Паруса и ОТ 0532 в созвездии Телец. Вблизи каждого из них наблюдается туманное газовое облако, выброшенное звездой в момент взрыва. Облако в Тельце известно как Крабовидная туманность, поскольку она показалась похожей на краба Уильяму Парсонсу (лорду Россу), открывшему ее (рис. 19.8). Эти объекты подтверждают связь между остатками сверхновых и пульсарами, которую впервые заподозрил Фриц Цвикки и о которой говорил Фред Хойл на семинаре в Кембридже (в этой книге мы еще встретимся и с Цвикки, и с Хойлом).

Но что же такое взрыв сверхновой? Фактически на поздней стадии жизни звезды возможны взрывы разного типа. Звезда массивнее 15 масс Солнца в конце эволюции становится красным гигантом и в итоге в своем ядре начинает сжигать кремний в железо и никель. В это же время другие ядерные реакции, способные протекать при более низкой температуре, происходят в окружающих ядро слоях звезды. Наконец железо-никелевое ядро становится таким массивным, что начинает стремительно сжиматься под действием собственной силы тяжести, что и приводит к взрыву сверхновой. Почти все вещество выбрасывается в окружающее пространство, распыляя по нему тяжелые элементы. Многие их этих элементов уже были синтезированы внутри звезды, а те, что тяжелее железа и никеля, рождаются в процессе взрыва. Сжавшееся ядро превращается в нейтронную звезду или черную дыру; считается, что у самых массивных звезд оно превращается в черную дыру.

Рис. 19.8. Крабовидная туманность — остаток взрыва сверхновой, наблюдавшегося в 1054 году. Ее диаметр составляет около 10 световых лет. и она расширяется со скоростью более 1000 км/с.


Столь же мощный взрыв может произойти в белом карлике, если с соседнего красного гиганта на него падает вещество. Такое случается на поздних этапах эволюции двойных систем. Белый карлик взрывается, если падающее вещество увеличивает его массу до рассчитанного Чандрасекаром предела. В этот момент центральная часть белого карлика начинает стремительно сжиматься (коллапсировать), а выделившаяся при этом энергия сбрасывает наружные слои. Такие взрывы называют сверхновыми типа 1а (ранее описанные сверхновые имеют типы II или 1b). За последние десятилетия сверхновые типа 1а стали очень важны для космологических исследований. Их можно использовать как «стандартные свечи», имеющие в максимуме блеска одинаковую светимость. Две знаменитые сверхновые наблюдались в нашей Галактике в 1572 и 1604 годах. Вероятно, они тоже были сверхновыми типа 1а.

Взрыв сверхновой, в результате которого родилась Крабовидная туманность, был отмечен в Древнем Китае как появление на небе новой звезды. Токтага записал в истории династии Сун, что 4 июля 1054 года «звезда-гостья появилась приблизительно в нескольких дюймах к юго-востоку от Тьен-Куана [?Тельца]. После более чем года она постепенно стала невидимой». Звезда-гостья светилась так ярко, что была видна даже в дневное время в течение 23 дней. В 1921 году Кнут Лундмарк предположил, что этот случай стал причиной рождения туманности, которая видна на небе в том же самом месте.

Есть любопытное предположение, что эту сверхновую видели индейцы племени анасаци, жившие в районе современной Аризоны и Нью-Мексико и внимательно наблюдавшие за происходящим на небе. В национальном парке Чако-Каньон были найдены наскальные рисунки, изображающие большую «звезду» рядом с лунным серпом. Действительно, вычисления показывают, что при наблюдении с северо-востока Америки утром 15 июля 1054 года серп молодой Луны был виден вблизи сверхновой.

Наблюдавшийся взрыв сверхновой, сохранившийся пульсар и хаотическая газовая туманность вокруг него подробно рассказывают историю рождения нейтронной звезды (рис. 19.9 иллюстрирует ее крохотный размер). У этой звезды сколлапсировала сердцевина, но в то время она выбросила значительную часть своей массы в межзвездное пространство, где это вещество пошло на формирование новых звезд. Благодаря своей молодости пульсар в Крабовидной туманности очень быстро вращается с периодом всего 0,033 с. Кроме радиоизлучения, его импульсы можно наблюдать в оптическом и рентгеновском диапазонах.

Рис. 19.9. Земля, белый карлик, имеющий массу Солнца, и нейтронная звезда. Точка справа, изображающая нейтронную звезду, увеличена в десять раз, чтобы ее можно было заметить.

Рентгеновские лучи и черные дыры.

Мы уже знаем, что если масса нейтронной звезды более чем в 3,2 раза превышает массу Солнца, то ничто не способно удержать коллапс, и ядро сверхновой превращается в черную дыру. Мы уже ознакомились с теоретическими представлениями о черной дыре, которые родились гораздо раньше, чем это можно было бы ожидать. Впрочем, в науке доказательство того, что нечто может существовать, вовсе не означает, что оно действительно рождается в природе. Однако в то время как радиоастрономия доказала существование нейтронных звезд, рентгеновская астрономия обнаружила свидетельства реальности черных дыр.

Рентгеновская астрономия вынуждена проводить измерения за пределами земной атмосферы. Воздух поглощает ультрафиолетовый свет и рентгеновские лучи, приходящие из космического пространства (к счастью для нас, ибо мы не выдержали бы такие дозы облучения). Работа наблюдателей в УФ- и рентгеновском диапазонах трудна и обходится дорого, поскольку их измерительные приборы приходится устанавливать на космических аппаратах. Другим сложным спектральным диапазоном является инфракрасный. И хотя некоторые ограниченные области инфракрасного спектра доступны для наблюдения с Земли — с высоких гор и при сухом климате, в целом инфракрасная астрономия тоже является предметом космической астрономии.

Первый небесный рентгеновский источник был открыт в 1948 году во время полета ракеты, и этим источником было Солнце. Рентгеновское излучение от Солнца ожидали. Внешний слой Солнца — корона — тянется на миллионы километров над его поверхностью (рис. 19.10). Слабое свечение короны видно только во время солнечных затмений, когда Луна закрывает яркую поверхность Солнца. Еще до рентгеновских наблюдений было ясно, что газ в короне очень горячий, его температура составляет миллионы градусов, а такой газ в основном должен излучать в рентгеновском диапазоне (см. врезку 12.2). Этот газ настолько горячий, что его не может удержать даже притяжение Солнца. Поэтому корона расширяется в окружающее пространство, и даже Земля попадает во внешнюю часть солнечной короны.

Хотя Солнце для нас выглядит ярким рентгеновским источником, но на межзвездном расстоянии мы бы его вряд ли заметили. Если бы не существовало более интересных источников, то вся рентгеновская астрономия осталась бы лишь наукой о Солнце. Однако не все звезды похожи на Солнце и не все рентгеновские источники — звезды. В 1963 году группа Герберта Фридмана из Морской лаборатории США обнаружила два новых источника — Скорпион Х-1 и Крабовидную туманность. Источник в Крабе в 1000 раз мощнее Солнца. Его рентгеновские лучи испускаются высокоскоростными электронами, которые постоянно ускоряются пульсаром в центре туманности (такое же происхождение имеет и его радиоизлучение).

Рис. 19.10. Изображение солнечной короны, подученное во время затмения 1999 года.


Гораздо труднее было отождествить Скорпион Х-1 в созвездии Скорпиона. Только когда положение источника рентгеновских лучей определили с точностью 2', была выявлена тусклая голубая звезда, которая могла иметь отношение к рентгеновскому излучению. Звезда оказалась настолько далека от нас, что ее рентгеновское излучение должно быть мощнее солнечного в 10 млрд раз, разумеется, если отождествление проведено верно. Вскоре выяснилось, что эта звезда, а точнее — звездная пара, отождествлена правильно, причем источником рентгеновских лучей служит более слабая (практически невидимая) звезда из этой пары. Она стаскивает газ у более яркой звезды и в своем сильном гравитационном поле нагревает его до температуры в миллионы градусов. Горячий газ вращается вокруг невидимой звезды и излучает в рентгеновском диапазоне. Когда в 1966 году отождествили Скорпион Х-1, единственной идеей о природе невидимой звезды было предположение, что это белый карлик. Но с момента открытия пульсаров более подходящим кандидатом стала нейтронная звезда. Вещество, падающее на поверхность нейтронной звезды, разгоняется до скорости около 80 % скорости света. Это крайне эффективная машина для производства рентгеновских лучей.

До того момента вся информация об источниках рентгеновского излучения добывалась с помощью ракет вертикального полета, длительность пребывания которых вне атмосферы составляет всего несколько минут. Но поскольку результаты оказались интересными, Риккардо Джаккони предложил НАСА создать постоянную рентгеновскую обсерваторию на спутнике, обращающемся вокруг Земли. В 1970 году с космодрома в Кении на околоземную орбиту над экватором был запущен спутник, названный «Ухуру», что на языке суахили означает «свобода».

За два года «Ухуру» открыл более 150 источников. Одним из наиболее интересных стал рентгеновский источник Лебедь Х-1. Он обращается вокруг звезды в 15 раз более массивной, чем Солнце. Но рентгеновская звезда не демонстрирует регулярных пульсаций, которые могли бы указывать, что это вращающаяся нейтронная звезда. Орбитальное движение этой двойной звезды показывает, что масса рентгеновского источника как минимум в 5, а может быть, и в 10 раз превосходит массу Солнца. Нейтронная звезда не может иметь такую большую массу, поэтому остается единственная возможность — предположить, что рентгеновским источником в Лебеде Х-1 является черная дыра (рис. 19.11). С той поры обнаружены и другие похожие кандидаты в черные дыры. И это еще не всё. В центрах галактик существуют гораздо более массивные черные дыры (см. главу 26). Теперь мы переходим от звезд к галактикам и начнем с нашего Млечного Пути.

Рис. 19.11. Система Лебедь X-1. Потерянный звездой HDE 226868 газ попадает на диск, окружающий черную дыру. Приближаясь к черной дыре, газ нагревается и становится источником рентгеновских лучей.

Глава 20 Тайна Млечного Пути

Темной ясной безлунной ночью вдали от городских огней можно заметить, что небосвод пересекает усыпанная звездами и подернутая дымкой полоса. Она делит небо на две половины, проходя через созвездия Кассиопеи и Персея, далее следует между Орионом и Близнецами. По другую сторону от Кассиопеи на этом небесном пути расположены Лебедь и Орел, а наиболее красивая южная его часть видна в Стрельце. На многих языках эту полосу называют «путем»: например, по-английски Млечный Путь называется Milky Way, что тоже согласуется с греческим названием «galaktos», молоко. На финском языке это Птичий Путь, на шведском — Зимний Путь. Китайцы называют его Серебристая Река, а индейцы-чероки — Путь Убегающей Собаки. В отличие от блуждающих планет. Млечный Путь не меняет своего положения относительно звезд; в этом он похож на созвездия.

Античные идеи.

Астрономы Античности более всего стремились найти закономерности движения Солнца, Луны и планет. Равномерно вращающаяся сфера звезд, включающая Млечный Путь, не вызывала у них большого интереса. Телескоп еще не изобрели, так что, если философы высказывали какие-либо гипотезы о природе звезд, не было способа их проверить.

По поводу Млечного Пути Аристотель в своей книге «Метеорология» сообщает, что некоторые пифагорейцы считали Млечный Путь кругом, по которому раньше двигалось Солнце и выжгло его. Аристотель критикует эту точку зрения, утверждая, что современная орбита Солнца — эклиптика — была бы выжжена еще сильнее, тем более что по ней перемещаются и планеты. Но ничего похожего на Млечный Путь вдоль эклиптики не замечено. А что же сам Аристотель думал о Млечном Пути? В его модели мира звезды прикреплены к самой внешней сфере из хрусталя, неизменной и идеальной, расположенной за сферой Луны. Аристотель знал, что Млечный Путь вращается на небе так же, как звезды. Тем не менее он поместил эту структуру неправильной формы под сферой Луны, в нижний, неидеальный, изменчивый мир.

Аристотель полагал, что Млечный Путь — это природное явление, подобное кометам, неожиданное появление которых казалось загадочным и даже пугало людей той эпохи (в Древней Греции эти небесные знаки беды считались душами умерших людей). По мнению Аристотеля, кометы не могли располагаться в неизменном мире над сферой Луны. Он считал, что кометы возникают из болотных испарений и возгораются под действием тепла, идущего от Солнца и звезд. В зависимости от формы и скорости горения этих паров они могут выглядеть как разные типы комет и даже как метеоры. В зоне Млечного Пути звезд больше, чем в других местах, а значит, они могут сильнее нагревать поднимающийся к ним пар. Поэтому Аристотель рассматривал Млечный Путь как огромную постоянно существующую комету. Но эта идея так и не стала популярной, несмотря на то что остальная часть его модели мира долгое время служила основой науки.

Преемник Аристотеля на посту директора основанной им школы «Лицей» Теофраст (ок. 370–286 до н. э.) предполагал, что Млечный Путь — это стык, по которому две половины небесной сферы склеены друг с другом. Данная идея получила бы большую поддержку, если бы стык проходил по небесному экватору (лежащему в плоскости земного экватора), но они сильно наклонены друг относительно друга. Большой круг Млечного Пути наклонен и относительно другого важного круга небесной сферы — эклиптики (годичного пути Солнца). И все же это был шаг в правильном направлении: Теофраст понял, что Млечный Путь проходит по большому кругу на небе вдали от Земли. Сейчас астрономы называют этот крут галактическим экватором. Но на вопрос: «Почему Млечный Путь делит небо на две половины?» не было найдено ответа в течение последующих двух тысячелетий.

Впрочем, некоторые античные философы правильно объясняли свечение Млечного Пути. Демокрит, развивший концепцию атомов, считал, что в этой части неба располагается несметное количество тусклых звезд. Они так близки друг к другу, что их свет объединяется в общее однородное свечение. Это прекрасный пример научной дедукции: даже если мы не можем увидеть далекие звезды, мы можем предположить, что они существуют, и объяснить этим ранее непонятное явление.

Звездный пояс.

Идея о том, что Млечный Путь — это совокупность множества тусклых звезд, время от времени обсуждалась в средневековых работах, однако пионеры новой астрономии — Николай Коперник и Иоганн Кеплер почти не упоминали о Млечном Пути. В их поисках небесной гармонии центральное место занимало движение планет. Однако «новая звезда» Тихо Браге, которую он наблюдал в 1572 году, привела его к мысли о том, что возможно рождение звезды из космического вещества, составляющего Млечный Путь.

Рис. 20.1. Галилей увидел в свой телескоп гораздо больше тусклых звезд в Плеядах, чем те шесть ярких звезд, которые обычно видны невооруженным глазом. На этом рисунке из его «Звездного вестника» яркие звезды показаны более крупными.

Поворотной точкой стало рождение телескопа. Осенью 1609 года Галилео Галилей начал обзор неба с помощью своего телескопа, обнаруживая звезды, невидимые невооруженным глазом (рис. 20.1). В своей книге 1610 года «Звездный вестник» Галилей так описывал Млечный Путь:

«Третье: я наблюдал природу и вещество Млечного Пути. С помощью телескопа он был изучен тщательно и с такой достоверностью, что все спорные вопросы, которые философы пережевывали многие годы, теперь разрешены, и мы, по крайней мере, свободны от словесных споров об этом. Фактически Галактика — не что иное, как скопление бесчисленного количества звезд, объединенных в скопления. На какую часть из них ни направить телескоп, в тот же миг перед глазами открывается их огромное число. Многие из них довольно крупные и яркие, тогда как количество более мелких не поддается подсчету».

Галилей был счастлив, что так просто разгадал причину млечного свечения, что собственными глазами увидел то, что Демокрит предвидел за 2000 лет до него. То же можно сказать о большинстве ближайших последователей Галилея. Но прошло еще полтора столетия, пока стала понятна природа этого звездного пояса как космической структуры.

К трехмерному Млечному Пути.

В 1751 году Иммануил Кант (рис. 20.2), в это время еще студент и домашний учитель (это было за три десятилетия до его знаменитой «Критики чистого разума»), прочитал в газете отзыв о книге «Оригинальная теория, или Новая гипотеза о Вселенной», написанной англичанином Томасом Райтом. Этот отзыв оставлял впечатление, что Райт представлял Млечный Путь (то есть Галактику) в виде плоского слоя[6].

Рис. 20.2. (а) Томас Райт (1711–1786) и (б) Иммануил Кант (1724–1804). Эти мыслители, а также Иоганн Генрих Ламберт рассматривали Млечный Путь как проекцию трехмерной звездной системы.


Канта заинтересовало, как такая форма согласуется с гравитацией Ньютона, которую он изучал в университете своего родного города Кёнигсберга. Он отметил схожесть диска Сатурна и диска Галактики. Поскольку плоский диск возникает вследствие вращения вокруг планеты под действием ее гравитации, то и плоская форма Галактики также должна поддерживаться вращением. Кант предположил, что и другие маленькие туманные объекты на небе в действительности похожи на Галактику, наблюдаемую с большого расстояния. В 1755 году он опубликовал книгу с этими идеями. К сожалению, ее издатель обанкротился, и книга была конфискована. Поэтому прошло немало времени, прежде чем идеи Канта о Вселенной стали известны другим ученым.

Но каковы были на самом деле идеи Томаса Райта (см. рис. 20.2)? Путем самообразования Райт стал астрономом и математиком, а одним из способов его заработка было чтение популярных лекций. Интерес Райта к Млечному Пути был связан с тем, что всю жизнь он пытался создать модель Вселенной. Ему хотелось видеть порядок и гармонию в мире, созданном Богом, и эта модель должна была объяснить распределение звезд на небе.

В своей «Оригинальной теории» Райт считает само собой разумеющимся, что Вселенная бесконечно велика. Он также был убежден, что звезды — это далекие солнца: если бы мы смотрели на Солнце издалека, его видимый диаметр, равный 1/2 градуса, уменьшился бы до размера светлой точки. И это было бы так, даже если наблюдали бы далекое Солнце с помощью большого телескопа. Он также верил, что у звезд имеются планеты, обращающиеся вокруг них, точно так же, как они обращаются вокруг Солнца.

Райт оценил, сколько звезд содержится в поясе Млечного Пути: «Полагая, что ширина Млечного Пути в среднем составляет всего 9 градусов и что каждый квадратный градус содержит всего 1200 звезд, получим, что вся кольцеобразная поверхность должна содержать около 3 888 000 звезд». Оцененное Райтом число звезд гораздо меньше современного значения в 200 млрд, но он выдвинул первую хорошую идею об «астрономическом» числе звезд. Более того, Райт предположил, что Млечный Путь — это огромная звездная система, в которой звезды обращаются вокруг общего центра. Причем Солнце не располагается в центре этой системы, а сама она не является центром Вселенной — современные астрономы думают так же.

Райт объяснял вид Млечного Пути на небе тем, что существует огромный пласт звезд и Солнце расположено внутри него. Когда мы смотрим вдоль этого пласта, то, естественно, видим огромное число звезд. Когда же луч нашего зрения направлен под углом к пласту, то в этом направлении видно меньше звезд. Визуально на небе это представляется как кольцо из звезд — Млечный Путь (рис. 20.3).

Рис. 20.3. Томас Райт использовал этот рисунок, чтобы объяснить, почему мы видим звездный пояс Млечного Пути, если находимся внутри плоского слоя, заполненного звездами.

Вообще говоря, Райт не утверждал, что Галактика имеет дискообразную форму. Он предпочитал нечто более красивое: огромную сферическую оболочку из звезд. Однако небольшая часть ее поверхности напоминает плоскость, так что видимый пласт из звезд был только локальной характеристикой. Райт представлял, что в центре этой сферы находится массивное тело, заставляющее звезды обращаться вокруг центра, но само оно остается недоступным для наблюдений.

Не зная об идеях Райта и Канта, немецкий ученый Иоганн Генрих Ламберт (1728–1777) описал свои космологические идеи в книге «Космологические письма об устройстве Вселенной», изданной в 1761 году. Он представил Галактику как вращающуюся плоскую звездную систему и предположил, что массивный центр этой системы находится в туманности Ориона. Сегодня мы знаем, что ее центр расположен в совершенно другом направлении — в созвездии Стрельца, причем, как и предполагал Райт, этот центр не виден не только невооруженным глазом, но даже с помощью оптического телескопа.

Возможно, Ламберт был первым ученым, выдвинувшим идею о том, что Млечный Путь представляет собой плоскую звездную систему. В 1765 году Ламберт в письме Иммануилу Канту вспоминал, что эта идея пришла к нему в 1749 году, когда, «вопреки привычке, после ужина я прошел в свою комнату и стал смотреть на звезды, в особенности — на Млечный Путь». В «Космологических письмах…» он пишет:

«Я удивлялся множеству маленьких звезд в этой дуге (Млечном Пути)… Я думал, что эти звезды не могут быть такими близкими друг к другу, чтобы почти соприкасаться. Они должны быть расположены друг за другом, и звездный ряд, уходящий вглубь Млечного Пути, должен быть гораздо длиннее, чем ряд вне него. Если бы ряды проникали одинаково глубоко в разных направлениях, то все небо было бы таким же ярким, как Млечный Путь. Но вне Млечного Пути я вижу почти полностью пустые области. В итоге расположение неподвижных звезд не сферическое, а плоское, даже очень плоское».

Млечный Путь Вильяма Гершеля.

Идеи Райта, Канта и Ламберта о природе Млечного Пути возникли как результат простого визуального впечатления о распределении звезд на небе. А первый настоящий обзор неба с помощью телескопа предпринял Вильям Гершель. Он переехал из Германии в Англию в 19-летнем возрасте и начал зарабатывать себе на жизнь музыкой (позднее он получил должность органиста в капелле города Бат). В 1773 году в возрасте 35 лет он случайно купил книгу по астрономии. «Когда я прочитал о множестве замечательных открытий, сделанных с помощью телескопа, я был так очарован, что мне захотелось посмотреть на небо и планеты собственными глазами с помощью одного из таких инструментов».

Работая день и ночь над созданием телескопа, Гершель научился шлифовать зеркала. Ему помогали брат Александр, тоже музыкант, и сестра Каролина. По мере того как Гершель учился строить всё более крупные и качественные телескопы, музыка отходила на второй план. Гершель начал делать систематические записи о том, что он видит на небе. Мы уже рассказывали (см. главу и) об открытии в 1791 году планеты Уран. Это принесло Гершелю славу астронома. Его хобби превратилось в профессию — он стал получать зарплату от короля как первый королевский астроном. Но в научных кругах имя Гершеля еще было малоизвестно. Например, крупнейший немецкий астроном И. Э. Боде никак не мог запомнить его имени и называл его то Мерстхелем, то Гертшелем, то Герршелем, то Гермстелем.

При исследовании Млечного Пути Гершель впервые применил методы статистики. Ему пришла блестящая идея очертить его границы, используя подсчеты звезд. Гершель верил, что его 47-сантиметровый телескоп был достаточно мощным, чтобы увидеть края Галактики. Число видимых в телескоп звезд говорит о том, насколько далеко расположен край в этом направлении: чем больше звезд, тем дальше край.

Рисунок 20.4 показывает результат подсчета звезд, представленный в виде контура Галактики. Это сечение, перпендикулярное плоскости Галактики, представляет результат исследования 683 областей, расположенных по дуге большого круга на небе. Он согласуется с выводами из визуального впечатления о том, что Галактика — это плоская звездная система.

Рис. 20.4. (а) Портрет Уильяма Гершеля, написанный в период открытия им Урана, (б) Сечение Млечного Пути, основанное на звездных подсчетах Гершеля, использовавшего телескоп с 47-см зеркалом (иллюстрация 1785 года). Этот великий астроном провел бесчисленное количество ночей, наблюдая небо.

Позже Гершель стал сомневаться в правильности этой картины. Встал вопрос о том, был ли его телескоп достаточно мощным, чтобы видеть звезды до края системы. Новый телескоп диаметром 120 см показывал гораздо больше звезд по сравнению с 47-сантиметровым телескопом. С другой стороны, этот большой телескоп не удовлетворял астронома полностью: он был неудобен в работе и даже несколько раз ранил помощника. Изучение Гершелем звездных скоплений заставило его поверить, что исходное предположение о равномерном распределении звезд в пространстве было неверным. Но идея о дискообразной Галактике жила до XX века, когда появилась возможность подтвердить ее более совершенными способами.

Гершель достиг больших успехов в исследовании звезд и туманностей. Он открыл двойные звезды, а его систематическое «прочесывание неба» позволило обнаружить около 2500 звездных скоплений и туманностей (см. главу 21). До него было известно лишь около сотни таких объектов.

Большие звездные каталоги и Вселенная Каптейна.

Что нужно, чтобы составить карту распределения звезд в пространстве? Очевидно, надо знать направления на звезды, но кроме этого — и расстояния до них. Только так можно определить очертания Галактики. Но астрономы были вынуждены довольствоваться меньшим. Как убедился Гершель, все звезды увидеть невозможно: некоторые слишком тусклые даже для современных телескопов. Более того, невозможно измерить расстояние до всех звезд. В XIX веке удалось измерить всего лишь несколько параллаксов (то есть расстояний) звезд, и даже сейчас мы ограничены ближайшим галактическим окружением. Только в следующем десятилетии, когда будет запущен космический телескоп «Гайя» (Gaia) Европейского космического агентства, мы сможем измерить расстояния до множества звезд в диске Галактики. Целью работы «Гайя» является создание самой большой и наиболее точной карты Галактики. Ее предшественник — космический телескоп «Гиппаркос» поработал очень хорошо и с высокой точностью измерил положения более 100 000 звезд. Теперь задача телескопа «Гайя» — с еще более высокой точностью изучить более миллиарда звезд. Аппарат будет выведен на орбиту вокруг Солнца радиусом на 1,5 млн км больше, чем у орбиты Земли. Расположившись в особой точке (L2), где движение происходит синхронно с Землей, космический телескоп будет измерять положения звезд.

Значительно более простой задачей, чем измерение расстояния, является измерение блеска звезды, то есть ее звездной величины (см. главу 8). Это дает и некоторое представление о расстоянии. В XIX веке определение блеска звезд в звездных величинах стало рутинной операцией, и они были внесены в большие звездные каталоги. Наиболее известный из них — Bonner Durchmusterung (Боннское обозрение). Его составил Фридрих Аргеландер (1799–1875) с коллегами. Поработав в обсерваториях городов Турку и Хельсинки (Финляндия), Аргеландер в 1836 году стал директором Боннской обсерватории. Во время работы в Бонне он изучал все звезды ярче 9,5 звездной величины, определял их координаты на небе и звездные величины. Полностью Боннское обозрение, содержавшее 324 000 звезд, было завершено в 1859 году. Этот огромный каталог используется до нынешних дней при исследовании Галактики.

Метод звездных подсчетов Гершеля развил немецкий астроном Хуго фон Зелигер (1849–1924). Он понял, что вместо подсчета полного числа звезд лучше изучить изменение количества все более и более тусклых звезд. Большие звездные каталоги как раз и являются тем самым материалом, который нужен для такой работы.

О чем нам могут рассказать изменения в количестве звезд разного блеска? Предположим, что все звезды имеют одинаковую собственную светимость, и рассмотрим однородную сферическую звездную систему, расположившись в ее центре. Мы обнаружим, что звезд 7-й величины должно быть видно почти в 4 раза больше, чем звезд 6-й величины. Такое же соотношение должно быть для каждой пары звездных величин, различающихся на единицу. Это следствие того способа, которым построена шкала звездных величин, а также того, как уменьшается блеск звезд и увеличивается их число с расстоянием. Но если мы имеем дело со звездами на краю системы, то число звезд следующего уровня звездных величин должно вдруг уменьшиться до нуля. Определив звездную величину, после которой происходит это внезапное уменьшение, мы можем найти край системы.

Проведя подобное исследование, Зелигер в 1884–1909 годах обнаружил, что отношение числа звезд со следующими друг за другом звездными величинами вовсе не 4, а скорее ближе к 3. Таким образом, плотность числа звезд в пространстве не остается вокруг нас постоянной: похоже, что она уменьшается с расстоянием. Для очень тусклых звезд это отношение даже опускается ниже 3. Зелигер заключил, что тусклые звезды близки к краю системы. Кроме того, он обнаружил, что форма Галактики весьма похожа на ту, которая ранее получилась у Гершеля.

Первую настоящую модель Галактики, учитывающую шкалу расстояний, построил датский астроном Якобус Корнелиус Каптейн (1851–1922). В 27-летнем возрасте он получил должность профессора астрономии Гронингенского университета. Приехав туда, он обнаружил, что университет не имеет обсерватории. Это изменило его планы работы, и он начал изучать каталоги, составленные другими учеными. Кроме того, он стал координатором международного сотрудничества.

Каптейн хотел разобраться в строении Галактики. Ее форма была уже известна, а каковы размеры? Что говорят звездные подсчеты о расстоянии до края Галактики? Из этих подсчетов астрономы уже определили яркость звезд на краю Галактики. Если бы эти звезды имели такую же светимость, как Солнце, то можно было бы вычислить расстояние до них и определить размер системы. Но светимость звезд неодинакова. Каптейн исследовал близлежащее пространство и определил распределение звезд по яркости. Для этого требуется знать расстояния, и Каптейн использовал собственные движения, так как метод параллаксов здесь непригоден.

Расстояние до звезды определялось по направлению и скорости, с какой звезда перемещается по небу относительно других звезд, то есть по ее собственному движению (см. главу 8). Это движение отражает не только реальное перемещение звезды в пространстве, но и движение самого Солнца. Представьте себе ночную поездку в автомобиле во время снежной бури; при этом снежинки будут играть роль звезд. Впереди вас снежинки выглядят как почти неподвижные пятнышки, когда они летят прямо на вас с нулевым «собственным движением». Та же картина видна через заднее стекло. Но в боковые стекла видны быстро мелькающие снежинки, убегающие назад. Особенно быстро мелькают самые близкие снежинки, демонстрирующие наибольшее «собственное движение». Еще Вильям Гершель, изучив собственные движения всего лишь 13 звезд, определил, куда относительно них движется Солнце. А первое точное измерение скорости Солнца, основанное на наблюдении 560 звезд, провел Аргеландер в Турку.

Сегодня мы знаем, что относительно ближайших звезд Солнце движется со скоростью 20 км/с в сторону созвездия Геркулес. Как показал наш пример про снежную бурю, мы можем оценить расстояние до звезды, если знаем ее собственное движение и угол с направлением движения Солнца. Чем меньше наблюдаемое собственное движение, тем больше вероятное расстояние до звезды. Используя оригинальный анализ, Каптейн определил статистические значения расстояний и распределение звезд по светимости. После этого он смог вычислить размер Галактики. Согласно Каптейну, Галактика является диском диаметром 50 000 световых лет, в котором пространственная плотность звезд уменьшается к краям (рис. 20.5).

Рис«20.5. (а) Якобус Каптейн изучая Млечный Путь методом подсчета звезд, (б) «Вселенная Каптейна» была первой крупномасштабной моделью Галактики. Солнце располагается почти в центре этой системы.

Единственной трудностью этой модели было то, что Солнце располагалось на расстоянии всего 2000 световых лет от центра Галактики, и это выглядело подозрительно. В 1909 году Каптейн записал:

«Это поставило бы Солнце в особое положение в звездной системе, а именно туда, где наибольшая плотность звезд. С другой стороны, если предположить, что уменьшение плотности — только кажущееся явление, возникающее из-за поглощения света, то наблюдаемое уменьшение плотности во всех направлениях выглядит вполне естественно».

Каптейн понимал, что если пространство не прозрачное, а заполнено какой-то средой, заметно ослабляющей свет, то подсчеты звезд дадут неверную структуру Галактики: то, что кажется краем, на самом деле всего лишь эффект поглощения света пылью. Он пытался обнаружить поглощение в пространстве разными способами, но не мог доказать его существование. Поэтому его модель Галактики использовалась как основная на протяжении многих лет. Изменения начались в 1918 году, когда Харлоу Шепли исследовал распределение в пространстве шаровых звездных скоплений, которое гораздо меньше искажено поглощением. Он заключил, что наша Галактика гораздо больше «Вселенной Каптейна», а Солнце расположено на расстоянии 50 000 световых лет от ее центра. Чтобы увидеть, как Шепли пришел к этому радикальному выводу, мы ознакомимся с новым способом определения расстояний, использующим переменные звезды.

Переменные звезды-цефеиды: стандартные свечи для измерения больших расстояний.

Рядом с широко известным созвездием Кассиопея находится созвездие Цефей. На рис. 20.6 легко отыскать четвертую по яркости звезду в этом созвездии — дельту Цефея. Она имеет блеск около четвертой звездной величины, поэтому ее можно увидеть невооруженным глазом. В действительности это яркий гигант, который регулярно меняет свой блеск с периодом в 5 суток. Некоторые звезды могут менять свою яркость нерегулярно и даже взрываться. Но мы сейчас сосредоточимся на звездах, похожих на дельту Цефея, яркость которых меняется непрерывно и регулярно с постоянным периодом. Эти «цефеиды» могут иметь периоды от одних суток до их десятков.

В чем причина их изменений? В конце XIX века русский астроном Аристарх Белопольский (1854–1934) заметил, что одновременно с изменением блеска меняется и длина волн спектральных линий. Используя эффект Доплера, можно определить, что поверхность звезды находится в постоянном движении — вперед и назад со скоростью до 100 км/с. Эти пульсации стали общепринятым объяснением природы цефеид после того, как Артур Эддингтон сформулировал математическую теорию пульсирующих звезд.

Рис. 20.6. (а) Звезда дельта в созвездии Цефей послужила прототипом переменных звезд-цефеид, (б) Ее блеск меняется с периодом, немного превышающим 5 суток. Переменность этой звезды открыл Джон Гудрайк в 1784 году. Этот английский астроном умер в возрасте всего 21 года, простудившись во время наблюдений.

В 1908 и 1912 годах Генриетта Суон Ливитт опубликовала в обсерватории Гарвардского колледжа свое исследование переменных звезд в Малом Магеллановом Облаке. Эта куча звезд, звездных скоплений и туманностей была сфотографирована на Гарвардской станции в Перу. Изучив фотопластинки, Ливитт обнаружила там 2400 переменных звезд. Для некоторых из этих звезд она смогла определить период переменности, построив график зависимости их блеска от времени. Ливитт заметила, что чем длиннее период, тем ярче звезда в своем нормальном состоянии, А поскольку все звезды Малого Магелланова Облака находятся практически на одинаковом расстоянии от нас, истинная светимость и период ее переменности у звезд типа дельты Цефея должны быть тесно связаны (рис. 20.7).

Рис. 20.7. (а) Генриетта Ливитт (1868–1921) обнаружила связь между светимостью и периодом переменности цефеид: чем ярче цефеида, тем медленнее она изменяет свою яркость. (б) К построенному ею в 1912 году графику мы добавили обозначение осей. Отметим, что диапазон периодов простирается от нескольких суток до более чем сотни суток. Фото: Американская ассоциация наблюдателей переменных звезд.

Обнаруженная связь открыла новый путь для определения расстояний: измерив период цефеиды, можно определить ее светимость, то есть истинную мощность излучения. Затем нужно просто сравнить это значение с видимым блеском звезды и вычислить расстояние. Например, если период равен 10 суткам, то цефеида светит в 2000 раз мощнее Солнца. Простые вычисления показывают, что эта цефеида, если ее видимый блеск равен шестой звездной величине (на пределе доступности для невооруженного глаза), находится на расстоянии 800 пк (2600 световых лет) от нас.

Но расстояние до Малого Магелланового Облака не было известно, поэтому Ливитт не могла определить, какую светимость имеют цефеиды. В 1913 году Эйнар Герцшпрунг предложил способ откалибровать этот новый метод измерения расстояний. Он использовал несколько цефеид нашей Галактики, для которых ему удалось вычислить среднее расстояние методом Каптейна. Подобное исследование провел и Харлоу Шепли. Цефеиды оказались очень яркими звездами, мощность излучения которых от 100 до 10 000 раз больше, чем у Солнца. Эти «стандартные свечи» дали новый способ определения расстояний и исследования не только Галактики, но и других, более далеких звездных систем.

Вторая коперниканская революция Шепли.

Американский астроном Харлоу Шепли (1885–1972) сместил Солнце из центра Галактики, куда ранее поместили его подсчеты звезд. Путь Шепли в науку оказался извилистым. В своих мемуарах он рассказал, что сначала хотел поступить в университет штата Миссури, чтобы изучать журналистику, но начало этого курса отложили на следующий год. Не желая терять время попусту, он решил пока послушать какой-нибудь другой курс и начал листать расписание лекций в университете. Первым предметом, название которого он смог произнести, оказалась астрономия. Вот так и решилась его судьба.

В 1914 году Шепли начал работать в обсерватории Маунт-Вилсон, которая обладала тогда крупнейшим в мире телескопом (1,5 м). Шепли занялся изучением цефеид в шаровых звездных скоплениях, чтобы использовать их для определения расстояний. Что такое шаровое звездное скопление? Большинство звездных скоплений — это не очень плотные группы из нескольких сотен звезд, например Плеяды в созвездии Телец. Но шаровые скопления совсем другие: они имеют сферическую форму, и число звезд в них может превышать миллион. В их центре изображения звезд сливаются и образуют ровно светящуюся туманность (рис. 20.8).

Рис. 20.8. Известны два типа звездных скоплений — рассеянные и шаровые. Рассеянные скопления более распространены. В них довольно молодые звезды слабее связаны друг с другом взаимным притяжением. Здесь представлено рассеянное скопление Плеяды («Семь сестер») в Тельце (а) и шаровое скопление омега Кентавра (б). Фото: Харри Лехто и Тапио Корхонен соответственно.

В нашей Галактике шаровые скопления крайне редки: известно немногим более сотни таких систем. Но для исследователей это очень важные объекты с нескольких точек зрения: в них содержится очень много звезд, они видны с большого расстояния и в них можно обнаружить звезды редких типов. Работая в обсерватории Маунт-Вилсон, Шепли нашел в шаровых скоплениях переменные звезды и использовал их для вычисления расстояний. Определив расстояния до дюжины скоплений, он понял, что у всех скоплений почти одинаковые диаметры. Поэтому он смог найти расстояние до остальных шаровых скоплений, используя их видимые диаметры как индикатор расстояния.

Этим методом Шепли определил расстояния уже до нескольких дюжин скоплений, а затем изобразил на рисунке их положение в пространстве, используя их расстояние и направление от Солнца. Оказалось, что шаровые скопления распределены почти сферически вокруг Галактики (рис. 20.9). В 1919 году Шепли обнародовал свои выводы: Галактика гораздо больше, чем думали ранее, исходя из подсчета звезд. Ее центр расположен не вблизи Солнца, а далеко в направлении созвездия Стрелец. «Вселенная Каптейна» — всего лишь малая часть нашей большой Галактики.

Это был смелый вывод, основанный на одном лишь классе небесных объектов. Кроме того, цефеиды стали новым индикаторомрасстояния, и люди поначалу с недоверием отнеслись к большим расстояниям, полученным Шепли. Теперь мы знаем, что эти расстояния по некоторым причинам были завышены (например, переменные звезды в шаровых скоплениях отличаются от «нормальных» цефеид), но его основная идея оказалась верной. По современным оценкам, диаметр Галактики около 100 000 световых лет, что примерно втрое меньше оценки Шепли.

Рис. 20.9. Харлоу Шепли использовал шаровые скопления для изучения структуры Галактики. На карте ясно видно, что Солнце расположено вдали от центра.

Космическая пыль между звездами.

Выводы Шепли вскоре получили косвенную поддержку от результатов двух новых работ. Это были исследования движения звезд, проведенные Бертилем Линдбладом в 1921 году и Яном Оортом в 1927 году, а также наблюдения Роберта Трюмплера, показавшие в 1930 году, что в Галактике есть межзвездная пыль, которая существенно ослабляет свет.

Еще Каптейн понимал, что результаты подсчета звезд могут быть искажены поглощением света в космическом пространстве. На фотографиях, полученных Эдуардом Барнардом (1857–1923), выявилось множество темных пятен в Млечном Пути (рис. 20.10). Считалось, что свет звезд в этих направлениях поглощается каким-то веществом, собранным в облака. Но рассеяно ли это вещество и по всему остальному межзвездному пространству? Тогда уже были свидетельства существования межзвездного газа, но ничего не знали о веществе, поглощающем свет. В 1904 году Иоганнес Гартман наблюдал в спектрах двойных звезд «лишние» линии, которые не участвовали в доплеровском смещении, вызванном орбитальным движением звезд. Ясно, что эти линии возникли в газе, находящемся между звездами и нами. Но содержатся ли в этом газе пылинки?

Рис. 20.10. Пыль в Галактике может собираться в плотные облака, не пропускающие свет находящихся за ними звезд. Этот снимок получен с помощью космического телескопа «Хаббл».

Наконец в 1930 году швейцарский астроном Роберт Трюмплер (1886–1956), работавший в Ликской обсерватории, доказал, что межзвездное пространство не совсем прозрачно. Он измерил расстояния до звездных скоплений двумя способами. В одном из них использовались угловые диаметры скоплений; ранее этот метод применял Шепли для шаровых скоплений. Он дает результаты, не искаженные ослаблением света. Второй способ был основан на видимом блеске звезд в скоплениях. На определенные этим способом расстояния сильно влияет ослабление света, если оно существует. Сравнивая полученные значения, Трюмплер заметил, что второй метод дает расстояния, отличающиеся как раз на ту величину, которую можно было бы ожидать при наличии в межзвездной среде поглощающего свет вещества.

Сейчас мы знаем, что при расстоянии в 3000 световых лет вещество в плоскости Галактики ослабляет поток света до одной шестой его интенсивности в прозрачной среде. Потеря света возникает из-за поглощения частицами пыли. Опасения Каптейна оправдались. Хотя Галактика — это звездная система, подсчетов одних только звезд недостаточно для определения ее структуры. Необходимо использовать и более далекие объекты, такие как шаровые звездные скопления, которые не концентрируются в запыленном диске Галактики.

Галактика вращается.

Иммануил Кант предполагал, что звезды нашей Галактики обращаются вокруг далекого центра, подобно планетам, обращающимся вокруг Солнца. Но где же этот загадочный центр? Представление Шепли о Галактике получило мощную поддержку, когда было доказано, что (а) наша звездная система вращается вокруг центра и что (б) центр вращения находится в том направлении, которое указал Шепли, — в направлении созвездия Стрелец. Как же был получен этот замечательный результат?

Используя данные о собственных движениях, Вильям Гершель и Фридрих Аргеландер продемонстрировали, что Солнце движется относительно близлежащих звезд. Но демонстрируют ли движения самих звезд систематический тренд? В начале XX века были измерены собственные движения нескольких тысяч звезд, а также, начиная с 1890-х годов, было получено множество измерений лучевых скоростей звезд по их спектрам. Объединение этих двух массивов данных привело к замечательному открытию.

Оказалось, что существует небольшое число высокоскоростных звезд, которые несутся мимо нас со скоростью 60–80 км/с. Скорости «обычных» звезд заметно ниже. Решение этой загадки нашел шведский астроном Бертиль Линдблад (1895–1965). В 1921 году он предположил, что Галактика состоит из взаимно проникающих подсистем; они вращаются вокруг общего центра, но с разной скоростью. Эта идея легко объясняет движение быстрых звезд: они принадлежат другой подсистеме, не той, которая состоит из «обычных» звезд. Фактически «высокоскоростные звезды» вместе с шаровыми звездными скоплениями входят в медленно вращающуюся подсистему. На самом деле именно «обычные» звезды движутся с большой скоростью. Они, в том числе и наше Солнце, принадлежат плоскому диску Галактики. Мы обгоняем звезды медленно вращающейся подсистемы, и нам кажется, что эти звезды проносятся мимо нас в обратную сторону.

Окончательное доказательство вращения Галактики в 1927 году дал голландский астроном Ян Оорт (1900–1992). Он был студентом Каптейна и, идя по следам своего знаменитого учителя, тоже начал изучать Галактику. Идеи Линдблада о звездах с высокими скоростями вдохновили Оорта, и он решил детально исследовать то, как земной наблюдатель должен видеть движения звезд во вращающейся Галактике в разных направлениях и на разных расстояниях.

Как мы можем заметить вращение плоской звездной системы, находясь внутри нее? Если большая часть звезд сконцентрирована в центре системы, то удаленные звезды испытывают такое гравитационное притяжение, какое исходило бы от единого массивного тела. Звезды должны обращаться вокруг этого центра, как планеты вокруг Солнца: ближние звезды быстрее, а дальние медленнее. Оорт вывел формулу, показывающую, какими должны быть наблюдаемые скорости звезд в разных частях Галактики. Оказалось, что наблюдаемые лучевые скорости звезд хорошо описываются теорией Оорта. Скорость должна становиться нулевой в четырех направлениях, отстоящих друг от друга на 90°. Одно из них — это направление на центр Галактики, которое по Оорту совпадает с центром в модели Шепли. Оорт смог также измерить расстояние до центра Галактики. Определенное им значение составило 20 000 световых лет, примерно одну треть от значения Шепли. Согласно более поздним исследованиям, это расстояние немного больше — около 26 000 световых лет (8000 пк). На рис. 20.11 представлен прекрасный вид нашей Галактики и заметна ее центральная область.

Рис. 20.11. Направление на центр Галактики лежит между созвездиями Стрелец и Скорпион, невысоко над горизонтом в правой части этой прекрасной фотопанорамы Долины Смерти. Заметьте, что пылевые облака растянулись вдоль полосы Млечного Пути. Фото получено Дэном Дуриско (Dan Duriscoe, U. S. National Park Service) no программе исследования светового загрязнения среды и разработки методов защиты оставшихся на Земле мест с темным небом.

Солнце в спиральном рукаве.

Вероятно, американец Стивен Александер (1806–1883) был первым, кто предположил в 1852 году, что звезды в Галактике образуют спиральные рукава. В то время уже имелись наблюдения нескольких спиральных туманностей. У Александера не было доказательств его идеи, но позже такое же предположение высказывали и другие ученые. Попытки выявить спиральную структуру путем подсчета звезд в разных направлениях провалились, но способ наблюдения спиральных ветвей появился в 1940-х годах из довольно неожиданного источника.

Немецкий астроном Вальтер Бааде, работавший в Гамбургской обсерватории, был вынужден в 1931 году эмигрировать в Америку (рис. 20.12). Когда началась война, он еще не получил американского гражданства, его не могли призвать на военную службу, но ему разрешили проводить свои исследования на 2,5-метровом телескопе обсерватории Маунт-Вилсон. А ночное затемнение военного времени в окрестностях Лос-Анджелеса создало отличную возможность для фотографирования галактик.

Рис. 20.12. Вальтер Бааде (1893–1960) показал, что спиральные галактики состоят из подсистем с разным звездным населением. Например, в спиральных рукавах находятся звезды населения I типа. Это фото 1923 года (собственность Гамбургской обсерватории).

Бааде изучал соседние спиральные галактики, такие как Туманность Андромеды. Он пришел к выводу, что в спиральных галактиках содержатся два различных населения звезд: население I типа, которое входит в плоскую подсистему и формирует спиральные рукава, и население II типа, окружающее плоский диск почти сферически. Полная яркость всех звезд населения II не так велика, поэтому наличие этой подсистемы в окрестностях Солнца нелегко заметить на фоне ярких звезд диска. К счастью, в этой сферической подсистеме заметно выделяются шаровые звездные скопления. На орбитах вокруг центра Галактики движется более 100 шаровых скоплений. Их орбиты вытянуты, и они время от времени пересекают галактическую плоскость. Но чаще всего они видны далеко над или под плоскостью Галактики. Два звездных населения различаются и по характеру вращения. Как уже говорилось, население II вращается медленнее, чем плоская подсистема.

Итак, ключ к поиску спиральных рукавов Галактики был найден: нужно использовать звезды населения I. Экстремальными представителями этих звезд служат яркие и горячие голубые звезды спектральных классов О и В, которые часто связаны с яркими газовыми эмиссионными туманностями. В 1951 году на рождественском собрании Американского астрономического общества Уильям Морган (1906–1994) с коллегами рассказали о своих исследованиях ОВ-звезд и эмиссионных туманностей. Они измерили расстояния и отметили на карте галактической плоскости положение этих объектов. Впервые на этой карте проступила спиральная структура околосолнечных областей Галактики. По-видимому, Солнце расположено на внутреннем крае одного из спиральных рукавов.

Доклад Моргана закончился аплодисментами и топаньем ног восторженных слушателей. До этого долго обсуждался вопрос о том, живем ли мы в спиральной галактике, но теперь это было доказано. К сожалению, пыль мешает использовать этот метод на больших расстояниях. Рукав, в котором находится Солнце, так и называют — Местный спиральный рукав. На самом деле, он может быть не основным рукавом, а «перемычкой», как показано на рис. 20.13.

К звездам Местного спирального рукава относятся Капелла и Сириус, Бетельгейзе (в Орионе) и Денеб (в Лебеде), а также широко известные звезды Кассиопеи, образующие фигуру W или М. В направлении Капеллы мы смотрим приблизительно поперек рукава. А в направлении «головы» Лебедя (Денеб в его «хвосте») смотрим вдоль Местного рукава. Плотные пылевые облака ограничивают видимость в этом направлении, поэтому кажется, что полоса Млечного Пути там разделяется на две части.

Рис. 20.13. Современная схема спиральных рукавов нашей Галактики.

Спиральные рукава Галактики — это не только вереницы ярких звезд. Это еще и скопления пыли и газа, а также места рождения молодых звезд. В 1950-х годах были разработаны новые методы поиска газовых облаков с помощью радиотелескопов. Пыль не задерживает длинноволновое радиоизлучение, которое проходит мимо пылинок. Поэтому удалось составить карту* длинных отрезков спиральных рукавов по всему' диску Галактики, но пока все еще трудно объединить их в связанную картину, поскольку мы не можем взглянуть на свою Галактику снаружи. Проанализировав все имеющиеся данные, канадский астроном Жак Валле (Jacques P. Vall?e) пришел недавно к выводу, что число спиральных рукавов у Галактики равно четырем, что, кстати, совпадает с предположением Стивена Александера, сделанным в 1852 году при полном отсутствии каких-либо данных.

Глава 21 Вступая во Вселенную галактик

Еще в античную эпоху люди понимали, что звезды — не единственные неподвижные огоньки на небе. Была известна туманная полоса Млечного Пути. Замечали и другие объекты незвездного вида, которые называли туманными звездами или просто туманностями: в «Альмагесте» Птолемея упоминается семь таких объектов. Прежде чем в прошлом столетии тайна туманностей была раскрыта, под названием «туманность» фигурировали объекты самого разного типа. Не было известно, на каком расстоянии они находятся, и никто не знал, действительно ли эти объекты «туманны». Телескоп Галилея показал, что Млечный Путь на самом деле состоит из огромного числа звезд. Но позднее с помощью более крупных и совершенных телескопов было найдено много новых туманностей, которые действительно выглядят туманно.

Первый каталог туманностей был опубликован в XVIII веке. Список Эдмунда Галлея от 1716 года назывался «Описание нескольких туманностей, или светлых пятен, похожих на облака, открытых в последнее время среди неподвижных звезд с помощью телескопа» и содержал всего шесть объектов, демонстрируя, какую скромную роль играли эти туманности в астрономии тех лет. Самый известный каталог того века составил Мессье. Но его появлению мы обязаны… кометам!

Каталог туманностей Мессье.

Эдмунд Галлей определил в 1705 году, что тот объект, который мы сейчас называем кометой Галлея, движется по вытянутой орбите и должен вернуться в 1758 году. После того как эта комета действительно вернулась, поиск новых комет стал очень популярен. Чтобы стать первооткрывателем кометы, нужно заметить ее в тот момент, когда в телескоп она видна как тусклое пятнышко, еще не имеющее хвоста. Поэтому нередко туманности других типов становились источником ложной тревоги.

Чтобы облегчить охоту за кометами, Шарль Мессье (1730–1817) составил список туманностей, которые он и его коллеги случайно замечали в ходе поиска комет. Мессье оказался в Париже в возрасте 21 года, где ему повезло — астроном Жозеф Делиль взял его в помощники. Юноша стал умелым наблюдателем и в 1759 году обнаружил возвращение кометы Галлея (хотя был разочарован, что не первым). За свою карьеру Мессье открыл около двадцати комет, и это принесло ему международную известность. Несколько лет он работал в Париже, в здании, называемом «особняк Клюни»; там он и жил, и проводил наблюдения в обсерватории, возведенной военно-морским флотом. Это здание, первоначально предназначавшееся для монастыря, существует и поныне: в нем музей с прекрасной коллекцией средневековых вещей.

В 1770 году Мессье был избран членом Французской академии наук. Его первый доклад в Академии положил начало его каталогу туманностей, окончательная версия которого от 1781 года содержала 103 объекта. Из них сам Мессье открыл 38 туманностей. Номера из его каталога используются до сих пор для обозначения ярких объектов. Например, Туманность Андромеды часто обозначается как М31 (на рис. 21.1 показан старинный рисунок с изображением этой туманности). В каталоге Мессье дано краткое описание каждого объекта, его номер и координаты. Используя этот каталог, наблюдатель мог убедиться, что видит в телескоп нужный объект.

Рис. 21.1. Первое известное описание галактики Андромеда дал персидский астроном Аль-Суфи (903–986) в своей «Книге о неподвижных звездах». Это объект около рта рыбы, описанный как «маленькое облако».

Мессье очень бы удивился, узнав, что его имя будут вспоминать в связи с этим каталогом. Он не испытывал никакого интереса к природе туманностей. Его страстью были только кометы. К счастью, он послал копию своего списка Вильяму Гершелю, который изучил все эти туманности в свой телескоп и решил расширить список, проводя систематические наблюдения. В течение следующих 19 лет Гершель дополнил каталог Мессье, обнаружив 2500 новых туманностей и звездных скоплений. Мощные телескопы Гершеля отлично подходили для «прочесывания неба» (рис. 21.2).

Рис. 21.2. Телескоп Вильяма Гершеля диаметром 47 см, которым он пользовался для «прочесывания неба».

Труба телескопа фиксировалась в определенном направлении, а вращение неба двигало картину в поле зрения наблюдателя. Гершель провел ревизию неба, диктуя своей сестре Каролине описание каждой туманности, попавшей в поле зрения. Каролина вспоминала об их работе:

«Мой брат начал свою серию прочесываний, когда инструмент все еще был в незаконченном состоянии… Каждую минуту я ожидала треска или падения, зная, что он стоит на пятнадцатифутовой высоте или даже выше, на временной балке… И в одну из ночей, при сильном ветре, только он спустился вниз, как весь прибор рухнул. Позвали нескольких рабочих, чтобы они помогли освободить зеркало, которое, к счастью, не пострадало…»

Сад туманностей.

Заинтересовавшись природой туманностей, Вильям Гершель вначале думал, что все эти размытые объекты являются звездными системами, которые большой телескоп сможет разрешить на звезды. С помощью своего телескопа он действительно проделал это с большинством туманностей из списка Мессье. Он разделял точку зрения Канта, что бледные туманные пятнышки в действительности являются «островными вселенными», то есть системами, похожими на Млечный Путь. Однако Туманность Ориона он не смог разрешить на звезды, хотя это довольно крупная туманность. Гершель решил, что это очень большая звездная система, намного больше Млечного Пути, но такая далекая, что ее звезды невозможно разглядеть по отдельности.

Вера Гершеля в теорию «островных вселенных» сильно пошатнулась в 1790 году. Он открыл туманность, которая не могла быть звездной системой, — «планетарную туманность», известную сегодня как NGC1514, где центральная звезда окружена газовым облаком (рис. 21.3). Если бы ее туманная часть действительно состояла из звезд, то по сравнению с ними центральная звезда должна была бы иметь огромную светимость. Если же в центре находится обычная звезда, то туманная часть должна состоять из невероятно маленьких звезд. Поэтому Гершель решил, что в данном случае туман — это реальное, а не кажущееся явление, обусловленное очень далекими и тесно расположенными звездами. С этого момента он уже не был уверен в природе любой другой «неразрешимой» туманности.

Гершель был не только умелым строителем телескопов и упорным наблюдателем, но и мыслителем. Его вдохновила мысль о том, что туманности могут менять свою форму. Но космическая эволюция протекает очень медленно (или наша жизнь очень коротка!), и мы не можем проследить за звездой или туманностью от момента ее рождения до самой ее гибели. Гершель сравнивал эту ситуацию с садом, где растения одного вида можно наблюдать на разных этапах их жизни — семя, росток, зрелое растение и т. д., — и это можно использовать для реконструкции полного жизненного цикла растения:

«Небеса… напоминают мне великолепный сад, содержащий множество растений, посаженных в разное время и находящихся в разной степени созревания. И мы можем извлечь из этого некоторую выгоду и намного расширить рамки нашего опыта. Ибо, если продолжить сравнение, взятое мною из растительного царства, то не все ли равно, будем ли мы наблюдать последовательно, как росток появляется из-под земли, цветет, одевается листвою, плодоносит, увядает, засыхает и дает жизнь другому ростку, или же одновременно увидим множество растений, находящихся каждое на той или иной стадии развития из всех, через которые растение проходит за время своей жизни?»

Рис. 21.3. Вид планетарных туманностей привел Вильяма Гершеля к заключению, что некоторые туманности действительно «туманны», а не являются далекими звездными системами. На этом фото представлена планетарная туманность М57. Благодарность: Hubble Heritage Team (AURA/STScI/NASA).

Но как в обычном саду обитает более одного вида растений, и у каждого из них свой жизненный цикл, так же существует множество небесных тел совершенно разного типа, которые все вместе невозможно выстроить в единый эволюционный ряд. И даже если бы мы смогли выделить объекты одного типа, различающиеся только по возрасту, то все равно нелегко было бы в правильном порядке расставить кадры того космического фильма, который мы наблюдаем.

Вначале Гершель думал, что все туманности являются звездными системами, а их внешний вид отражает лишь разные стадии эволюции. В юном возрасте туманности могут выглядеть обширными скоплениями разрозненных звезд, а с возрастом они могут сжиматься под действием силы тяготения. Плотные шаровые скопления должны представлять последнюю стадию их эволюции. Когда позднее Гершель понял, что существуют истинно «туманные» туманности, он заключил, что при сжатии этого «тумана» могут рождаться звезды. Рассуждения Гершеля звучат вполне современно, но в то время их почта не обсуждали. Астрономов больше интересовали вопросы, связанные с нашей Солнечной системой, и, в любом случае, никто другой не имел такого же наблюдательного материала и поэтому не мог критиковать выводы Гершеля.

Единственный сын Вильяма Гершеля — Джон Гершель поступил в 1809 году в колледж Святого Джона в Кембридже, а после его окончания был избран для работы в том же колледже. В 1813 году, написав важную статью по математике, он стал членом Лондонского Королевского общества. Вопреки советам отца, он решил стать юристом. «Сколько людей потерпело крах, пытаясь жить честно на этом пути. Даже у священника было бы больше времени для разнообразной культурной деятельности», — сокрушался Вильям. В 1814 году Джон отправился в Лондон для изучения юриспруденции, но через 18 месяцев отказался от этой затеи и вернулся в Кембридж на место учителя и экзаменатора по математике.

Джон Гершель входит в астрономию.

Лето 1816 года Джон провел со своим отцом. Видимо, как раз тогда он и решил заняться астрономией. Его отцу было уже 78 лет, здоровье его ухудшалось, и некому было продолжить его работу. Джон писал своему другу: «В понедельник я поеду в Кембридж, где думаю пробыть достаточно долго, чтобы оплатить счета, собрать свои книги и надолго, а может быть, и навсегда попрощаться с университетом… Я собираюсь под руководством моего отца продолжить серию его наблюдений с того места, на котором он остановится (пока он чувствует себя неплохо и регулярно наблюдает). Кроме того, я собираюсь продолжить начатое им прочесывание неба с помощью его мощных телескопов…»

Его первая большая астрономическая работа — каталог двойных звезд — была оценена очень высоко. В 1833 году Гершель решает поехать в Королевскую обсерваторию на мысе Доброй Надежды в Южной Африке, чтобы составить каталог небесных объектов, ко-торые не видны из Северного полушария. Гершель отправился туда со своей семьей и своим телескопом-рефрактором ДЛИНОЙ 20 футов. В январе 1834 года их корабль добрался до Южной Африки.

В течение 1825–1838 годов Джон Гершель открыл 2200 новых туманностей и звездных скоплений. Он много времени уделял исследованию Большого и Малого Магеллановых Облаков — двум туманностям, которые хорошо видны даже невооруженным глазом на южном небе. В свой телескоп Гершель у видел, что Магеллановы Облака содержат множество звезд, звездных скоплений и туманностей. Другие астрономы заинтересовались этими Облаками намного позже и пришли к важным открытиям. Как уже говорилось, ключ к измерению больших расстояний дали исследования цефеид в Малом Магеллановом Облаке.

В 1838 году Гершель вернулся в Англию. В следующем году из случайной фразы в письме он узнал о работах Дагера по реалистической фотографии. Не зная никаких деталей, спустя несколько дней Гершель сам начал делать фотоснимки. Он смог быстро добиться больших успехов, благодаря опубликованной им в 1819 году работе о химических процессах, связанных с фотографией (рис. 21.4).

Рис. 21.4. Джон Гершель (1792–1871) был сыном Вильяма Гершеля. Он жил в период изобретения фотографии и был одним из пионеров этой техники. Именно он придумал слово «фотография». В астрономии, кроме всего прочего, он открыл 2200 туманностей. Это фото сэра Джона сделано в 1867 году.

В 1842 году Джон Гершель стал ректором колледжа Маришаль в Абердине. В 1850 году он принял пост директора Монетного двора и взялся за его реформу. Этому он отдавал все свое время и силы, поэтому не мог далее продолжать научную работу. Но в 1864 году по своим и чужим наблюдениям туманностей он опубликовал их «Общий каталог» (General Catalogue), содержащий более 5000 объектов.

Между тем Уильям Парсонс, третий лорд Росс, начал в своем поместье Бёр-Касл работу над телескопом с апертурой 6 футов, прозванным Левиафаном, поскольку тогда это был крупнейший телескоп в мире. Член британского парламента с 21-летнего возраста, Парсонс унаследовал титул лорда от своего отца в 1841 году. Горячо интересуясь механическими приборами и обладая массой свободного времени и денег, Парсонс решил проявить свое мастерство в изготовлении телескопов. На протяжении нескольких лет Парсонс экспериментировал с отливкой металлических зеркал. Как и Гершель до него, Парсонс в качестве материала использовал сплав олова и меди. Он дает хорошо отражающую поверхность, но отлить из нее заготовку для зеркала очень трудно. Заготовка легко ломается. При шлифовке зеркала, необходимой для придания ему нужной формы, Парсонс впервые применил паровую машину. Начав с небольших телескопов, Парсонс в конце концов создал в 1845 году свой крупнейший телескоп, зеркало которого имело диаметр 183 см.

Этот гигант собирал гораздо больше света, чем телескопы Гершелей, и позволял более детально рассмотреть туманности. Одним из важнейших открытий Парсонса стала спиральная структура туманности М51, которую именно он увидел впервые. Уже вскоре после начала наблюдений на телескопе Парсонс докладывал, что он «очень четко видел спиральную форму основного ядра, а также спиральность меньшего ядра». Его рисунок туманности был продемонстрирован на собрании Британской ассоциации содействия развитию науки в Кембридже. Это стало сенсационной новостью, и с этого момента центр дискуссии сместился от вопроса «Можно ли разрешить туманности на звезды?» к вопросу об их форме. Вы можете сравнить современную фотографию М51 и рисунок Парсонса (рис. 21.5). За много лет до этого Джон Гершель смотрел на ту же туманность в свой 48-см телескоп, но смог разглядеть только «очень яркое круглое ядро, окруженное на некотором расстоянии туманным кольцом». Парсонс увидел «спиральность» и у других галактик; к 1850 году было известно уже 15 таких объектов, а к концу столетия эта цифра достигла тысячи. Спиральные туманности стали заметным компонентом Вселенной.

Некоторое время помощником лорда Росса в обсерватории Бёр-Касл был молодой датчанин Йохан Людвиг Дрейер (1852–1926). Ис-пользуя гигантский телескоп, он наблюдал туманности. Позже он стал директором обсерватории в городе Арма (Северная Ирландия). Составленный им «Новый общий каталог туманностей и звездных скоплений» (New General Catalogue, NGC) содержит 7840 объектов. Обозначения по каталогу NGC широко используются даже в наше время. Например, Туманность Андромеды (М31) имеет также обозначение NGC 224.

Рис. 21.5. Лорд Росс, Уильям Парсонс (1800–1867)> построил самый большой телескоп своего времени, (а) Туманность М51, расположенная на небе в направлении Ковша Большой Медведицы, при наблюдении в телескоп оказалась спиральной галактикой. (Ь) Сравните рисунок Парсонса 1845 года с фотографией, полученной космическим телескопом «Хаббл». Благодарность: HST/STScI/A URA/NASA/ESA.

Рождение астрофизики.

Как уже говорилось в главе 5, Густав Кирхгоф и Роберт Бунзен исследовали спектр Солнца и отождествили некоторые линии известных химических элементов. За несколько лет до этого богатый любитель Уильям Хёггинс построил обсерваторию у своего дома близ Лондона. Узнав о работе Кирхгофа, он загорелся идеей расширить спектроскопические исследования, перенеся их от Солнца к звездам и туманностям. Для своего телескопа он изготовил спектроскоп и приступил к наблюдениям (рис. 21.6).

Целый год он изучал спектры звезд, а затем перешел к туманностям. Первой, на которую он навел телескоп, была планетарная туманность в созвездии Дракон. Хёггинс удивился, увидев в ее спектре эмиссионные линии. Согласно закону Кирхгофа, это означало, что источник излучения является газовым. Так Хёггинс доказал предположение Гершеля. Но когда он направил телескоп на Туманность Андромеды, результат оказался совсем иным: спектр был непрерывный, свет распределялся по всем цветам довольно равномерно, как в спектре звезды. Значит, Туманность Андромеды состоит из звезд; это галактика, которая кажется туманной лишь из-за огромного расстояния до нее. Хёггинс нашел способ отличить газообразную туманность от звездной системы. Он изучил спектры шестидесяти туманностей и обнаружил, что треть из них являются газообразными, а остальные — звездными системами.

Рис. 21.6. Уильям Хёггинс (1824–1910) — основатель астрофизической спектроскопии. Он был первым, кто по спектрам звезд измерил их лучевые скорости. Он обнаружил, что спектры планетарных туманностей по наличию эмиссионных линий напоминают спектры газовых облаков.

К концу XIX века стало ясно, что спиральные туманности распределены по небу особым образом. Они почти не обнаруживаются в полосе Млечного Пути, зато их число резко увеличивается с удалением от нее. Наибольшая плотность этих туманностей наблюдается в направлениях, перпендикулярных плоскости Галактики (рис. 21.7). Что бы это значило? Большинство астрономов считали тогда, что эта антикорреляция звезд и туманностей на небе указывает на принадлежность самих туманностей Млечному Пути. Если бы они были «островными вселенными», то откуда взялась бы связь распределения по небу этих туманностей и звезд нашей Галактики? Только позже обнаружилось, что в Млечном Пути очень много пыли и это ухудшает видимость вдоль галактической плоскости. Туманности есть во всех направлениях, но в Млечном Пути мы не видим их сквозь пыль.

Еще одним аргументом против «островных вселенных» стала вспышка новой звезды в Туманности Андромеды в 1885 году. Яркость этой одиночной звезды составила одну десятую яркости всей туманности. Если предположить, что туманность действительно состоит из миллионов звезд, то кажется невероятным, что одна звезда может так ярко светить (о сверхновых звездах тогда не знали). Проще было представить, что Туманность Андромеды состоит из газа и что она внутри нашей Галактики, несмотря на ее непрерывный спектр. К концу столетия считалось, что эта туманность — часть Млечного Пути. Но были и противоположные мнения. Например, Юлиус Шнайдер сфотографировал спектр Туманности Андромеды и нашел в нем темные линии, такие же, как в спектре Солнца. Это был аргумент в пользу звездного состава.

Рис. 21.7. Распределение 11 475 спиральных туманностей по небу, построенное Карлом Шарлье в начале XX века. Совсем мало туманностей лежит в поясе Млечного Пути (горизонтально проходящем через центр).

«Островные вселенные» получают поддержку.

В 1911 году американский астроном Ф. Вери вычислил расстояние до Туманности Андромеды, предположив, что Новая 1885 года имела такую же светимость, как и другая новая в нашей Галактике, расстояние до которой было известно. Расстояние до звезды, вспыхнувшей в Андромеде, у него получилось 1600 световых лет. По некоторым причинам Вери считал, что диаметр нашей Галактики всего 120 световых лет. Сделав правильный вывод из неверных соображений, он заключил, что туманность с непрерывным спектром располагается за пределами Галактики.

Любопытно, что несколькими годами раннее швед Карл Болин сообщил, что измерил параллакс М31. Он пришел к выводу, что компактное ядро туманности имеет годичный параллакс около 0,14", что указывает на очень малое расстояние до него — всего 1/0,14 = 7,1 пк, или 23 световых года. Теперь мы знаем, что истинный параллакс Туманности Андромеды должен составлять порядка 0,000001". Позже Лундмарк предположил, что неверный результат получился из-за технических проблем с телескопом.

К 1917 году в других спиральных туманностях было открыто много вспышек новых. Все они были примерно на десять звездных величин слабее тех новых, которые вспыхивали в Галактике, а это означает, что находятся они в сотни раз дальше. Следовательно, те туманности, в которых обнаруживались вспышки новых, являются независимыми «островными вселенными», похожими на нашу Галактику. Однако эта цепь рассуждений основывается на том, что вспышки новых в туманностях и в Галактике имеют одинаковую яркость, а это еще требовалось доказать.

Уже к 1912 году стало очевидно, что в спектрах всех спиральных туманностей присутствуют темные линии, ясно указывая на то, что эти туманности являются звездными системами. К тому же эти спектральные линии, благодаря эффекту Доплера, можно было использовать для измерения лучевых скоростей (см. главу 12). Первое измерение лучевой скорости яркой звезды (Сириуса) провел Хёггинс еще в 1868 году. Но прошло немало лет, прежде чем такие измерения удалось проделать для спиральной туманности.

Директор обсерватории во Флагстаффе Персиваль Ловелл (1855–1916) заинтересовался теорией о том, что спиральные туманности являются одной из стадий формирования планетных систем. Он попросил одного из своих сотрудников, Весто Слайфера, изучить вращение туманностей с помощью 61-см телескопа и спектрографа. Задача была нелегкой, но у Слайфера имелся опыт исследования вращения планет. В 1912 году Весто смог измерить слабый спектр Туманности Андромеды. Результат оказался совершенно неожиданным: она приближается к нам со скоростью 300 км/с. Столь высокая скорость была неслыханной. Обычно скорости звезд и газовых облаков в Галактике составляют порядка 10 км/с. Сегодня мы знаем, что в значительной степени за эту большую скорость ответственно движение самого Солнца, которое несет нас вокруг центра Галактики, и лишь меньшая часть наблюдаемой скорости относится к реальному движению Туманности Андромеды относительно нашей Галактики.

В 1914 году на собрании Американского астрономического общества Слайфер сообщил об измерении этой и еще 14 других лучевых скоростей. Результаты были приняты с одобрением. Сам Слайфер считал, что его измерения поддерживают теорию островных вселенных: спиральные туманности не могут входить в состав Галактики, поскольку они движутся слишком быстро. У большинства туманностей линии были сдвинуты в красную сторону спектра, то есть эти туманности удаляются от нас. Самая большая скорость среди измеренных Слайфером равнялась 1100 км/с. Этот талантливый, но скромный астроном открыл то, что сейчас называют космологическим красным смещением (рис. 21.8).

Рис. 21.8. Весто Слайфер (1875–1969) измерил скорость Туманности Андромеды по ее спектру и открыл космологическое красное смещение линий в спектрах многих далеких галактик.

К тому же Слайфер обнаружил и то, что он искал: спиральные туманности вращаются, причем типичная скорость их вращения составляет 200 км/с. В 1918 году в обсерватории Маунт-Вилсон Фрэнсис Пиз измерил вращение Туманности Андромеды. Эстонский астроном Эрнст Эпик (1893–1985) сразу же воспользовался этим результатом, чтобы определить расстояние до этой туманности. Он понял, что скорость вращения дает возможность вычислить ее массу в единицах массы Солнца, а отсюда можно установить истинную светимость туманности, предполагая, что она состоит из звезд типа Солнца или похожих на него звезд. Когда он сравнил истинную светимость с наблюдаемым блеском, ослабленным расстоянием, он получил очень большое значение расстояния — 2,5 млн световых лет. Эпик доложил свои результаты на астрономическом совещании в Москве в 1918 году, сразу же после большевистской революции. Его статью в 1922 году напечатал журнал Asfrophysical Journal (но в ней уже было значение 1,5 млн световых лет). Если этот метод был правильным (а он действительно был более или менее верным), то Туманность Андромеды лежала далеко за пределами нашей Галактики.

Этот результат прямо противоречил измерениям голландца Адриана ван Маанена, который объявил, что заметил вращение спиральной туманности М101, отслеживая изменения ее фотографических изображений из года в год. Если его утверждения были бы верными, то туманность должна была бы совершать полный оборот вокруг своей оси всего лишь за 100 000 лет (в космических масштабах это очень короткое время). Но такая туманность должна быть очень маленькой и располагаться внутри Галактики.

«Великий спор».

В начале XX века ведущие центры по изучению туманностей были в Калифорнии: это обсерватории Маунт-Вилсон и Ликская. Последняя была знаменита своим 90-см рефлектором, названным именем британского любителя астрономии Эдварда Кроссли, подарившего этот телескоп обсерватории. Телескоп начал работать в 1895 году и с самого начала использовался для фотографирования туманностей. С 1908 года в обсерватории Маунт-Вилсон был уже 1,5-м телескоп, а самый большой в мире 100-дюймовый рефлектор начал работать в 1918 году. Ему дали имя «Телескоп Хукера» в честь бизнесмена Джона Хукера.

Харлоу Шепли работал в обсерватории Маунт-Вилсон, а другой ведущий астроном Гебер Кёртис (1872–1942) проводил свои наблюдения в Ликской обсерватории. Кёртис фотографировал спиральные туманности, пытаясь найти признаки их вращения, но ничего не обнаружил (в отличие от ван Маанена). Сотрудники Ликской обсерватории отдавали предпочтение теории «островных вселенных»; это касалось и Кёртиса. Рассматривая фотографии спиральных туманностей, он заметил, что в центральной плоскости туманности часто лежит слой пыли, который выглядит как темная линия, когда туманность видна с ребра (рис. 21.9). Если наша Галактика тоже спиральная, то у нее тоже должен быть подобный слой пыли в центральной плоскости. Это должно ограничивать видимость, и мы не должны видеть далекие звездные туманности, за исключением тех, которые располагаются вне пояса Млечного Пути, что и наблюдается в действительности. Кроме того, — утверждал Кёртис, — высокие скорости спиральных туманностей и сопоставление блеска новых звезд свидетельствуют в пользу теории «островных вселенных».

Рис. 21.9. В плоскости спиральной туманности, наблюдаемой с ребра, заметен пылевой слой. Гебер Кёртис пришел к выводу, что странное распределение спиральных туманностей на небе вызвано наличием такого же пылевого моя в нашей Галактике (тоже спиральной). На этом фото представлена видимая с ребра спираль М104 по прозвищу «Сомбреро».

Ранее Шепли тоже поддерживал идею об «островных вселенных». Но, определив, что диаметр Галактики составляет 300 000 световых лет, он посчитал, что легче поместить туманности внутрь этой колоссальной структуры. Шепли не верил в существование космической пыли за исключением отдельных облаков. По его мнению, распределение спиральных туманностей свидетельствует как раз против идеи Кёртиса. Измерения ван Маанена, близкого друга Шепли по Маунт-Вилсон, лишь подтверждали его мнение.

В 1920 году на собрании Национальной академии наук в Вашингтоне состоялась дискуссия между Кёртисом и Шепли. Вначале планировалось обсуждение теории относительности, но эту тему сочли непонятной для большинства участников и ее заменили темой «масштаб Вселенной». Вопреки ожиданиям, «Великий спор» не стал настоящим спором. Просто два джентльмена зачитали приготовленные доклады, подчеркивая аргументы каждый в пользу своей точки зрения. Шепли считал, что диаметр Галактики составляет 300 000 световых лет, а Кёртис — что он не превышает 30 000 световых лет. Сегодня мы принимаем, что диаметр Галактики равен 100 000 световых лет.

Хаббл находит цефеиды.

Каждый из них — и Кёртис, и Шепли — утверждал, что выиграл спор. При этом оба они не знали о работе Эпика, который уже решил этот спор в пользу Кёртиса. К тому же в 1919 году шведский астроном Кнут Лундмарк (1889–1958) в своей диссертации, основываясь на вспышках новых, показал, что расстояние до Туманности Андромеды очень велико. Но решающее доказательство принадлежит Эдвину Хабблу (1889–1953). Он родился в штате Миссури, в семье служащего страховой компании. Когда ему было девять, семья переехала в Чикаго. В 1906 году, когда он окончил школу, директор на прощание сказал ему: «Эдвин Хаббл, я четыре года наблюдал за тобой и никогда не замечал, чтоб ты занимался хотя бы десять минут»; немного помолчав, он продолжил: «Вот тебе стипендия в Чикагский университет». Там Эдвин и получил в 1910 году диплом математика и астронома.

Высокий крепко сложенный молодой человек, Хаббл увлекался боксом и был в баскетбольной команде университета. Сочетание атлетического совершенства с академическими способностями позволило ему получить стипендию Родса в Оксфорде. Там, выполняя обещание, данное умирающему отцу, который не одобрял увлечение Эдвина астрономией, он вместо науки стал изучать римское и английское право.

В 1913 году Хаббл вернулся в Соединенные Штаты. Пройдя соответствующий экзамен, он в течение года без всякого энтузиазма работал юристом в Кентукки, где в то время жила его семья. Позднее он скажет: «Я отказался от права ради астрономии, и я знаю, что даже если бы я стал второсортным или даже третьесортным ученым, главное — я занимался астрономией». Поэтому в 1914 году он вернулся в Чикагский университет, чтобы закончить работу для получения докторской степени по астрономии. Когда в 1917 году он заканчивал подготовку диссертации, его пригласил на работу Джордж Эллери Хейл (1868–1938), директор обсерватории Маунт-Вилсон. Следует отметить, что Хейл был весьма влиятельной фигурой. Он основал три обсерватории: Йерксскую, Маунт-Вилсон и Маунт-Паломар. В первой половине XX века в астрономии доминировала обсерватория Маунт-Вилсон. Благодаря ней астрономы узнали о космической роли галактик. А позже в Паломарской обсерватории была раскрыта природа квазаров. Предложение Хейла давало Хабблу прекрасную возможность для дальнейшей работы.

Но как раз в это время Соединенные Штаты вступили в Первую мировую войну. Просиживая ночи напролет, Хаббл закончил диссертацию, защитил ее и на следующее утро поступил добровольцем на военную службу. Хейлу он отправил телеграмму: «Сожалею, не могу принять ваше приглашение. Я ухожу на войну». В США он вернулся летом 1919 года, уволился из армии и тут же поехал в обсерваторию Маунт-Вилсон.

Вначале Хаббл изучал отражательные туманности — облака межзвездной пыли, отражающие свет близлежащей звезды. Затем он стал использовать 100-дюймовый телескоп для изучения спиральных туманностей. Основываясь на их высокой скорости, в 1917 году Хаббл пришел к выводу, что это «островные вселенные»; затем он стал искать индивидуальные звезды, которые могли бы послужить индикаторами расстояния. Имея большой телескоп, в туманности можно заметить отдельные звезды. Но на больших расстояниях видна только звездная «каша». Следовательно, нужно искать переменные звезды как возможные индикаторы расстояния. Лучшими кандидатами для этой цели должны быть цефеиды.

Вообще-то Хаббл искал вспышки новых, когда в 1923 году обнаружил в Туманности Андромеды цефеиду. Ее слабый блеск говорил о том, что это очень далекая звезда. Хаббл определил, что период цефеиды равен 31 суткам; а затем, используя найденную Шепли зависимость светимости от периода, он смог вычислить ее расстояние, которое оказалось равным 1 млн световых лет. Это подтвердило, что Туманность Андромеды действительно находится вне нашей Галактики. В том же году Хаббл нашел в Андромеде еще девять цефеид, и все они подтвердили это расстояние. Кроме того, он обнаружил цефеиды в спиральной галактике М33 (в созвездии Треугольника, недалеко от Туманности Андромеды, М31). Вычисления показали, что эта галактика расположена на том же расстоянии, что и М31 (рис. 21.10).

Результаты Хаббла, официально доложенные в 1925 году на собрании Американского астрономического общества в Вашингтоне, были встречены с огромным вниманием. Все поняли, что «Великий спор» окончен. Кёртис оказался прав: спиральные туманности действительно находятся вне Млечного Пути и образуют новый мир галактик. Кстати, этот термин предложил Шепли, а Хаббл до конца своих дней называл их внегалактическими туманностями.

Рис. 21.10. Эдвин Хаббл нашел в Туманности Андромеды цефеиды и использовал их для определения расстояния. На этом фото показана примерно в 20 раз более далекая галактика М100, расстояние до которой было определено спустя 70 лет тем же способом. Тогда как обычная звезда на разных фото выглядит одинаково, переменная звезда со временем меняет свой блеск. Благодарность: HST. NASA, W. Freedman (CIW), R. Kennicutt (U. Arisona), J. Mould (ANU).

Классификация галактик по Хабблу.

Классификация объектов исследования считается одной из ключевых задач науки еще со времен Аристотеля. Он понимал, что, сгруппировав природные явления по типам в соответствии с их важнейшими характеристиками, можно многое узнать об окружающем мире. У галактик намного больше свойств, чем может заметить глаз; но даже первое, что видит глаз, — внешний вид галактик, может дать ключ к пониманию их природы. Уже Вильям и Джон Гершели, основываясь на своих наблюдениях в телескоп, начали классифицировать туманности. Позже фотографии показали, что кроме спиралей есть много других типов туманностей. В 1926 году Хаббл пришел к выводу, что большинство галактик можно разделить на два больших класса — спиральные и эллиптические.

Рис. 21.11. (а) Эдвин Хаббл у телескопа, (б) «Камертонная» диаграмма Хаббла с фотографиями соответствующих типов галактик.

Эллиптические галактики (Е, от elliptical) выглядят как довольно однородные сферические или сплющенные пятнышки света, более яркие в центре и тускнеющие к краям. Степень их сферичности обозначается цифрами (Ео) — сферическая, (Е7) — очень сплюснутая. Спиральные галактики делятся на две группы: нормальные спирали (S) и спирали с перемычкой (SB, где В — от bar). У нормальных галактик спирали выходят из центра галактики, а у галактик с перемычкой они начинаются от концов перемычки. В зависимости от компактности спиралей, их делят еще и на подклассы Sa, Sb и Sc (а галактики с перемычкой — SBa и т. д.). Самые плотно закрученные спирали относятся к классу Sa, а самые рыхлые — к Sc. Хаббл выделил еще и промежуточный класс S0 (эс ноль); эти галактики такие же плоские, как спиральные, но при этом почти такие же гладкие, как эллиптические. Все эти типы представлены на «камертонной» диаграмме Хаббла (рис. 21.11).

Наша Галактика относится к типу SBb или SBc; трудно определить ее точную структуру, не имея возможности выйти и посмотреть на нее снаружи. Наблюдение в инфракрасном диапазоне, где искажение пылью не так велико, как в оптическом, показывает наличие перемычки в центре нашей Галактики. Прекрасный образец галактики с перемычкой (NGC 1300) показан на цветной вкладке (фото 20).

Почти каждую галактику можно отнести к одному из типов по Хабблу, так что и сегодня эта классификация весьма полезна. Подобно Гершелю, Хаббл полагал, что выстроенная им последовательность галактик может представлять разные стадии их эволюции. Но теперь мы знаем, что это не так. Тем не менее, кроме своей простоты, эта классификация очень полезна еще и тем, что внешний вид галактики тесно связан с ее физическими характеристиками, которые прямо не видны на фотографии, такими как скорость вращения и масса.

На врезке 21.1 приведены данные о некоторых галактиках — членах, как называл ее Хаббл, Местной группы, в которую входит и наша Галактика (рис. 21.12). Видно, что по сравнению с Галактикой большинство соседних звездных систем имеют малую массу и низкую светимость. Большая часть массы Местной группы заключена в двух ее крупнейших галактиках — в Туманности Андромеды и в нашей Галактике. На врезке 21.1 приведены данные и о других ближайших галактиках разных типов, расположенных по соседству с Местной группой.

Врезка 21.1. Некоторые члены Местной группы и некоторые другие ближайшие галактики.

Современная система классификации — это модифицированная система Хаббла. Промежуточные случаи обозначены двумя буквами: Sab лежит между Sa и Sb. Sd — это самый конец, спирального ряда, после Sc. I — неправильная (irregular) галактика, m — типа Магеллановых Облаков, dE — карликовая эллиптическая (dwarf elliptical) галактика.

Некоторые ближайшие галактики вне Местной группы.

Некоторые из приведенных расстояний определены с большими ошибками, которые отражаются в значениях светимости и диаметра.

Рис. 21.12. Основные галактики Местной группы. Отметим обилие спутников у нашей Галактики и Андромеды.

Закон Хаббла для красного смещения.

Когда в 1914 году Слайфер начал измерять лучевые скорости галактик, для него оказалось полной неожиданностью, что почти у всех галактик линии смещены в красную сторону спектра. Если это красное смещение вызвано движением (эффект Доплера), то похоже, что галактики убегают от нас. Уже в 1917 году Виллем де Ситтер разработал модель Вселенной, основанную на общей теории относительности, которая предсказывала красное смещение для далеких объектов. Эта модель конкурировала со статической моделью Вселенной, разработанной Эйнштейном и не предсказывающей красного смещения. На самом деле это была довольно странная модель: в ней предполагалось, что Вселенная не содержит вещества. Но даже если реальный мир просто «беден» веществом, в нем должен был проявиться «эффект де Ситтера»: красное смещение должно быть больше у более далеких источников света. Это вдохновило астрономов, включая и Эдвина Хаббла, на исследование — зависит ли красное смещение туманностей от расстояния до них.

У Хаббла был способный помощник, легендарный Милтон Хьюмасон (1891–1972), который с помощью большого 100-дюймового телескопа фотографировал спектры галактик (ранее такие измерения проводил Слайфер на 61-см телескопе Ловел-ловской обсерватории). Бросив учебу в школе, Хьюмасон стал погонщиком мулов в обозе, курсировавшем между городком Сьерра-Мадре и горой Маунт-Вилсон во время строительства обсерватории. В 1911 году он женился на дочери инженера обсерватории и стал управляющим на ранчо родственника, но в 1917 году поступил на работу в обсерваторию — сначала привратником, а вскоре был повышен до ночного помощника. В 1919 году директор обсерватории Джордж Хейл узнал о выдающихся способностях Хьюмасона как наблюдателя и перевел его в штат научных сотрудников. Так в конце концов Хьюмасон стал астрономом-самоучкой. За свою карьеру он измерил красные смещения 620 галактик (рис. 21.13).

В 1929 году Хаббл опубликовал свое фундаментальное открытие — зависимость красного смещения галактики от расстояния до нее. Некоторую связь между этими величинами заметил еще Кнут Лундмарк, но работа Хаббла впервые показала, что красное смещение прямо пропорционально расстоянию.

С тех пор этот результат много раз подтверждался наблюдениями более далеких галактик. Если из красного смещения вывести скорость, то эта зависимость примет форму знаменитого закона Хаббла:

Скорость удаления = Постоянная Хаббла x Расстояние.

Широко известная интерпретация этого важнейшего закона гласит, что в мире галактик расстояния действительно увеличиваются, или, попросту говоря, Вселенная расширяется. Заметим, что на самом деле мы не «видим» движение галактик, а определяем его по небольшому сдвигу (красному смещению) спектральных линий (рис. 21.14).

Рис. 21.13. Группа знаменитых ученых у портрета Дж. Хейла в 1931 году. Слева направо: М. Хьюмасон, Э. Хаббл, Ч. Сент-Джон, А. Майкельсон, А. Эйнштейн, У. Кэмпбелл и У. Адамс. Заметим, что Сент-Джон в 1922 году показал, что атмосфера Венеры почти лишена воды и кислорода. Адамс (директор обсерватории Маунт-Вилсон) доказал, что Сириус В — это белый карлик, а Кэмпбелл, глава Ликской обсерватории, был знаменитым специалистом по спектроскопии. С разрешения Библиотеки Хантингтона.

Постоянная Хаббла — очень важная величина для космологии, связанная с размером и возрастом Вселенной. Более того, для большинства галактик мы знаем только их красное смещение. Если известна постоянная Хаббла, то достаточно разделить скорость удаления на эту величину, чтобы получить расстояние. Но чтобы определить саму постоянную Хаббла, мы сначала должны точно измерить расстояния до достаточно большого числа галактик.

Рис. 21.14. Скорости удаления галактик и их расстояния. Точки представляют наблюдения конкретных галактик, а прямые линии — закон Хаббла. Верхняя диаграмма основана на работе Хаббла 1929 года, а внизу современная диаграмма Хаббла для того же интервала расстояний. Заметим, что современные значения расстояний почти в 10 раз больше значений, полученных Хабблом. Это связано с большой систематической ошибкой в старых измерениях.

Как измерять космические расстояния?

Один астроном начал свой обзор по внегалактическим расстояниям так: «Фактически определение расстояний до галактик является неразрешимой задачей». В этой пессимистической фразе есть доля истины, поскольку измерение космических расстояний основывается на сложной цепи слабо связанных между собой методов. Эта цепь начинается с Солнца, затем она взаимно связывает ближние и дальние звезды нашей Галактики, далее следует к ближайшим галактикам и шаг за шагом протягивается ко все более и более удаленным галактикам, образуя лестницу космических расстояний.

Расстояния до ближайших галактик в основном измерены по цефеидам, но на большем расстоянии цефеиды слишком слабы для наблюдения наземными телескопами. Космический телескоп «Хаббл», работающий вне земной атмосферы, за последнее время очень помог в продвижении метода цефеид на большие расстояния, достигнув в 30 раз больших расстояний, чем до галактики Андромеда.

Сверхновые гораздо ярче цефеид: например, сверхновая 1885 года в М31 имела блеск лишь втрое меньше, чем у всей галактики. За последние годы резко увеличилось число открытий далеких сверхновых, а также улучшилась интерпретация их поведения. Поэтому некоторые типы сверхновых стали «стандартными свечами», которые можно использовать для надежного измерения расстояний во Вселенной.

За последние годы разработано много новых методов. Если предположить, что галактики определенного типа имеют известную светимость, то расстояние до них вычислить несложно. К сожалению, нам неизвестны такие «галактики — стандартные свечи». Возьмем, например, галактику Андромеда и два ее спутника — М32 и М110, представленные на цветной вкладке. Если бы все галактики имели одинаковый размер, то надо было бы заключить, что спутники расположены гораздо дальше Андромеды. Так что определение расстояний до галактик по их размеру или блеску очень ненадежно. Лучше вернуться к методу Эпика, который определил расстояние до галактики Андромеда, используя скорость ее вращения для оценки светимости. В современном виде это называется методом Талли-Фишера; он дает значения расстояний с ошибкой менее 30 %. Измерять скорости вращения проще, используя радиотелескоп. Почему вращение позволяет определить истинную светимость галактики? Потому что чем массивнее галактика, тем быстрее она вращается; а раз она более массивная, то в ней больше звезд и сильнее звездное излучение. За последнее время методом Талли-Фишера измерены расстояния до тысяч галактик.

Нужно отметить одну щекотливую проблему всех методов, использующих «стандартную свечу». Вызвана она тем неудобством, что астроном не может передвигаться между галактиками, а вынужден оставаться на одном месте — в Солнечной системе. Когда для исследования выбираются галактики, то неизбежно возникает тенденция учитывать тусклые галактики в ближнем пространстве и все более яркие на более далеких расстояниях. В результате это приводит к ошибке, названной «сдвиг Малмквиста» (Malmquist bias), которую впервые обсуждал шведский астроном Гуннар Малмквист (1893–1982) в связи с исследованием звезд. Многие базы астрономических данных могут быть искажены этим эффектом. Это преуменьшает расстояния, поэтому значение постоянной Хаббла (= скорость/расстояние) становится больше.

Врезка 21.2. Постоянная Хаббла, шкала расстояний и возраст Вселенной.

Постоянная Хаббла (Н) тесно связана со шкалой расстояний и с возрастом расширяющейся Вселенной. Расстояние R до галактики, скорость удаления которой равна V, составляет V/Н (из закона Хаббла). Следовательно, чем меньше постоянная Хаббла, тем больше расстояние, вычисленное по скорости (то есть по красному смещению). Связь с возрастом также нетрудно проследить. Предположим, что на протяжении всей истории Вселенной скорость V взаимного удаления двух галактик оставалась постоянной. Тогда понятно, что некоторое конечное время тому назад эти две (да и все остальные) галактики были очень близки друг к другу. Это время, или «возраст Вселенной», определяется с помощью элементарной математики — делением современного значения расстояния R между галактиками на их взаимную скорость V. Легко видеть, что отношение R/V равно 1/H. Следовательно, вычисленный возраст Вселенной обратно пропорционален принятому значению постоянной Хаббла.

Современные измерения показывают, что постоянная Хаббла равна примерно 70 км/с на 1 Мпк, то есть при расстоянии между галактиками в 1 млн парсеков (3,26 млн световых лет) они удаляются друг от друга со скоростью около 70 км/с. Удобно помнить, что скорость в один километр за секунду соответствует расстоянию в один парсек за миллион лет. Тогда со скоростью 70 км/с для удаления на один парсек потребуется 14 000 лет, а на миллион парсеков —14 млрд лет. Получается, что возраст Вселенной, с того момента, когда галактики «сидели на голове друг у друга», составляет около 14 млрд лет. Точное значение возраста зависит от того, увеличивались или уменьшались скорости галактик с момента Большого взрыва (этот вопрос обсуждается в главе 23).

В первой половине XX века считалось, что постоянная Хаббла примерно в 7 раз больше современной оценки (рис. 21.15). Поэтому вычисленный возраст Вселенной получался равным всего 14/7 = 2 млрд лет.

Рисунок 21.15 показывает, как изменялась оценка постоянной Хаббла за последние десятилетия. Вид этой зависимости говорит о трудностях при измерении расстояний до галактик. В основном с эффектом Малмквиста было связано расхождение между двумя «школами» астрономов, возникшее в 1980-е годы. Жерар де Вокулёр и его коллеги предпочитали значение Н около 100, а «старейшина современной наблюдательной космологии» Аллан Сэндидж и его давний европейский коллега Густав Тамман получали значение близкое к 55 (постоянная Хаббла измеряется в единицах «км/с на Мпк», Мпк = 1 млн парсеков). Позже это разногласие удалось преодолеть. В общем, большое различие полученных значений постоянной Хаббла показывает, что измерение космических расстояний — это нелегкое искусство. Сейчас развито несколько особых методов, обходящих привычную лестницу расстояний и свободных от сдвига Малмквиста. Они дают значения от 60 до 80. Во врезке 21.2 коротко описано, как значение постоянной Хаббла связано с размером и возрастом расширяющейся Вселенной.

Рис. 21.15. Наилучшие значения постоянной Хаббла в прошедшие десятилетия. Эта эволюция свидетельствует о трудностях измерения расстояний до галактик. Последние две точки определены по наблюдениям космического телескопа «Хаббл».

Примером того, насколько сложно измерить расстояние даже до соседней галактики, служит «изменение» расстояния до Туманности Андромеды. В табл. 21.1 показаны некоторые результаты, полученные за последнее столетие.

Таблица 21.1. Измеренные расстояния до галактики Андромеда.


Некоторые из методов указанных авторов обсуждаются в тексте.

И все же она движется!

Мы уже упоминали об уверенности ван Маанена в том, что он обнаружил вращение некоторых спиральных галактик по фотографиям, полученным в разное время. Его сообщение служило важным аргументом в период споров о расстояниях до спиральных туманностей. Но сейчас-то мы знаем, что заметить вращение галактик он никак не мог. На один оборот вокруг оси галактика тратит от 100 млн лет и более. Ван Маанен ошибался не умышленно; он очень аккуратно измерял движения звезд. Более вероятно, что здесь мы имеем дело с так называемой личной ошибкой (personal bias). Когда человек пытается заметить очень маленький эффект, то он сам не осознает, как подсознательно ожидание «того, что нужно увидеть» берет верх и влияет на измерения.

Но, с другой стороны, доплеровское смещение линий в спектрах показывает, что галактики действительно вращаются. В 2005 году, спустя 80 лет после измерений ван Маанена, международная группа астрономов под руководством Андреаса Брунталера и Марка Рейда смогла зарегистровать вращение галактики М33, входившей в список ван Маанена. Но это вращение было обнаружено не по фотографии, а путем наблюдения за гигантскими мазерными источниками на молекулах водяного пара в газовых облаках М33. Эти естественные мазеры (похожие на лазеры) интенсивно излучают в одном направлении и в очень узком диапазоне радиочастот. Их положение (и его изменение) можно точно измерить с помощью используемой радиоастрономами «интерферометрии с очень длинной базой». В этой работе были применены 10 больших радиоантенн, размещенных в разных областях США и управлявшихся из Национальной радиоастрономической обсерватории (ИКАО). Астрономы смогли измерить очень маленькое смещение на небе двух водяных мазеров в спиральных рукавах М33 — всего на несколько миллионных долей секунды дуги в год. Это смещение указывает на вращение галактики (рис. 21.16), как и ожидалось по независимым спектроскопическим (эффект Доплера) данным. Эти же измерения позволили вычислить и расстояние до М33, которое оказалось почти таким же, как расстояние до галактики Андромеда, что согласуется с результатами других методов и говорит о том, что эти члены Местной группы находятся сравнительно недалеко друг от друга.

Рис. 21.16. Вращение галактики М33 было определено по наблюдениям еле заметного движения на небе гигантских мазеров на молекулах водяного пара. Стрелки показывают направление и относительную величину измеренного смещения. Эту галактику в созвездии Треугольник иногда называют «Вертушкой» или «Шутихой». С любезного разрешения Travis Rector.

Аллан Сэндидж (рис. 21.17) любит повторять: «То, что кажется таким простым, часто осложнено своими ужасными деталями». Мы старались уберечь читателя от ужасных деталей напряженной битвы за построение шкалы космических расстояний. Поднявшись по ступеням этой «лестницы», человечество смогло полнее осознать свою незначительность в масштабе Вселенной, увидеть все разнообразие похожих на наше Солнце звезд и почувствовать всю глубину древности нашего мира. Еще одно приложение шкалы расстояний — это космическая картография, или «география» Вселенной, которую мы обсудим в следующей главе.

Рис. 21.17. Аллан Сэндидж продолжил работу Хаббла, занимаясь наблюдательной космологией и тщательно исследуя с помощью больших телескопов фундаментальные проблемы возраста, размера и геометрии Вселенной. За свои достижения он был награжден престижными премиями Кроуфорда и Грубера. С любезного разрешения Библиотеки обсерваторий Института Карнеги в Вашингтоне (Пасадина).

Глава 22 Крупномасштабная структура Вселенной

Невооруженным глазом мы без труда можем заметить только три галактики: Туманность Андромеды на северном небе и Большое и Малое Магеллановы Облака — на южном. На фотографиях, полученных большими телескопами, обнаруживаются миллионы галактик, а на всем небе, судя по оценкам, должны быть сотни миллиардов тусклых галактик. Кроме того, за последние годы получены спектры миллионов галактик. Следовательно, расстояния до них легко вычислить, используя закон Хаббла: расстояние пропорционально красному смещению. А значит, можно исследовать трехмерное распределение галактик, показывающее распределение вещества во Вселенной. Раньше, до появления современной «индустрии красных смещений», астрономы могли изучать только двумерное распределение галактик на небесной сфере.

Скопления галактик рядом с нами.

Еще Вильям Гершель отметил, что туманности — социальные создания: они стремятся жить парами, группами, скоплениями. Уже в наши дни космолог Джеймс Пиблз, известный специалист по распределению галактик, говорил, что «лучшее место для поиска галактики — рядом с другой галактикой». Эта тенденция настолько сильна, что изолированных галактик очень мало. И наша Галактика, как стало известно, не исключение: она входит в Местную группу галактик, доминирующие члены которой — галактика Андромеда и наша Галактика — отстоят друг от друга на 2,5 млн световых лет. Большинство остальных галактик Местной группы гораздо мельче этих двух (как было показано на врезке 21.1).

Местная группа — это довольно посредственная группировка галактик, окруженная похожими на нее группами (рис. 22.1). Значительно более крупное скопление галактик обнаружено в направлении созвездия Дева (Virgo) на расстоянии около 60 млн световых лет от нас. В нем содержатся сотни галактик, самые яркие из которых можно с трудом разглядеть в хороший бинокль (рис. 22.2). На небе это скопление занимает круг диаметром 10 градусов, площадь которого в 20 раз больше чем у полной Луны. Это пример сравнительно небольшого неправильного скопления галактик. Еще дальше обнаружены богатые скопления гораздо большего размера.

Рис. 22.1. Группы и скопления, включающие не менее 10 галактик и расположенные вокруг Местной группы до расстояния около 60 млн световых лет. Количество членов в каждой группе соответствует размеру символа. Скопление галактик в Деве (Virgo) — крупнейшее на этой карте. С любезного разрешения Рами Рекола.

Рис. 22.2. Скопление галактик в Деве — ближайшее к нам крупное сообщество галактик, центр Местного сверхскопления. На снимке показана ее центральная область, плотно населенная галактиками. Ярчайшая среди них — гигантская эллиптическая галактика М86. Фото: Крис Михос.

Чтобы встретить богатое скопление галактик, число членов которого может доходить до 10 000, нужно пройти 300 млн световых лет в направлении созвездия Волосы Вероники (Coma Berenices). Там мы найдем скопление довольно правильной формы, в основном состоящее из эллиптических и S0 галактик. Этим оно отличается от меньшего по размеру и менее плотного скопления Virgo, содержащего много спиральных галактик. Похоже, что спиральные галактики неспособны сохраниться в экстремальных условиях скопления Сота. Компьютерное моделирование показало, что приливные силы со стороны общего гравитационного поля скопления сильно возмущают дисковые галактики, заставляют их терять свой газ и тем самым — возможность формировать спиральные рукава.

В 1950-х годах французский астроном Жерар де Вокулёр (1918–1995) представил свидетельства того, что наша Местная группа галактик является членом «Местного сверхскопления» галактик. Центром этого сверхскопления служит скопление Virgo, окруженное меньшими скоплениями и группами галактик. Вся система довольно плоская и в этом смысле напоминает нашу Галактику. Но в отличие от Галактики, которая вращается вокруг центра, Местное сверхскопление не вращается, и его отдельные части не связаны взаимной гравитацией. Эта большая система галактик расширяется, как и Вселенная в целом, хотя притяжение к расположенному в его центре скоплению Virgo немного уменьшает скорость разбегания.

Под влиянием взаимного притяжения скопления пытаются объединиться в более крупное сверхскопление, но их гравитации недостаточно, чтобы эта гигантская система скоплений стала связанной.

К большим масштабам: карты трехмерных структур.

Телескопы системы Шмидта могут делать широкоугольные фотографии (рис. 22.3). В 1950-е годы с помощью «Большого Шмидта» Паломарской обсерватории было сфотографировано все северное и часть южного неба. Каждый из девятисот фотоснимков охватывает область неба размером 6° x 6°. Этот «Паломарский атлас неба» служил основным астрономическим инструментом для обсерваторий всего мира в течение десятилетий. Он дал возможность изучать далекие галактики и их скопления. Например, американец Джордж Эйбелл (19271983) открыл 2700 скоплений галактик. Он обнаружил, что скопления образуют сверхскопления такого же типа, как ранее обнаруженное де Вокулёром Местное сверхскопление. Однако в то время исследования ограничивались изучением распределения галактик по небу, а точных данных о расстояниях до них не было. Поэтому долго не прекращались дебаты о реальности сверхскоплений. Многие астрономы опасались, что эти небесные структуры всего лишь кажущиеся, вызванные случайным наложением изображений галактик в тех направлениях на небе, где из-за неоднородного поглощения света в клочковатой космической пыли образовались «коридоры прозрачности».

Порой случается, что одно обнаруженное во Вселенной явление дает нам ключ к исследованию совсем других вещей. Так было и с законом Хаббла. Благодаря этой космической закономерности, красное смещение света галактик можно использовать как индикатор расстояния: его не так сложно измерить и при этом можно использовать для создания карты трехмерного распределения галактик. Впервые это сделали эстонские астрономы Микхель Йыэвеер (1937–2006) и Яан Эйнасто в конце 1970-х годов, когда число измеренных красных смещений достигло примерно 2000. Они начали составлять трехмерные карты распределения галактик и доложили о своем поразительном открытии на первой международной конференции, посвященной крупномасштабной структуре Вселенной, в Таллине (Эстония) в 1977 году. Их карты показали поразительные структуры в пространстве вокруг нас, имеющие форму длинных нитей и гигантских стен, образующих некое подобие пчелиных сот. Между этими структурами, состоящими из групп и скоплений галактик, существуют огромные пустоты, в которых практически нет ни одной галактики. Диаметры «ячеек» достигают 100 млн световых лет (около 30 Мпк), что близко к размеру Местного сверхскопления.

Рис. 22.3. Телескопы системы Шмидта («камеры Шмидта») сыграли важную роль на раннем этапе исследования распределения галактик на небе, (а) Этот телескоп назван в честь эстонского изобретателя Бернхарда Шмидта (1879–1935), разработавшего его в 1931 году. С любезного разрешения Гамбургской обсерватории, (б) Гораздо раньше в Финляндии Юрьё Вяйсяля (1891–1971) предложил такую же конструкцию телескопа, но не опубликовал свои результаты, и Шмидт не знал о них. (в) 70-см телескоп системы Шмидта в финской обсерватории Туорла. Фото: Рами Рекола.

Не все сразу поверили в реальность столь неожиданных структур. Возможно, что данные о красном смещении, собранные разными наблюдателями для различных целей, не дают нормального представления о распределении галактик. Чтобы подтвердить открытие эстонских астрономов, требовалось провести хорошо организованный однородный обзор красных смещений, перекрывающий большие области неба. Первый такой проект был предпринят в Гарвард-Смитсонианском астрофизическом центре (СfА) в США. Для этой программы потребовалось измерить красное смещение у 1900 новых галактик. В 1986 году в статье под названием «Ломоть Вселенной» (A Slice of the Universe) астрономы В. Лаппарант, М. Геллер и Дж. Хакра подтвердили существование оболочкообразных скоплений галактик, а также нашли и другие сложные структуры в мире галактик. Их карта (представленная как часть рис. 22.4) стала символом сложности распределения галактик в пространстве.

Рис. 22.4. Используя красное смещение как меру расстояния, можно изобразить распределение галактик в пространстве. Меньшая карта основана на данных CfA, опубликованных в 1986 году (см. текст). Были измерены красные смещения многих галактик в узкой полосе неба, и их положение было изображено на рисунке в шкале скоростей (расстояний). Большая карта, основанная на данных SDSS, проникает глубже в пространство. На ней тоже заметны характерные структуры, но большего размера. Великая Стена CfA и Великая Стена Слоана протянулись поперек этих карт. Обратите внимание на крупные пустоты. С любезного разрешения Ричарда Готта III и Марио Джюрик.


Эти результаты воодушевили на проведение нескольких больших обзоров красных смещений для построения трехмерной карты Вселенной. Чтобы одновременно измерять красное смещение многих галактик, были использованы особые мультиобъектные спектрографы. В крупнейшей из этих программ — Слоановском цифровом обзоре неба (Sloan Digital Sky Survey, SDSS) были измерены красные смещения 1 млн галактик на четверти небесной сферы на глубину около полутора миллионов световых лет. Для этого использовался специальный телескоп в обсерватории Апачи-Пойнт (шт. Нью-Мексико). Сам телескоп небольшой, диаметр зеркала 2,5 м, но его продвинутый спектрограф может за одну экспозицию измерить красные смещения 640 галактик.

Новый мир крупномасштабных структур.

Новые трехмерные карты расширили наше представление о Вселенной — от Местного сверхскопления до расстояний в десятки раз больших. Обстановка за пределами нашей Галактики оказалась неожиданно сложной. Можно ли сравнить эту структуру с чем-то знакомым? Быть может, это просто случайные флуктуации? Как известно, при случайном распределении точек их плотность в среднем постоянна с небольшими вариациями от места к месту. Величина этих вариаций должна следовать закону, открытому профессором физики Парижского университета Симеоном Дени Пуассоном (1781–1840). «Распределение Пуассона» получится, например, если с закрытыми глазами разбросать крупу по клетчатой бумаге и подсчитать, сколько крупинок попало в каждый квадратик. В большинстве квадратов число крупинок окажется близким к ожидаемому среднему (полное число крупинок, деленное на число квадратов). В некоторых будет чуть больше или чуть меньше. И лишь в очень малой доле квадратов число крупинок будет сильно отличаться от среднего.

Распределение галактик действительно получается таким, если в качестве «клеток» брать очень большие объемы пространства. Однако в масштабе десятков и даже сотен миллионов световых лет галактики не «разбросаны» в пространстве случайно — пустоты, сверхскопления и гигантские стены четко свидетельствуют об этом (рис. 22.5).

Возможно, на Земле вообще нет ничего аналогичного галактическим структурам Вселенной, образовавшимся под действием гравитации, в необычных космических условиях, на огромных пространственных расстояниях, в течение очень долгого времени. Вначале эстонцы говорили о «ячеистой структуре», тогда как американская команда сравнивала полученную картину с «мыльной пеной», в которой пузыри разделены плоскими поверхностями. Но можно предложить и другую модель из той же области быта: мир галактик можно сравнить с губкой. Ее пустые места соединяются между собой, так что из нее можно выжать воду и воздух. Если положить рядом несколько губок, то видно, что внутри них очень сложная структура, но количество вещества в каждой из них примерно одно и то же. Это помогает нам представить переход от неоднородного распределения вещества к однородному.

Рис. 22.5. Схематическая карта наших окрестностей галактической Вселенной в пределах примерно 250 млн световых лет. С разрешения Энтони Фэйралла и издательства Praxis РиЫ. Ltd, Chichester, UK.

Иерархия и фракталы.

Тенденция наблюдаемых структур — как сверхскоплений, так и пустот, — к росту их размера при составлении все более глубоких карт напоминает свойства систем с иерархической структурой. Кроме того, объединение галактик в пары, группы, скопления и сверхскопления тоже сродни иерархии. Все это уже обдумывали мыслители XVIII века, например Райт, Кант, Ламберт. Они еще не знали про галактики, но обращение спутников вокруг планет, а самих планет — вокруг Солнца помогало им представить системы большего размера. Даже сейчас мы можем описать наше положение относительно разных уровней космической иерархии: мы живем в Солнечной системе, которая находится в Местном спиральном рукаве, принадлежащем Галактике, которая является членом Местной группы, которая, в свою очередь, является частью Местного сверхскопления, которое входит в гиперскопление Рыбы-Кит, которое… Тут мы дошли до расстояний в сотни миллионов световых лет, а что происходит на больших масштабах, пока представляем весьма туманно.

Прежние космические иерархии, о которых размышляли еще до того, как стало известно о галактиках, кажутся слишком простыми и неуклюжими для описания всей сложности Вселенной галактик. Но у них есть современные потомки, которые могут представить более реалистичную картину. Это фракталы — математические объекты, которые в 1970-х годах ввел Бенуа Мандельброт и которые сейчас широко применяются в естественных и гуманитарных науках. Само слово «фрактал» Мандельброт вывел от латинского frractus — ломать, дробить на фрагменты. Фракталы — это системы, части которых похожи на целое. Увеличительное стекло выявляет в этих самоподобных системах новую структуру, которая похожа на ту, что видит невооруженный глаз. Иными словами, по изображению части фрактальной структуры невозможно судить о ее реальном размере! Это похоже на то, что мы видим на рис. 22.4, поэтому фрактальный анализ сейчас часто применяется для исследования крупномасштабной структуры Вселенной. Очень подробно фрактальные характеристики пространственного распределения галактик исследовали итальянец Лучиано Пиетронеро и его команда из Римского университета.

Интересная особенность фракталов (и прежних иерархий тоже) состоит в том, что если охватывать все большие и большие объемы, их средние плотности становятся все меньше и меньше. Скорость этого уменьшения определяет численную величину, характеризующую фрактал, которую называют фрактальной размерностью. Чем быстрее происходит уменьшение, тем меньше фрактальная размерность. Фрактальная размерность, равная трем, — это крайний случай, когда средняя плотность остается неизменной независимо от расстояния. Такое равномерное случайное распределение похоже на распределение молекул в газе. Все истинные фракталы имеют размерность меньше трех.

Хотя, в общем, все согласны, что пространственное распределение галактик в некотором смысле напоминает фракталы, но истинная природа этого сходства до сих пор окончательно не изучена. Например, остаются разногласия по поводу значения фрактальной размерности, а также о том, насколько далеко в пространстве простирается фрактальная структура и на каких масштабах она переходит в однородное распределение. Некоторые астрономы полагают, что фрактальная размерность равна примерно 2, но никто пока не знает, где начинается однородность. Тем не менее многие астрономы считают, что в масштабе нескольких десятков миллионов световых лет распределение уже почти однородное. Такое различие мнений говорит о том, что не так-то легко исследовать организацию галактик даже по большим трехмерным галактическим картам, таким как SDSS.

Где начинается однородность?

В 1934 году Эдвин Хаббл закончил свой глубокий обзор, в ходе которого он подсчитывал галактики на 1283 площадках на небе. Напомним, что малое число галактик, наблюдаемых в полосе Млечного Пути, есть результат поглощения космической пылью света далеких галактик в этих направлениях. Поэтому Хаббл избегал полосы Млечного Пути, а в других направлениях его обзор проникал на глубину до 6000 млн световых лет. В результате получилось, что, в какую бы сторону мы ни смотрели, везде видно одинаковое число галактик. Это означает, что окружающая нас среда изотропна, что очень важно для понимания крупномасштабного распределения галактик. Если наше положение в пространстве типично, то — согласно принципу Коперника — любой наблюдатель, где бы он ни находился, должен видеть такую же изотропную картину. Если это так, то математическая теорема, доказанная британским математиком Джеффри Уокером (1909–2001) в 1944 году, говорит, что в больших масштабах распределение галактик однородно. В своей книге «Первые три минуты» нобелевский лауреат Стивен Вайнберг дает простое геометрическое доказательство того, что если «везде изотропная», то и «везде однородная» (рис. 22.6).

Рис. 22.6. Поскольку из каждой точки пространство выглядит изотропным, плотность на окружности с центром в галактике 1 во всех ее точках одинакова. И на окружности вокруг галактики 2 плотность тоже одинакова. Поскольку эти окружности имеют общую точку С, плотности на них равны. Добавляя новые окружности вокруг разных точек, можно заключить, что в любой точке пространства плотность одинакова, то есть вещество распределено однородно.

Важнейшим наблюдательным объектом для космологии является фоновое тепловое излучение. Мы обсудим это ниже, а здесь отметим замечательный факт — его интенсивность почти одинакова во всех направлениях. Считается, что это излучение возникло в горячем газе в очень древнюю эпоху, и поэтому его изотропия согласуется с мнением, что Вселенная на больших масштабах была однородной. Поэтому современная космология использует модели Фридмана, описывающие равномерное и изотропное распределение материи (см. главу 23). Но почему же тогда распределение галактик вокруг нас выглядит весьма клочковато?

В следующих главах мы расскажем, что структура современной Вселенной определяется малыми флуктуациями, существовавшими в горячем газе сразу после Большого взрыва. Они послужили «семенами», из которых гравитация постепенно вырастила современные структуры — большие и малые. Согласно идее, предложенной около 1970 года Эдвардом Харрисоном (1919–2007) из Массачусетса и Яковом Зельдовичем из Москвы, начальные возмущения существовали на всевозможных масштабах, но при этом с увеличением размера становились все менее заметными (на очень больших масштабах относительная флуктуация плотности должна была быть обратно пропорциональной квадрату рассматриваемого масштаба). Измерения фонового излучения позволили недавно определить этот спектр, форма которого оказалась очень близка к тому, что предсказывали Харрисон и Зельдович. Так что полная однородность может вообще нигде не начинаться! Но на очень больших масштабах у гравитации просто не было достаточно времени, чтобы сильно возмутить начальное распределение материи, поэтому можно надеяться, что сильные неоднородности и пустоты заканчиваются на некотором большом, хотя и до сих пор неизвестном, расстоянии.

На старой карте СfА видно длинное плоское образование, названное Великой Стеной. Она протянулась на 750 млн световых лет в длину и на 250 млн световых лет в ширину. На карте SDSS было обнаружено еще одно образование гораздо большего размера, названное Стеной Слоана в честь Альфреда Слоана, фонд которого финансировал этот обзор красных смещений. Возможно, это крупнейшая космическая структура длиной в полтора миллиарда световых лет, содержащая сверхскопления, скопления и группы галактик (см. рис. 22.4).

Недавно радиоастрономы, кажется, обнаружили самую большую дыру из когда-либо виденных во Вселенной. Ее нашли Лоуренс Рудник и его коллеги из Миннесотского университета в г. Миннеаполис, изучавшие распределение радиогалактик и квазаров в направлении холодного пятна в космическом фоновом излучении. Они не увидели почти ни одного радиоисточника в пространстве диаметром около миллиарда световых лет. Это означает, что в этом объеме пространства нет галактик или скоплений галактик. Типичные пустоты, которые обнаруживаются в оптическом диапазоне, обычно имеют размер не более 100 мегапарсек (около 300 млн световых лет).

Хотя есть убедительные косвенные свидетельства того, что на каком-то очень большом масштабе должна наступать однородность, открытие таких структур, как Стена Слоана и Пустота Рудника, означает, что мы не знаем, начиная с какого масштаба Вселенная становится гладкой и уже можно игнорировать ее клочковатую, ячеистую, губчатую или фрактальную структуру как мелкую рябь на поверхности громадного океана.

Глава 23 Вселенная конечная или бесконечная: космологические модели

Пришло время напомнить наш рассказ из главы 1 о том, что первым космологом можно было бы считать загадочного Пифагора, который использовал слово космос для обозначения упорядоченной Вселенной. Геометрические формы и числа рождались в попытках описать весь этот мир. Если космос управляется математикой, то можно построить модели нашей Вселенной, чтобы понять ее структуру. И действительно, сразу после создания общей теории относительности она была использована для описания Вселенной в целом. Так родилась современная космология. А до этого наши средства для построения моделей мира были ограничены, хотя различные точки зрения на структуру мира существовали всегда.

Древние представления.

Аристотель представлял себе Вселенную конечной. Всё находилось внутри сферы неподвижных звезд. Ее размер не был известен, хотя, по оценкам Птолемея, эта сфера была удалена на 20 000 радиусов Земли. В этой модели мир над сферой Луны отличался от мира под ней. Люди, состоящие из обычного вещества, не могли находиться в верхнем мире. За пределом самой внешней сферы не было ничего. Если попытаться представить себе такую Вселенную, то ничего не выйдет: мы вынуждены будем мысленно поместить ее внутрь еще большего пустого пространства (рис. 23.1).

Другой ответ на загадку о крае Вселенной тоже возник еще в древности: у Вселенной края нет, ибо она бесконечна. Это была точка зрения атомистов, считавших, что всё, в том числе и человек, зависит от сложного взаимодействия атомов и вызванной этим эволюции структуры. Эти процессы требовали огромного времени и пространства, поэтому легче было представить их в бесконечной Вселенной. Лукреций, живший в I веке до н. э. (см. главу 2), в своей книге «О природе вещей» так описал бесконечность:

Но бесконечной всегда остается вселенная в целом.

И по природе своей настолько бездонно пространство,

Что даже молнии луч пробежать его был бы не в силах,

В долгом теченье чреды бесконечных веков ускользая

Дальше вперед, и никак он не смог бы приблизиться к цели.

Вот до чего для вещей необъятны повсюду просторы,

Всяких границ лишены и открыты во всех направленьях[7].

Рис. 23.1. На этой знаменитой гравюре, появившейся в 1888 г. в книге Камиля Фламмариона, человек из своего конечного мира выглядывает сквозь небесную сферу, этот загадочный край Вселенной. Текст на французском языке повествует о средневековом миссионере, обнаружившем место, где небо сходится с землей.

Джордано Бруно был знаком с текстами Лукреция и стал одним из первых, кто в эпоху Возрождения поддержал идею о безбрежности пространства и бесчисленности звезд. По его представлениям, существовало бесконечное число небесных тел, похожих на Землю. В этом отношении он опередил Коперника, Кеплера и даже Галилея, хотя, надо сказать, Бруно не был астрономом и не мог наблюдениями подкрепить свои идеи.

Третья возможность, обсуждавшаяся в древние времена, заключалась в том, что мир частично конечен, а частично бесконечен. Согласно этой идее, наш материальный мир похож на остров в бесконечной Вселенной. Это была идея стоиков, последователей Зенона (336–246 до н. э.). Популярное в XIX веке представление о том, что все заключено в нашем Млечном Пути, имеет некоторое сходство с идеями стоиков. С другой стороны, конкурирующая теория «островных вселенных» напоминает взгляды атомистов. Именно ее позже сочли правильной. Но можем ли мы до конца следовать за атомистами и считать, что наша Вселенная бесконечно велика?

Ньютон и бесконечная Вселенная.

Закон тяготения Ньютона стал отправной точкой для строгой математической космологии, но он же оказался источником временных трудностей. Любопытные письма, которыми обменивался Ньютон с теологом Ричардом Бентли зимой 1692/93 года, демонстрируют зачатки этого нового мышления. Бентли видел в науке лишь орудие для своей борьбы с атеизмом. Наука выявляет рациональные законы природы (такие как закон тяготения), но предполагают ли они существование (или вмешательство) сверхъестественного существа? Бентли решил попросить Ньютона прокомментировать происхождение мира, поскольку Ньютон сам был глубоко религиозным человеком и в то же время величайшим знатоком физики.

Бентли задавал Ньютону острые вопросы; среди них был вопрос о том, как будет вести себя вещество, равномерно рассеянное в пространстве. Ньютон ответил, что вещество будет оставаться в равновесии, если силы притяжения, действующие на каждую частицу с разных направлений, будут уравновешены. Ньютон сравнивал эту ситуацию с иглами (разумеется, с бесконечным числом игл!), стоящими на кончиках. Даже малейшее нарушение равновесия может привести к катастрофическому коллапсу. Поэтому для прошлого и нынешнего существования звездной Вселенной, в которой действует гравитация, по-видимому, требуется невероятно точная «настройка». Ньютон допускал, что это могла бы осуществить и божественная сила. Это было именно то, чего добивался Бентли и что совпадало с желанием Ньютона увидеть «отпечатки пальцев» Бога в природе. Сегодня мы менее склонны к мысли, что существование Бога можно обосновать с помощью временных загадок физической природы. В этом вопросе многие современные ученые — как верующие, так и неверующие — проявляют близость к представлениям математика Блеза Паскаля (1623–1662), высказанным в его глубоких «Мыслях». Бог для Паскаля — это скрытый Бог; поэтому Паскаль предпочитал не всматриваться в «небеса и птичек» в поисках доказательств Его существования.

В 1895 году Хуго фон Зелигер пришел к выводу, что под действием ньютоновской гравитации бесконечная евклидова Вселенная с однородно распределенными звездами не может пребывать в абсолютном покое. Фактически, при этих условиях невозможно вычислить значение силы, действующей на частицу в заданной точке пространства. Но природа не может пребывать в таком неопределенном состоянии. Эта новая проблема старой модели мира побудила Зелигера к введению небольшой модификации в закон тяготения Ньютона, которая чуть-чуть ослабляет гравитационную силу дополнительно к ее обратной квадратичной зависимости. Эта модификация сходна с более поздним предложением Эйнштейна добавить так называемую космологическую постоянную в его уравнения общей теории относительности, чтобы предложенная им модель конечной Вселенной могла оставаться в состоянии покоя.

Однородная Вселенная.

Открытие неевклидовой геометрии в XIX веке в корне изменило подход к этой проблеме (см. главу 15). Можно иметь конечную Вселенную и в то же время не мучиться над каверзным вопросом о крае Вселенной. Так что Вселенная галактик может быть как конечной, так и бесконечной. Особый случай — однородная и изотропная Вселенная. Поскольку из своей Галактики мы видим мир изотропным (одинаковое число галактик в разных направлениях), то, скорее всего, наша Вселенная на достаточно больших масштабах однородна, если только мы не находимся в ее центре. Но это последнее противоречило бы принципу Коперника.

Что касается ограниченности Вселенной, то существует одно космологическое наблюдение, которое можно провести невооруженным глазом и очень легко понять. Как известно, ночью темно.

Но если бы Вселенная имела бесконечную протяженность и была заполнена звездами, то на каждом луче зрения рано или поздно попалась бы поверхность звезды. А если во всех направлениях мы видим поверхности звезд, то все небо днем и ночью должно быть таким же ярким, как поверхность Солнца. В действительности же это не так. В этом и состоит так называемый парадокс Ольберса[8]. Так о чем же свидетельствует темное ночное небо?

В приведенном выше рассуждении есть одно неявное предположение, которое скрыто во фразе «рано или поздно». Когда мы смотрим вдаль, мы видим прошлое. А это означает: чтобы каждый луч зрения наткнулся на звезду, в прошлом должно быть достаточно времени. В молодой Вселенной парадокс Ольберса не возникает. Таким образом, Вселенная может быть даже бесконечно большой, если при этом ее возраст ограничен. Ночное небо освещено лишь конечным числом звезд, а именно теми, чей свет успел дойти до нас за время жизни Вселенной. Поэтому на самом деле далеко не каждый луч зрения натыкается на поверхность звезды (рис. 23.2). По современным расчетам, возраст Вселенной составляет около 14 млрд лет. Это должен быть «временной край» Вселенной (рис. 23.3). У Аристотеля Вселенная имела загадочную границу в пространстве. А для некоторых ученых прошлого граница во времени представляла столь же серьезную концептуальную проблему.

Любопытно, что именно на такое решение парадокса Ольберса — предполагая конечный возраст Вселенной — намекал поэт и писатель Эдгар Аллан По в своей космологической поэме в прозе «Эврика», опубликованной в 1848 году. Он писал: «Если бы череда звезд была бесконечной, то фон неба выглядел бы равномерно светящимся, подобно Млечному Пути, так как не было бы абсолютно ни одной точки этого фона, на которой не оказалось бы звезды. Поэтому единственным способом объяснить те пустоты, которые наши телескопы находят в бесчисленном множестве направлений, было бы предположение, что расстояние до этого невидимого фона так велико, что ни один луч от него пока еще не смог добраться до нас».

Рис. 23.2. Согласно парадоксу Ольберса, ночное небо должно сверкать как солнечный диск в том случае, earn Вселенная бесконечно велика и бесконечно стара, поскольку тогда на каждом луче зрения должна попасться звезда. На этой схеме мы располагаемся в центре окружности.

Рис. 23.3. Эта фотография «сверхглубокого поля», полученная космические телескопом «Хаббл», показывает, что за звездами нашей Галактики все небо заполнено другими галактиками и дырами между ними, где очень мало или совсем нет еще более далеких галактик. Мы можем увидеть только конечное (хотя и очень большое — свыше 100 млрд) число галактик, так как Вселенная имеет конечный возраст и излучение слишком далеких галактик еще не успело дойти до нас.

Конечная и неподвижная Вселенная Эйнштейна.

В 1917 году Эйнштейн расширил концепцию кривизны пространства, распространив ее приложение от одиночных звезд ко Вселенной в целом. В космологических построениях доминирует гравитация. Подход к гравитации, пространству и времени, сформулированный в общей теории относительности, в корне отличается от предшествовавших концепций. Поэтому неудивительно, что с того момента, как на сцену вышла общая теория относительности, «Вселенная уже не та, какой она была прежде». Одной из наиболее ярких примет этих изменений была созданная Эйнштейном модель статической, конечной, но при этом безграничной Вселенной. Как же Эйнштейн пришел к такой модели?

В общей теории относительности «материя определяет геометрию пространства-времени, а сама геометрия определяет, как должна двигаться материи». Эйнштейн и Карл Шварцшильд сначала применили эту теорию к Солнечной системе, сделав естественное предположение, что на больших расстояниях влияние Солнца на общую геометрию исчезает. Когда мы удаляемся от источника гравитации, пространство принимает ту же форму, как и в частной теории относительности, то есть становится плоским. Такое предположение было вполне адекватным при описании пространства-времени вокруг одиночной звезды. Но как быть со всей Вселенной? В 1917 году Эйнштейн опубликовал абсолютно новую модель мира. Прежде некоторые, например Шварцшильд, высказывали идею о том, что своей кривизной пространство напоминает сферу, но лишь теперь эта идея получила связь с физической реальностью. В своей модели Эйнштейн хотел обойти трудности, связанные с бесконечностью. Но эта модель к тому же оказалась простой, что особенно привлекло Эйнштейна, чей образ мыслей всегда руководствовался необходимостью увидеть особую прелесть в фундаментальной простоте природы.

В качестве основы для своей теории Эйнштейн использовал принцип Маха. Эрнст Мах (1838–1916) предполагал, что свойство материального объекта сопротивляться движению, называемое инерцией, обусловлено его взаимодействием со всей остальной Вселенной. Эйнштейн считал, что если частица находится очень далеко от остальной материи, то ее инерция, или инерционная масса, фигурирующая в законах движения Ньютона, становится исчезающе малой. Он попытался построить космологическую модель, в которой инерция исчезает вдали от Галактики. Задача оказалась невероятно сложной. Тогда Эйнштейн решил обойти проблему бесконечно удаленной инертной массы путем полного исключения бесконечности из космологии. Геометрия его Вселенной стала ограниченной, конечной по объему и замкнутой.

Разрабатывая свою теорию, Эйнштейн отказался от идеи, что Галактика — это одинокий остров во Вселенной, и предположил, что материя в среднем распределена равномерно по всему огромному космосу. Он сравнивал себя с геодезистом, который представляет среднюю форму Земли как сферу, пренебрегая всеми деталями холмов и долин. Во Вселенной звезды и их скопления образуют ландшафт, но Эйнштейн решил игнорировать мелкие детали. Он предположил, что звезды (о галактиках тогда еще ничего не было известно) распределены в пространстве однородно и поэтому искривляют пространство везде одинаково, создавая в результате конечное «сферическое» пространство[9]. Предположение, что материя распределена в пространстве равномерно, по крайней мере на больших масштабах, сейчас называют Космологическим принципом.

Наряду с конечным объемом, другая важная особенность модели Эйнштейна — ее статичность: звезды в среднем неподвижны друг относительно друга, и геометрия неизменна. В то время астрономические наблюдения не противоречили предположению о статичности. Хотя уже были измерены скорости удаления некоторых туманностей, но дискуссия об их значимости еще только начиналась. Эйнштейн интуитивно предпочитал неизменную Вселенную.

Эйнштейн дорого заплатил за свою неподвижную Вселенную. Как до него фон Зелигер вынужден был модифицировать теорию гравитации Ньютона, чтобы сделать возможной бесконечную статическую Вселенную, так же и Эйнштейн был вынужден добавить так называемый лямбда-член (или космологическую постоянную) в свои уравнения. Физическое явление, которое описывается этой величиной, можно рассматривать как всемирное отталкивание, которое незаметно на малых расстояниях, масштаба Солнечной системы, но становится значимым в масштабах Вселенной.

Эйнштейн не был удовлетворен таким обобщением своей теории и позже называл лямбда-член «самой большой ошибкой в своей жизни». Действительно, без этой постоянной он мог бы предсказать расширение Вселенной еще до того, как это явление открыл Хаббл. Более того, эта модель не обеспечивала сохранение стационарности Вселенной. Артур Эддингтон позже показал, что в модели Эйнштейна Вселенная неустойчива и должна начать катастрофически сжиматься или расширяться. Как Ньютон, так и Эйнштейн вынуждены были признать, что не так-то просто создать вселенную, которая будет оставаться неподвижной. В наши дни идея космического отталкивания вновь стала частью нашей космологической картины мира, но мы обсудим это ниже.

Фридмановские модели мира.

Модели Вселенной, используемые в настоящее время, разработал российский ученый Александр Александрович Фридман (1888–1925). Он был профессором математики Санкт-Петербургского университета и специалистом по только что созданной в те дни общей теории относительности. Свое исследование под названием «О кривизне пространства» он опубликовал в 1922 году в ведущем научном журнале Zeitschrift fiir Physik. Через два года появилась его вторая статья на ту же тему «О возможности Вселенной с постоянной отрицательной кривизной пространства». Эти работы стали поворотной точкой в космологии, но на них почти никто не обратил внимания. Через год после публикации своей второй статьи Фридман заболел и умер. В 1927 году Жорж Леметр переоткрыл такие модели мира, которые теперь известны как вселенные Фридмана (рис. 23.4).

Фридман показал, что уравнения Эйнштейна имеют нестационарные решения, которые могут описывать реальный мир. Как и Эйнштейн, он предполагал, что материя равномерно распределена по пространству, но не требовал, чтобы плотность материи оставалась постоянной. Следовательно, даже если кривизна пространства-времени всюду одинакова в данное универсальное время, со временем она меняется: Вселенная либо сжимается, либо расширяется. Одна из моделей Фридмана имеет собственное название — вселенная Эйнштейна — де Ситтера в честь Эйнштейна и голландского астронома Виллема де Ситтера, который обсуждал эту модель в своей публикации 1932 года. Плотность материи в этой модели такова, что пространство такой вселенной всегда остается плоским (евклидовым).

Рис. 23.4. (а) Александр Фридман и (б) Жорж Леметр разработали в 1920-х годах теорию расширяющейся Вселенной.

Эта «подходящая» плотность во вселенной Эйнштейна — де Ситтера называется критической плотностью. Если материя равномерно распределена по пространству, то при критической плотности куб со стороной в миллион километров должен содержать всего лишь 9 кг вещества. Реальная плотность вещества всех массивных небесных тел, вероятно, равна одной трети критической плотности, и это дает хорошее представление о пустоте Вселенной. Если бы этот куб со стороной в миллион километров был заполнен воздухом, которым мы дышим, он весил бы 1027 кг!

Галерея возможных миров.

Существует четыре основных типа вселенных Фридмана. У первых трех типов космологический лямбда-член равен нулю, поэтому в них нет всемирного отталкивания. Это следующие типы: вселенные со сферической геометрией, с гиперболической геометрией и между ними — плоская вселенная Эйнштейна-де Ситтера. Кроме того, четвертую обширную группу образуют вселенные, у которых лямбда-член не равен нулю. При чтении дальнейшего описания рекомендуем читателю обращаться к рис. 23.6 и табл. 23.1, где все это суммировано.

При нулевой лямбде, если средняя плотность вселенной больше критической, ее геометрия сферическая, или замкнутая. А если количество вещества меньше критического уровня, то пространство гиперболическое. Фактически, общая теория относительности говорит нам, что статическое пространство, в котором галактики неподвижны друг относительно друга, невозможно в принципе. Вся система галактик находится либо в состоянии сжатия, когда галактики приближаются друг к другу, либо же в состоянии расширения, когда они удаляются друг от друга (рис. 23.5). Это похоже на ситуацию с камнем, брошенным вверх: он либо летит вверх, либо падает вниз, но не может остановиться и плавать на постоянной высоте.

Рис. 23.5. Расширяющуюся Вселенную можно уподобить поверхности раздувающегося воздушного шарика. Точками представлены галактики, более или менее равномерно разбросанные по поверхности. Когда поверхность расширяется, расстояние между галактиками возрастает. Даже если точки закреплены на поверхности, кажется, что все остальные точки убегают от каждой из них.

Ненулевая лямбда может компенсировать, хотя бы частично, тяготение вещества. Особый случай — это модель, где лямбда-член так точно дополняет плотность вещества, что полная плотность приближается к критической. В этом случае общая геометрия плоская. Именно к этому типу относится стандартная модель, которая в соответствии с нашими сегодняшними знаниями оказывается ближе всего к реальности. В стандартной и гиперболической моделях, а также в модели Эйнштейна-де Ситтера, пространство Вселенной простирается на бесконечное расстояние, поэтому такие модели Вселенной называют открытыми. Они содержат бесконечное число галактик. А замкнутая фридмановская модель имеет конечный (хотя и изменяющийся) объем, как и статическая модель Эйнштейна 1917 года, и содержит конечное число галактик.

Вначале Эйнштейн с подозрением отнесся к результатам Фридмана и в том же Zeitschriftf?r Physik, где была опубликована модель Фридмана, поместил ее критику из пяти предложений. Он утверждал, что Фридман, на самом деле, доказал, что единственно возможной моделью является статическая модель. Но весной 1923 года в том же журнале появились четыре предложения Эйнштейна, в которых он признал, что его критика была ошибочной: в его расчеты вкралась небольшая ошибка, и теперь он считает «результаты Фридмана правильными и проливающими новый свет».

Закон Хаббла, который мы обсуждали выше, как раз служит необходимым наблюдательным тестом для подтверждения моделей Фридмана. Очевидно, что Вселенная расширяется. Если правильной моделью окажется замкнутая фридмановская модель Вселенной (хотя похоже, что это не так), то однажды расширение сменится сжатием. В этом случае галактики упадут друг на друга и в конце концов структура Вселенной будет разрушена. В открытой модели мира и в модели Эйнштейнаде Ситтера расширение происходит вечно, хотя и постепенно замедляется. В стандартной модели расширение происходит не только вечно, но и с ускорением (см. табл. 23.1).

Таблица 23.1. Фридмановские модели мира.

Если сейчас галактики разбегаются друг от друга, значит, в прошлом они должны были располагаться ближе, а в некоторую далекую эпоху все они находились рядом. Следовательно, расширяющаяся Вселенная имеет конечный возраст. Тогда должно было случиться начальное событие — Большой взрыв, — которое привело материю Вселенной в состояние расширения.

Рис. 23.6. Эволюция разных «вселенных» со временем. Можно считать, что по вертикальной оси отложено среднее расстояние между типичными галактиками как функция времени. Верхняя кривая — наиболее популярная сейчас модель с ненулевым лямбда-членом — в нашу эпоху демонстрирует ускоренное расширение. Под ней все кривые с нулевым лямбда-членом, без ускорения. Вторая линия сверху — «гиперболическая» модель, в которой гравитация вызывает замедление, не оказывающее сильного влияния на расширение. Третья линия сверху — модель с критической плотностью, в которой расширение постепенно тормозится замедлением. Нижняя кривая — модель с высокой плотностью, в которой гравитация останавливает расширение и вынуждает галактики вновь сближаться. Рисунок: NASA.

Ускоряющаяся Вселенная.

Причина, по которой расширение Вселенной может ускоряться, кроется в космологическом лямбда-члене в уравнениях Эйнштейна. Может ли на самом деле лямбда-член иметь ненулевое значение? Иными словами, существует ли всемирное гравитационное отталкивание (антигравитация, как это иногда называют)? Ответить на этот вопрос могут дать только наблюдения. Многие годы признаки отталкивания не обнаруживались или считались крайне ненадежными, поэтому возможностью ненулевого значения лямбда вообще пренебрегали.

Все изменилось в конце 1990-х годов, когда появилась возможность исследовать вспышки очень далеких сверхновых звезд (это мы обсуждали в главе 19). Наблюдения показали, что максимальная светимость у всех вспышек одного из типов сверхновых (SNIa) почти неизменна; точнее — она немного зависит от скорости уменьшения блеска звезды после ее вспышки. Эту особенность впервые в 1977 году заметил Юрий Павлович Псковский из Московского университета. Теперь она служит для повышения точности измерений и позволяет использовать сверхновые типа Iа как «стандартные свечи», как маяки в огромном море галактик. Так как мощность каждого маяка известна, мы можем по блеску сверхновой на небе оценить расстояние до нее. Затем можем построить диаграмму Хаббла, похожую на ту, которая приведена на рис. 23.7. Форма кривой для очень далеких расстояний позволяет выбрать правильную модель Вселенной.

Рис. 23.7. Диаграмма Хаббла для сверхновых типа Iа. Напомним, что большое красное смещение соответствует большому расстоянию и более тусклым сверхновым. Верхняя линия — это стандартная модель с ускоренным расширением за счет энергии вакуума. Средняя линия — модель без ускорения. Нижняя линия — модель, в которой материя имеет критическую плотность и нет энергии вакуума; она не согласуется с наблюдениями. Рисунок: Космологический проект по сверхновым.


В 1990-х годах несколько научных групп исследовали сверхновые для их использования в качестве стандартной свечи. Группой, организованной в 1988 году под названием «Космологический проект по сверхновым», руководил Сол Перлматтер из Национальной лаборатории им. Лоуренса в Беркли (Калифорния). В нее входили астрономы и физики, связанные с этой лабораторией. Для обнаружения сверхновых они использовали широкоугольные камеры, установленные на больших телескопах.

Второй «Группой поиска сверхновых на больших z» руководил Брайан Шмидт из Гарвард-Смитсонианского астрофизического центра. Чтобы после обнаружения сверхновой получить детальную кривую ее блеска, обе группы использовали космический телескоп «Хаббл» и крупнейшие наземные телескопы, такие как 10-метровый «Кек» на Гавайях. К 1997 году было найдено 16 сверхновых с большим красным смещением, и они стали первым шагом к удивительному открытию: Вселенная ускоряется. Сверхновые выглядели слабее и поэтому должны были находиться дальше, чем в замедляющейся Вселенной. Очевидное объяснение этого состоит в том, что правильная модель Вселенной должна содержать эйнштейновский положительный лямбда-член, а значит — существует антигравитация!

Вторая группа доложила свои результаты в 1998 году на январском собрании Американского астрономического общества. На том же собрании и первая группа представила экспериментальные свидетельства космического ускорения. Обзор всех этих результатов был сразу же опубликован в журнале Science, а затем в этом же году вторая группа опубликовала в журнале Astronomical Journal работу, первым автором которой был Адам Райес (A. Riess) из Калифорнийского университета в Беркли. Среди многих параметров модели они определили и возраст Вселенной — около 14 млрд лет.

Работа «Космологического проекта по сверхновым» вышла в 1999 году в журнале Astrophysical Journal. Она основывалась на 42 независимых сериях наблюдений сверхновых с большим красным смещением и подтверждала результаты «Группы поиска сверхновых на больших z». Такое бывает редко: чтобы важнейшее научное открытие и его подтверждение «без всяких сомнений» произошло в течение года. Даже сами члены этих групп не ожидали подобного результата. Брайан Шмидт говорил: «Моя реакция была чем-то средним между изумлением и ужасом. Изумление, потому что я совсем не ожидал такого результата. А ужас оттого, что, скорее всего, в него не поверит большинство астрономов, которые, как и я сам, весьма скептически относятся к неожиданному».

Но дальнейшие наблюдения сверхновых с большим красным смещением подтвердили ускорение. А решающее свидетельство ускоренного расширения Вселенной было получено совсем другим методом — путем измерения космического микроволнового фона, проведенные со спутника «Зонд микроволновой анизотропии им. Вилкинсона» (Wilkinson Microwave Anisotropy Probe, WMAP) в 2003 году. Спутник назвали в честь одного из пионеров этих исследований Дэвида Вилкинсона (1935–2002), работавшего в Принстонском университете. Все эти результаты позволили сформулировать стандартную космологическую модель, которая, как считается, наиболее точно представляет нашу Вселенную. В 2007 году Сол Перлматтер и Брайан Шмидт, вместе с членами своих групп, получили престижную Космологическую премию Питера Грубера за свое открытие ускоряющейся Вселенной.

Красное смещение и космические расстояния.

Когда мы говорим о расстояниях до галактик, то обычно упоминаем их красное смещение (символ z), которое для ближайших галактик пропорционально расстоянию (закон Хаббла). Красное смещение очень далеких объектов прямо определяется по их спектру, но при этом расстояние до них определяется путем непростых вычислений. Даже само понятие расстояния становится неоднозначным.

Можно определить расстояние, используя время распространения света, которое показывает, как долго свет добирался до нас. Если t1 — момент времени, когда свет был излучен далеким объектом, a t0 — момент, когда мы приняли этот свет, то расстояние составит rсветовое = c(t0 — t1), где с — скорость света. Этот метод дает расстояние в световых годах. Чтобы по красному смещению вычислить прошедшее время, нужно использовать модель Фридмана, которая требует от нас знания точного возраста и состава Вселенной. Для этого обычно используют наилучшую из имеющихся на данный момент моделей: так называемую стандартную модель. «Расстояние по времени распространения света» говорит нам о том, как давно объект излучил свет, который сейчас достиг нас.

Но можно определить расстояние и по-другому, непосредственно в тот момент, когда свет дошел до нас. Если использовать аналогию с воздушным шариком (см. рис. 23.5), то это будет расстояние между двумя точками, измеренное рулеткой по поверхности. Это расстояние легко можно сравнивать с расстояниями между современными галактиками. Оно дает нам представление о глубине пространства, на которой расположен объект. Например, оно говорит нам, сколько расстояний Галактика-Андромеда умещается в расстоянии между нами и далеким объектом. Такое определение расстояния довольно близко к тому, что мы обычно называем расстоянием. Впрочем, на самом деле мы не можем измерить это расстояние, протянув рулетку от нас до далекой галактики! Его можно только вывести из красного смещения этой галактики, используя подходящую фридмановскую модель. Как и при вычислении расстояния по времени распространения света, здесь тоже нужно знать красное смещение и иметь модель Вселенной. Мы видим, что космологическая модель — это не только теоретическая конструкция для описания и понимания Вселенной, но и практический инструмент, без которого невозможно говорить о расстояниях далеких небесных тел; а без расстояния мы не можем определить их размер и мощность излучения.

Таблица 23.2. Красное смещение, расстояние по времени распространения света и «расстояние сейчас».


Эти расстояния рассчитаны по модели Фридмана при постоянной Хаббла = 70 км/с/Мпк, плоском пространстве, доле материи = 0,24 и доле темной энергии = 0,76.

Как пример возьмем галактику с красным смещением z = 2. Из табл. 23.2 мы видим, что свет покинул эту галактику около 10 млрд лет назад. Мы также можем вычислить, что в настоящее время она удалена от нас примерно в 7000 раз дальше, чем галактика Андромеда (расстояние до которой 2,5 млн световых лет). В этой таблице приведены расстояние по времени распространения света и «расстояние сейчас» по значению красного смещения. За единицу расстояния принят миллиард световых лет, и использована стандартная космологическая модель, в которой возраст Вселенной составляет 14 млрд лет.

Сейчас астрономы без труда наблюдают галактики до красного смещения около 0,5, что соответствует 64 % современного возраста Вселенной. С некоторыми трудностями удается наблюдать галактики при z = 3, это соответствует 16 % возраста Вселенной, а эпоха z = 10 была, когда от 14-миллиардного возраста мира прошло всего лишь 3,5 %.

Топология пространства: еще одна причина для головной боли.

Похоже, что плоские бесконечные модели Фридмана работают хорошо. Но мы хотим завершить эту главу рассказом об одном захватывающем предположении: может ли Вселенная быть плоской, но при этом конечной и содержать конечное число галактик?

Александр Фридман писал, что «распространены совершенно превратные сведения о конечности, замкнутости, кривизне и т. п. свойствах нашего пространства, которые будто бы устанавливаются принципом относительности… Я имею в виду пресловутый вопрос о конечности Вселенной, то есть о конечности нашего физического, занятого блистающими звездами пространства. Утверждают, что, найдя постоянную положительную кривизну Вселенной, можно якобы заключить о ее конечности и прежде всего о том, что прямая во Вселенной имеет «конечную длину», что объем Вселенной является тоже конечным и т. п.».

Он хотел подчеркнуть, что хотя в общей теории относительности кривизна пространства служит определяющей величиной, измерив ее, мы еще не узнаем глобальную форму и объем пространства. Отдельным вопросом является топология пространства. Напомним, что топология — это область математики, изучающая среди прочего особенности геометрических фигур и тел, которые не изменяются при растяжении или изгибе. В этом смысле, например, бублик и рамка от картины топологически эквивалентны. Так вот, топологию пространства невозможно вывести из общей теории относительности: нет простого, взаимно однозначного соответствия между кривизной пространства и его общей формой.

В процитированной выше книге «Мир как пространство и время», опубликованной в России в 1923 году, за два года до безвременной смерти, Фридман приводит педагогический пример. Двумерная геометрия поверхности цилиндра и геометрия плоскости одинаковы: обе поверхности — двумерные евклидовы пространства (рис. 23.8). Цилиндр можно склеить из плоского куска, и с нарисованным на плоскости треугольником ничего особенного не случится, если мы склеим друг с другом края этого куска. Сумма углов треугольника останется равной двум прямым углам, и теорема Пифагора, которая работает на плоскости, сохранит свою силу и на поверхности цилиндра.

Рис. 23.8. Цилиндр можно изготовить из плоского прямоугольника. Поверхность цилиндра и плоскость обладают одинаковой внутренней евклидовой геометрией, но глобальная, то есть топологическая, структура у них совершенно разная.

Но в топологическом смысле это разные вещи: на цилиндре существуют «прямые линии конечной длины», тогда как на плоскости таких линий нет. Цилиндр имеет конечный размер в направлениях, перпендикулярных его оси, поэтому в этих направлениях он конечен и замкнут. Он бесконечен в направлении, параллельном его оси. Используя плоскость и цилиндр, Фридман приводит читателя к выводу: «Таким образом, одна метрика мира не дает нам никакой возможности решить вопрос о конечности Вселенной. Для решения этого вопроса нужны дополнительные теоретические и экспериментальные исследования».

После замечания Фридмана, сделанного в начале прошлого века о «дополнительных исследованиях», можно сказать, что до сих пор нет общей теории, связывающей топологию пространства-времени с его вещественным содержимым (математики говорят, что плоская, евклидова, геометрия может существовать у 18 топологически различных вариантов пространства!). Тем не менее можно приблизиться к решению этой проблемы путем наблюдений. Например, многочисленные изображения-«духи» одного и того же объекта могут наблюдаться на небе в топологически замкнутом пространстве конечного размера, потому что свет от яркого объекта может дойти до наблюдателя разными путями. Скажем, если лучи обогнут мир в разных направлениях, то мы можем увидеть один и тот же объект в двух диаметрально противоположных точках на небе. Но до сих пор такое не наблюдалось.

Замкнутая топология пространства должна была бы оставить свои следы и в виде «духов» фонового излучения. Первые наблюдательные свидетельства такого рода о топологии пространства обсуждал в 2003 году в Париже Жан-Пьер Люмине с коллегами. Они изучали топологическую информацию, содержащуюся в вариациях фонового излучения на предельно больших углах. Максимальным углом для вариаций обладает диполь. Но при угле в 180° невозможно получить данные, так как эффект Доплера, связанный с нашим движением относительно Вселенной (см. главу 24), тоже вызывает дипольный эффект, причем в 100 раз превышающий топологический. Максимальным наблюдаемым угловым масштабом вариаций обладает квадруполь с углом 90°. Последние данные WMAP показывают, что квадрупольные изменения составляют лишь одну седьмую от изменений, ожидаемых в бесконечном плоском пространстве. Для восьмиугольника с угловым масштабом 60° они составляют 70 % от ожидаемого в бесконечном пространстве. Для меньших угловых масштабов ослабления не наблюдалось.

Малая величина вариаций мощности на углах больше 6о° может означать, что большие пространственные масштабы отсутствуют, и Люмине предполагает, что причина этого в том, что пространство само недостаточно велико. Это можно сравнить с колебаниями закрепленной на двух концах струны: максимальная длина волны колебаний равна удвоенной длине струны. Люмине исследовал конкретную модель конечной Вселенной, пространство которой носит необычное название — додекаэдр Пуанкаре; с ним хорошо знакомы топологи. Чтобы в общих чертах представить такое пространство, нужно в первую очередь отметить, что любую обычную сферу можно полностью покрыть 12 правильными сферическими пятиугольниками, плотно прилегающими друг к другу. Каждый из них — это пятиугольная часть сферы. Обычный евклидов пентагональный додекаэдр — это фигура с 12 одинаковыми плоскими гранями (рис. 6.4), а в нашем случае грани являются частями сферической поверхности.

Теперь обратимся к гиперсфере как к конечному, но не имеющему границ трехмерному миру Эйнштейна. Чтобы покрыть гиперсферу, требуется 120 правильных сферических додекаэдров. Их можно плотно прижать друг к другу, и каждый из них станет двенадцатигранной частью гиперсферы. Додекаэдральное пространство Пуанкаре состоит из таких сферических додекаэдров. Такое пространство нелегко представить. На техническом языке пространство Пуанкаре — это пространство с положительной кривизной и многосвязной топологией.

Наша упрощенная двумерная модель Вселенной, теперь была бы не раздувающимся воздушным шаром, а расширяющимся футбольным мячом, где «наш мир» — это один из 12 пятиугольников. При взгляде на это нам кажется, что можно пересечь границу и посетить соседний «мир». Но в пространстве Пуанкаре это невозможно! Противоположные грани додекаэдральных блоков так скреплены друг с другом, что, когда свет выходит из одной грани, он странным образом возвращается обратно через грань на противоположной стороне. Это похоже на лист бумаги, свернутый в цилиндр (см. рис. 23.8), когда противоположные края листа склеены друг с другом. Нам доступен лишь один блок этого додекаэдрального пространства (рис. 23.9).

Люмине и его коллеги с помощью сложных компьютерных программ проделали вычисления, показавшие, что такая модель довольно точно соответствует наблюдаемой картине космического микроволнового излучения, если в нашу эпоху космологическая кривизна имеет вполне определенный радиус. Такая конечная Вселенная должна была бы содержать конечное количество энергии и конечное число звезд и галактик. Но эта интересная идея все еще не доказана. Чтобы проверить, действительно ли мы живем в плоском, но топологически конечном пространстве, нужно исследовать фоновое излучение на углах больше 60°. Для этого нужны более точные наблюдения с помощью новых космических обсерваторий, таких как «Планк» Европейского космического агентства, запущенный в 2009 году. В всяком случае, работа Люмине показала, что современную космологию могут ожидать сюрпризы даже в тех областях пространства, где старая бесконечная модель Фридмана вроде бы делает свое дело вполне удовлетворительно.

Рис. 23.9. (а) Модель нашей расширяющейся Вселенной в виде футбольного мяча с 12 пятиугольными гранями, представляющими различные «миры». (б) Один додекаэдральный блок значительно более сложного пространства Пуанкаре: луч света, выходящий из одной грани, сразу же входит в противолежащую грань. Рисунок: Жан-Пьер Люмине.

Глава 24 Когда все началось: Большой взрыв

На что был похож Большой взрыв? Этот вопрос заинтересовал Жоржа Леметра (1894–1966) еще в 1931 году. Хотя он был священником (и профессором астрономии в Лувенском католическом университете в Бельгии), рождение Вселенной он считал чудом природы; наука и религия существовали для него совершенно раздельно. В 1927 году в изящном теоретическом исследовании он предсказал красное смещение линий в спектрах далеких галактик и его зависимость от расстояния (закон Хаббла). Леметр говорил о I'atome primitive — первичном атоме, который был похож на большое радиоактивное ядро, начавшее распадаться. Он подозревал, что «невозможно путем размышлений постигнуть истинное происхождение, но к этому можно приближаться асимптотически». В это время большинство астрономов не считали нужным даже пытаться понять проблему происхождения Вселенной.

Неизбежность горячего Большого взрыва.

Конкретное исследование процессов, происходивших во время Большого взрыва, начал Георгий Гамов, который учился в Санкт-Петербургском университете у Фридмана и впервые завоевал известность своими работами по квантовой физике (туннелирование и альфа-распад). В 1930-х годах он «туннелировал» из Советского Союза и оказался в Соединенных Штатах, где работал в университете Джорджа Вашингтона. Вместе с Гамовым работали его молодые коллеги — Ральф Альфер и Роберт Герман. Они попытались представить, на что была похожа первичная плотная материя, и получили два важных результата: в начальном состоянии вещество должно было быть очень горячим, поэтому сильно излучать; более того, это излучение до сих пор должно окружать нас, хотя оно ослабло и превратилось в бледный отблеск Большого взрыва.

Эти выводы можно понять, если экстраполировать в прошлое те процессы, которые мы видим сейчас. Звезды формируются из газовых облаков. Значит, в прошлом газа в галактиках было гораздо больше, чем звезд. В далеком прошлом галактики целиком должны были состоять из газа. Сегодня мы видим галактики убегающими друг от друга, следовательно, в прошлом молодые чисто газовые галактики должны были прижиматься друг к другу. А еще раньше этот газ до своего расширения должен был быть очень горячим. Когда-то в прошлом этот газ был таким плотным и горячим, что был совершенно непрозрачным. После окончания этой эпохи пространство стало прозрачным. Излучение, испущенное в тот переходный период, до сих пор должно скитаться по пространству, хотя оно уже сильно остыло из-за расширения Вселенной (рис. 24.1).

Рис. 24.1. Георгий Гамов (1904–1968), автор теории Большого взрыва. С течением времени пространство расширяется, а плотность и температура Вселенной уменьшаются. Рисунок Артура Чернина.

Рождение легких элементов в Большом взрыве.

Уже знакомая нам Сесилия Пейн-Гапошкина доказала, что основным веществом в звездах является водород, вторым по обилию — гелий, а на долю всех более тяжелых элементов приходится совсем немного (и в межзвездном газе сохраняется такая же пропорция). Как возникли эти элементы? Гамов стремился объяснить происхождение всех элементов в процессе Большого взрыва. В 1946 году он предположил, что вначале все вещество состояло из нейтронов. При столкновении двух нейтронов может образоваться ядро дейтерия, а далее при его столкновении с еще двумя нейтронами рождается ядро гелия. Гамов считал, что при соответствующих условиях этот процесс может продолжаться до тех пор, пока не возникнут ядра с массами до 250 атомных единиц. Вычисления показали, какая плотность и температура нужны для этого процесса. Альфер и Герман пришли к выводу, что в нашу эпоху остаточное излучение Большого взрыва должно быть похоже на излучение тела, имеющего температуру -268 °C, или 5 К.

Спустя несколько лет стало ясно, что элементы, следующие за гелием, не могут возникать путем захвата нейтрона, так как более сложные ядра при этом разрушаются, превращаясь в более легкие. Более того, наблюдаемое обилие элементов тяжелее гелия может меняться от звезды к звезде в сотню раз. Если бы тяжелые элементы родились с самого начала, то они должны были бы содержаться в одинаковой пропорции всюду во Вселенной, во всех ее звездах. Так что требуется найти другой «котел» для их производства.

В 1956 году Фред Хойл (рис. 24.2) со своим американским коллегой Уильямом Фаулером (1911–1995) и английскими астрономами Маргарет и Джеффри Бербиджами показали, что элементы тяжелее гелия совершенно естественно рождаются в ходе ядерных реакций в горячих недрах звезд. Они вычислили, какое количество каждого элемента образуется на разных стадиях звездной эволюции и какая его часть возвращается в межзвездные газовые облака. Мы уже обсуждали процессы внутри звезд и то, как химические элементы выбрасываются в межзвездное пространство при взрывах сверхновых (см. главу 19). Результат работы Хойла с коллегами оказался замечательным: в этом процессе химические элементы формируются именно в таком соотношении, какое наблюдается в природе.

Рис. 24.2. Фред Хойл (1915–2001) во время своего визита в Финляндию в 1982 году. Фото: Markku Poutanen.

Более того, Хойл вместе с Роджером Тейлером показали, что весь гелий не мог образоваться в звездах. Если бы гелий, составляющий примерно четверть массы каждой звезды, образовался в реакциях термоядерного синтеза в недрах звезд, то их излучение было бы гораздо сильнее той яркости галактик, которая наблюдается. Примерно 90 % гелия должно было образоваться где-то в другом месте. Но если принять во внимание Большой взрыв, то вычисления хорошо согласуются с наблюдаемым количеством гелия.

Космическое фоновое излучение

Как раз в то время, когда в Англии Хойл и Тейлер рассчитывали последствия Большого взрыва, на другом берегу океана, в Принстоне, Роберт Дикке с коллегами начал поиски его остаточного излучения. Молодой член группы Джим Пиблз теоретически оценивал ожидаемые параметры этого излучения, а остальные участники работы создавали измерительные приборы. Но еще до начала их наблюдений это излучение случайно открыли другие. Арно Пензиас и Роберт Вильсон из Лабораторий «Белл» исследовали радиошумы, нарушающие телефонную связь. Они обнаружили, что некоторые шумы приходят из-за пределов Земли, а возможно, даже из-за пределов Галактики. Поэтому телефонная компания «Белл» мало что могла сделать для снижения шума; но все же — где он возникал?

Пензиас случайно услышал о семинаре, на котором незадолго до этого Пиблз рассказал об ожидаемом «эхе» Большого взрыва. Его свойства соответствовали наблюдаемому радиошуму. Так в 1965 году было открыто космическое фоновое излучение. За это открытие Пензиас и Вильсон получили Нобелевскую премию (рис. 24.3).

Космическое фоновое излучение распределено по разным длинам волн в соответствии со спектром излучения абсолютно черного тела (рис. 24.4). Как мы уже знаем, этот спектр описывается единственным параметром — температурой. Чем выше температура, тем короче длина волны максимума излучения. Наблюдаемый пик фонового излучения в микроволновом диапазоне соответствует температуре 2,7 К. То, что его спектр в точности соответствует излучению абсолютно черного тела, было надежно доказано в 1992 году американской космической обсерваторией СОВЕ (Cosmic Background Explorer, Исследователь космического фона). За этот результат Джон Мазер и Джордж Смут разделили Нобелевскую премию в 2006 году.

Рис. 24.3. Рупорная антенна, с помощью которой Пензиас и Вильсон обнаружили космическое фоновое излучение.

Как раз такой спектр и должен быть у излучения горячего газа, оставшегося после Большого взрыва. Другой ключ к разгадке природы этого излучения был получен из его распределения по небу: оно оказалось изотропным, то есть приходящим равномерно из всех направлений в пространстве. Излучение немного усиливается (его температура выше) в направлении созвездия Лев, а самая низкая температура наблюдается в противоположной стороне неба. Эта особенность отражает движение Земли сквозь однородное поле излучения. Эффект Доплера делает встречное излучение чуть ярче и теплее, чем излучение, приходящее сзади. Измерение этой неоднородности позволяет определить движение Земли во Вселенной. Точнее, можно измерить скорость планеты относительно этого излучения, которое при своем рождении имело одинаковую интенсивность в разных частях Вселенной и теперь задает уникальную естественную систему координат для измерения движений (не следует путать это с неудачными попытками, предпринятыми в XIX веке, измерить наше абсолютное движение относительно эфира).

Рис. 24.4. Интенсивность излучения абсолютно черного тела при температуре 2,73 К (-270,42 °C) в зависимости от длины волны (сплошная линия) и наблюдения со спутника СОВЕ космического фонового излучения (точки).

По движению Земли сквозь фоновое излучение мы можем вывести движение всей Местной группы галактик. По-видимому, она «плывет» в сторону южного созвездия Гидра со скоростью 600 км/с. Фактически мы входим в состав широкого потока галактик, движущегося в этом направлении. Похоже, что частично это движение стимулировано притяжением к соседнему массивному скоплению Virgo (Дева), но еще сильнее действие значительно более далеких и крупных масс, притягивающих нашу и окружающие галактики в течение всей жизни Вселенной и придающих этому потоку большую скорость. Как мы знаем, элементами крупномасштабной структуры Вселенной служат сверхскопления галактик. За нашим Местным сверхскоплением с центром в скоплении Virgo находятся более крупные агрегаты; в числе ближайших — сверхскопление Гидры-Кентавра, лежащее недалеко от направления нашего движения. Этот или другие комплексы за ним могли породить поток галактик, в котором мы движемся.

Температура, вещество и излучение.

В предшествующей истории космоса фоновое излучение было теплее, чем нынешнее, весьма холодное, с температурой всего 2,7 К. По мере расширения Вселенной длина волны любого излучения возрастает: волна растягивается вместе со Вселенной. Но при этом замечательно то, что сохраняется чернотельный спектр излучения, хотя его температура снижается: она уменьшается обратно пропорционально размеру Вселенной.

В эпоху, когда излучение освободилось от взаимодействия с веществом, температура газа составляла примерно 3000 К. С того момента это излучение начало свободно распространяться в нашу сторону, а Вселенная за это время расширилась в 3000/2,7 = 1100 раз во всех направлениях. Когда излучение тронулось в путь, возраст Вселенной был около 400 000 лет. А незадолго до этого момента случилось еще одно важное событие: в более раннюю эпоху главным космическим «элементом» было излучение, но как раз тогда его заменило в этой роли вещество. Поэтому космическое микроволновое излучение несет информацию об эпохе, когда произошла эта смена основного компонента Вселенной.

Используя формулу Эйнштейна (Е = mс2), мы можем вычислить энергию вещества, содержащуюся в некотором объеме пространства, и сравнить ее с энергией излучения в том же объеме. Эти две различные формы энергии реагируют на расширение пространства по-разному: излучение ослабевает быстрее, чем вещество. Может показаться, что неважно, в какой форме была космическая энергия: в форме излучения или вещества. Но это не так. Только вещество может образовать структуры, излучение же распределяется однородно. В мире, которым управляет излучение, не могли бы возникнуть реальные объекты, в том числе и мы с вами. Излучение разогнало бы материю при ее попытках сконцентрироваться.

Астрономическая машина времени.

Астрономические наблюдения обращены в прошлое. Чем дальше источник приходящего к нам света, тем более давнюю историю он нам рассказывает. Космическое микроволновое излучение приносит информацию об эпохе, удаленной на 14 млрд лет. Оно рассказывает нам о главном событии в истории Вселенной — о рождении первых атомов. До этого момента электроны и атомные ядра двигались независимо друг от друга (то есть газ был ионизован). Лишь после того, как плотность и температура достаточно снизились, электроны смогли занять свои стабильные места на орбитах вокруг ядер. Когда электроны оказались связанными в атомах, Вселенная стала прозрачной и свет получил возможность переносить информацию на большие расстояния. В нашу эпоху эти новости о том древнем событии составляют лишь малую часть шума, мешающего радио-и телевизионному вещанию (рис. 24.5).

Рис. 24.5. (а) В эпоху молодости Вселенной фотоны космического излучения не допускали формирования атомов водорода из протонов (+) и электронов (-). (6) Когда излучение ослабло, смогли образоваться атомы. В этот момент пространство стало прозрачным настолько, что фотоны смогли почти свободно перемещаться между атомами.

Кроме того, что фоновое излучение рассказывает нам о рождении атомов водорода, это к тому же исторический документ, рассказывающий о структуре мира в ту эпоху. Прочесть этот документ не так-то легко: структурные детали очень слабы — на уровне 0,00001 интенсивности излучения. Чтобы их заметить, понадобились спутники на околоземной орбите. Пионерами в этом деле были российская космическая обсерватория «Реликт-1» и американский спутник СОВЕ. Группа под руководством Джорджа Смута из Калифорнийского университета в Беркли объявила о результатах эксперимента СОВЕ в апреле 1992 года (позже выяснилось, что «Реликт-1» видел те же структуры, хотя и не так четко). Резко улучшил качество измерений американский спутник WМАР в 2003 году, но еще раньше начался вал открытий по результатам наблюдений с высотных аэростатов и наземных обсерваторий, расположенных в местах с подходящим климатом (например, в Антарктиде).

Измеряя геометрию пространства.

Теоретики ожидали, что наиболее заметные пятна с избытком излучения на микроволновом небе должны иметь угловой размер Луны. Легко понять, что размер таких пятен зависит от геометрии Вселенной. Мы уже объясняли в главе 15, что угол, под которым виден далекий объект, зависит от кривизны пространства. В сферическом пространстве объект кажется больше, чем в плоской эвклидовой Вселенной, а в гиперболическом пространстве он кажется меньше. Таким образом, измеряя размер пятен микроволнового излучения, можно точно измерить общую геометрию (рис. 24.6).

Рис. 24.6. Мельчайшие вариации температуры космического фонового излучения, измеренные в эксперименте «Бумеранг» на участке неба размером 10 x 20 квадратных градусов. Характерный угловой размер неоднородностей, около 1°, свидетельствует, что пространственная геометрия Вселенной плоская. Credit: The Boomerang Collaboration.

Первые сведения о существовании пятен предпочтительного размера поступили в 1993–1995 годах от сотрудников Института Макса Планка (Германия) и Принстонского университета (США), наблюдавших это на телескопе в г. Саскатун (Канада). А убедительные измерения были проведены в 1998 году с аэростатов: экспериментом Boomerang (Balloon Observations of Millimetric Extragalactic Radiation And Geophysics, Баллонные наблюдения миллиметрового внегалактического излучения и решение задач геофизики) руководили А. Ланге (Калифорнийский технологический институт) и П. де Бернардис (Римский университет), а экспериментом Maxima (Millimeter-wave Anisotropy Experiment Imaging Array, Эксперимент по картированию анизотропии в микроволновом диапазоне) — П. Ричардс (Калифорнийский университет в Беркли). Эти наблюдения показали, что предпочтительный размер пятен фонового излучения соответствует плоской Вселенной. Наконец, космическая обсерватория WMAP (большой коллектив под руководством Чарлза Беннетта из Годдардовского центра космических полетов и Университета Джонса Гопкинса) подтвердила предыдущие результаты с более высокой точностью и измерила параметр ? = 1,02 ± 0,02. Значение ? = 1 соответствует плоской Вселенной, ? > 1 говорит о сферическом пространстве, а ? <1 указывает на гиперболическую геометрию. Таким образом, наше пространство должно быть почти точно эвклидовым, и любое отклонение от плоскостности — очень малым (рис. 24.7).

Рис. 24.7. Сравнение наилучшей космологической модели с бесконечной протяженностью и плоской геометрией (непрерывная линия) с измерениями космического микроволнового фонового излучения, полученными космической обсерваторией WMAP и другими приборами (точки с «усами» ошибок). Угловой масштаб вариаций указан в верхней части рисунка. Источник: NASA.

Происхождение гелия.

Значительная часть первых 100 000 лет космической истории прошла при доминировании излучения. Вселенная была иной и очень простой: ее заполнял однородный газ, всюду нагретый до одинаково высокой температуры. По мере расширения Вселенной температура и плотность газа снижались. Постепенно эпоха, когда всем управляло излучение, подходила к концу. Но если отправиться в прошлое, к самому началу, когда после Большого взрыва прошло всего несколько минут, то температура в то время была выше» чем в центре Солнца. Поражает воображение, что тогда по всей Вселенной происходили ядерные реакции, похожие на те, что в наши дни генерируют энергию Солнца. Слияние протонов и нейтронов рождало ядра дейтерия, которые после столкновений друг с другом и протонами превращались в гелий.

Количество образовавшегося гелия в первую очередь зависит от соотношения числа нейтронов и протонов. Через 100 секунд после Большого взрыва, когда температура опустилась до миллиарда градусов, на каждые 6 нейтронов было 42 протона. Эти шесть нейтронов соединялись с шестью протонами и образовывали шесть ядер дейтерия, которые затем превращались в три ядра гелия. В результате получалось 36 ядер водорода (протонов) на каждые 3 ядра гелия. Относительные доли гелия и водорода (по массе) составили при этом 4 х 3/48 = 25 % для гелия и 36/48 = 75 % для водорода (поскольку ядра Не вчетверо тяжелее ядер H). По истечении 200 секунд после Большого взрыва, когда температура упала до 700 млн К, реакция синтеза гелия закончилась, и это соотношение гелия и водорода осталось неизменным во всех частях Вселенной.

Первая секунда.

Давайте продвинемся еще дальше в прошлое. С момента Большого взрыва до наших дней прошло 14 млрд лет, первые атомы родились через 400 000 лет, а весь гелий образовался примерно к концу третьей минуты. А в течение первой секунды Вселенная состояла практически из одинакового количества вещества и антивещества. Современный мир почти весь из вещества, тогда как частицы антивещества очень редки и короткоживущи. Когда сталкиваются частица и античастица, обе они исчезают — аннигилируют, превращаясь в излучение. В современном мире нелегко быть античастицей: притаившиеся в каждом углу частицы готовы в момент разделаться с античастицей.

Как же тогда античастицы могли существовать в течение первой секунды? Ответ состоит в том, что излучение тогда было настолько ярким и энергичным, что новые пары частица-античастица постоянно рождались из квантов излучения. Этот процесс противоположен разрушению пар частица-античастица. Противоположные процессы возможны, так как материя и энергия взаимозаменяемы в соответствии с формулой Эйнштейна Е = mс2. Когда температура достаточно высока, рождение и аннигиляция пар частица-античастица происходят с одинаковой частотой, и между этими антиподами может сохраняться равновесие (рис. 24.8).

Рис. 24.8. (а) Достаточно энергичный фотон может родить пару частица-античастица, например электрон и позитрон, (б) Фотон высокочастотного излучения рождается при столкновении частицы с античастицей. В молодой Вселенной эти взаимно обратные процессы были уравновешены.


Но по мере расширения Вселенной и падения температуры в некоторый момент рождение пар становится невозможным, а аннигиляция продолжается и приводит к массовой гибели частиц и античастиц. То, что некоторые частицы выживают, объясняется небольшой асимметрией: число частиц чуть-чуть больше числа античастиц. Причина этой асимметрии до сих пор не ясна. А. Д. Сахарову и В. А. Кузьмину удалось выяснить необходимые для этого физические условия. Кажется, природа не отдает предпочтения веществу перед антивеществом; но почему-то история Вселенной началась с небольшой асимметрии в пользу вещества. По оценкам на каждые 1500 млн античастиц приходилось 1500 млн плюс одна частица. Когда 1500 млн частиц уничтожили столько же античастиц, оставалась еще одна частица, которая позже вошла в структуру Вселенной. А погибшие частицы и античастицы продолжили свое существование в виде излучения. Хотя фундаментальная физика пока не может найти причину указанной асимметрии, но именно благодаря ей мы существуем!

У каждого сорта частиц есть свои античастицы, а насколько долго после Большого взрыва они просуществуют в равном количестве, зависит от их массы. В отличие от пар массивных частиц и античастиц, легкие пары могут возникать из менее энергичных фотонов при более низких температурах. Температуру, выше которой возможен баланс частица-античастица, называют пороговой температурой этой частицы. Электрон и его античастица позитрон являются самыми легкими частицами (мы не принимаем во внимание нейтрино, масса которого гораздо меньше, но пока не определена). Пороговая температура электрона равна 10 млрд градусов. До этого значения температура Вселенной снизилась через 1 секунду после Большого взрыва, и это стало особым моментом в истории космоса. Примерно в этот момент или чуть позже произошла последняя аннигиляция между электроном и позитроном, после чего в космосе уже не осталось антивещества.

В период между 0,0001 с (= 10-4 с) и 1 с наиболее распространенными частицами во Вселенной были лептоны. В этот или более короткий период электроны и позитроны постоянно рождались и разрушались, присутствуя в большом количестве. Вот почему это время называют эпохой лептонов. Напомним названия трех основных типов субатомных частиц: лептоны, адроны и фотоны. Лептоны — это электроны, мюоны и нейтрино. Адроны — это барионы и мезоны, состоящие из более элементарных частиц — кварков.

В промежутке между 0,00001 С (= 10-5 с) и 10-4 с в большом количестве существовали более массивные адрон-антиадронные пары (в основном пионные). Этот период называют эпохой адронов. Позже даже самые легкие адрон-антиадронные пары аннигилировали и больше никогда уже не возникали, поскольку фотоны позже уже не имели достаточно энергии для образования адрон-антиадронных пар.

А еще раньше основными частицами были кварки и антикварки. Период между 10-12 с и 10-5 с называют эпохой кварков. В этот период плотность материи была так велика, что адроны не могли возникать как связанные системы. Существовали только свободные кварки. Когда началась эпоха кварков, температура была около 1016 (= 10 миллионов миллиардов) градусов.

В эпоху адронов (между эпохами кварков и лептонов) адроны могли существовать как отдельные частицы, но аннигиляция адронов и антиадронов еще не завершилась. Моментом рождения протонов (то есть водорода) можно считать начало эры адронов на 0,00001 с. В это время плотность вещества была очень высокой, сравнимой с плотностью внутри протона, то есть в 1015 раз плотнее воды.

Нейтрино заслуживают отдельного упоминания. Согласно теории, сегодня они самые многочисленные среди частиц. В каждом кубическом сантиметре пространства должно содержаться 600 нейтрино, родившихся в юной Вселенной. К сожалению, они так слабо взаимодействуют с обычной материей, что нам пока не удалось зарегистрировать их.

Загадка Большого взрыва.

Историю Вселенной можно проследить назад в прошлое до эпохи ядерного синтеза при космическом возрасте в несколько минут. Имеющиеся астрономические данные и общепринятая физическая теория служат надежным фундаментом для этой цели. Но описание более ранних эпох гораздо менее надежно. И совершенно закрыто от нас рождение Вселенной. Можно сказать, что Большой взрыв — это не более чем метафора. Очевидно, что не было «взрыва», подобного взрыву водородной бомбы. Но что же это было, что заставило Вселенную расширяться? Есть еще несколько конкретных вопросов, касающихся природы Большого взрыва.

• Почему сила Большого взрыва была как раз такой, чтобы Вселенная приобрела в точности критическую плотность (плоское пространство)?

• Почему Вселенная изотропна, то есть одинакова во всех направлениях?

• Почему во Вселенной были отдельные области, «зародыши», с небольшим избытком плотности, которые позже превратились в галактики?

Большой взрыв мог бы оказаться слишком слабым, и в этом случае Вселенная быстро сколлапсировала бы обратно и вернулась к своему исходному состоянию. Или же он мог оказаться слишком сильным — в этом случае галактики не родились бы. Но расширение как раз такое, какое нужно: существуют области, в которых расширение уже прекратилось (галактики), в то время как в больших областях между галактиками расширение продолжается и не дает галактикам скапливаться и сливаться друг с другом.

Одним из популярных ответов на вопрос о тонкой настройке Вселенной служит антропный принцип. Можно представить, что существует бесконечное число вселенных. Почти все они непригодны для жизни, так как необходимые для возникновения жизни долгоживущие структуры в них не возникают. Но среди них есть по крайней мере одна с необходимой тонкой настройкой и скоростью расширения — наша! Если бы не возникло ни одной пригодной для жизни вселенной, то никто этого и не заметил бы. Мы еще вернемся к этой проблеме в главе 33.

А в чем проблема изотропии? Она связана с космологическим горизонтом; это расстояние, дальше которого мы не видим, по крайней мере — сейчас. Внутри горизонта располагается вся наблюдаемая Вселенная, а вне его пространство простирается, возможно даже — до бесконечности. Свет, возникший за горизонтом, все еще идет к нам. Эта граница существует из-за того, что у Вселенной конечный возраст (рис. 24.9). Таким образом, горизонт ограничивает пространство, которое мы видим; но в качестве достойной компенсации мы получаем возможность видеть рождение Вселенной, или, точнее, те события после ее рождения, излучение от которых мы можем зафиксировать. На сегодня фоновое излучение — это самый далекий посланец. Если мы когда-нибудь научимся регистрировать космическое нейтрино, то это будет весточка из эпохи, когда после Большого взрыва прошло менее одной секунды.

Рис. 24.9. Космологический горизонт — это расстояние, с которого свет может дойти до нас за время существования Вселенной (около 14 млрд лет). С большего расстояния свет еще не дошел до нас. С течением времени горизонт расширяется, и мы видим все более далекие области.

Подобно тому как у нас есть свой горизонт, у каждой точки расширяющейся Вселенной тоже есть собственный горизонт. Если две точки расположены достаточно далеко друг от друга, их горизонты не перекрываются. В таком случае Вселенную можно рассматривать как содержащую огромное количество отдельных областей, которые никогда не обменивались информацией друг с другом. В прошлом размер горизонта был меньше, чем сейчас, так как после Большого взрыва прошло меньше времени, а значит, лучи света пролетели меньшее расстояние. Но даже сейчас нетрудно найти далекие области, лежащие в разных направлениях и ничего не знающие друг о друге. Например, возьмем две любые противоположные области на небе. Космическое фоновое излучение из этих направлений возникло в местах, отдаленных друг от друга на миллиарды световых лет, когда возраст Вселенной был меньше миллиона лет. Вычисления показывают, что пятна фонового излучения, разделенные на небе более чем на пару градусов, возникли в областях, которые никогда не могли контактировать друг с другом. В то же время характеристики этого излучения очень мало меняются от одной области к другой. Как это возможно? В этом и заключается проблема изотропии.

Инфляция и космологические эпохи.

В эпоху преобладания вещества горизонт расширяется быстрее, чем само пространство, но было ли так всегда? В эпоху своей бурной молодости Вселенная могла расширяться намного быстрее, и даже быстрее, чем сам горизонт. Если это так, то чем ближе мы к Большому взрыву, тем все большую и большую часть Вселенной должен был охватывать горизонт. На этой идее основана так называемая теория инфляции, которая призвана решить проблему изотропии. Возможно, что когда-то внутри одного горизонта находилась практически вся Вселенная либо же как минимум та ее часть, которая сейчас гораздо больше нашего современного горизонта. Все области в пределах нашего поля зрения могли в прошлом соприкасаться друг с другом, и это объясняет однородность и изотропию наблюдаемой Вселенной. Но что заставило совсем юную Вселенную начать расширяться с тем колоссальным ускорением, которого требует инфляционная модель? Эту фазу можно описать, используя силу отталкивания, впервые введенную Эйнштейном и затем отвергнутую им. Увеличив силу отталкивания, использованную в статической модели Эйнштейна, в 10120 раз и ограничив период ее действия до 10-32 с, можно получить инфляционную модель Вселенной. Но только в 1965 году Эраст Борисович Глинер из Физико-технического института им. А. Ф. Иоффе в Санкт-Петербурге понял, что сила отталкивания может возникнуть из космического вакуума. Мы вернемся к этому вопросу после краткой экскурсии по разным периодам эволюции Вселенной, какими они сегодня представляются.

Коротко говоря, в инфляционной модели с самого начала (почти) пустое пространство стало быстро расширяться, и Вселенная оставалась относительно пустой и холодной. Затем вдруг, примерно за 10-32 с, Вселенная заполнилась веществом и излучением при очень высокой температуре, порядка 1028 градусов. Энергия для рождения этого вещества и излучения черпалась из вакуума, в результате чего у него она понизилась до нынешнего значения. После этого процесс расширения стал «нормальным».

Так закончился первый период космической истории — эпоха инфляции. Родившаяся тогда материя не была похожа на ту, которую мы знаем сегодня; да и взаимодействия были другими. Например, электромагнитная сила и слабая сила тогда еще не были независимыми — это была единая электрослабая сила. Такие частицы, как фотоны и W- и Z-бозоны, были неотличимы друг от друга, и тогда еще не было речи об электронах, мюонах и нейтрино в их современном смысле. В ту эпоху могли существовать и какие-то неизвестные частицы вроде гипотетических Х-частиц, которые невозможно создать даже на самых мощных ускорителях. Период между эпохой инфляции и более поздней эпохой кварков можно разделить на две части. Первая фаза называется эпохой теорий великого объединения, а вторая — эпохой теории Вайнберга-Салама. Эти названия связаны с современными теориями взаимодействия. В начальной фазе цветная сила и электрослабая сила представляли собой единую силу, а в следующей фазе они уже разделились (Врезка 24.1).

Хотя гипотетическая эпоха инфляции остается целиком вне рамок наших наблюдений, теория инфляции, помимо того что она объясняет изотропию, приводит и к другим интересным следствиям, которые могут пролить свет на Большой взрыв и рождение галактик. В итоге быстрого «раздувания» Вселенная автоматически переходит к нужной скорости расширения: не слишком большой и не слишком малой. Эта теория утверждает, что пространство должно быть почти или точно плоским, а исследования космического фонового излучения подтверждают этот факт.

Врезка 24.1. Космологические периоды.

При обсуждении молодой Вселенной удобно использовать логарифмическую шкалу времени. Экстремально короткие начальные периоды могут содержать очень важные события, тогда как более поздние длинные периоды могут протекать без сколько-нибудь интересных событий. Логарифмическая шкала времени (в секундах) придает одинаковое значение и ранним коротким, и поздним длинным периодам. Здесь мы указали приблизительное время начала или протекания различных космологических периодов.

Инфляцию используют также для объяснения малых флуктуаций плотности, которые позже превратились в галактики. Сославшись на принцип неопределенности Гейзенберга, можно сказать, что переход от первичного вакуума к современному состоянию вакуума не мог произойти везде одновременно. Материя и излучение родились в одних областях Вселенной немного раньше, чем в других. Этот процесс мог вызвать небольшую рябь, которая в последующие эпохи сохранилась в виде волн давления (об этом см. главу 27).

Антигравитация, космический вакуум и темная энергия.

Эраст Глинер предположил, что силой, которая могла бы придать материи огромные начальные скорости расширения в момент Большого взрыва, служит космическая антигравитация, представленная в уравнениях космологической постоянной Эйнштейна. В основном здесь та же физика, что и в стандартной модели, в которой наблюдаемое в наши дни ускоренное расширение Вселенной вызвано антигравитацией (см. главу 23). Но для объяснения Большого взрыва нужно предположить, что вначале космологическая постоянная была гораздо больше, чем сейчас, и смогла придать первоначальному космологическому расширению экспоненциально быстрый («инфляционный») характер.

Позднее, в 1970-х, эту идею использовала в своих исследованиях Ирина Дымникова из Физико-технического института им. А. Ф. Иоффе, а с начала 1980-х идея стала очень популярна в космологии благодаря усилиям Алана Гута из Массачусетского технологического института, Андрея Линде из московского Физического института им. П. Н. Лебедева, Алексея Старобинского из Института им. Л. Д. Ландау в Москве, Катсухико Сато из Токийского университета и других. Они предложили интересные варианты инфляционных моделей и продемонстрировали, что идея Глинера действительно перспективна при исследовании физики Большого взрыва.

Инфляционные модели подразумевают, что общая теория относительности и «нормальная» физика работают в экстремальных условиях Большого взрыва. Это далекоидущая экстраполяция наших современных знаний. Поэтому научный статус инфляционной модели пока остается неопределенным. В отличие от нее, стандартная фридмановская космология, охватывающая период от нескольких минут после Большого взрыва и вплоть до наших дней, надежно разработана без существенной экстраполяции физических законов и подтверждена множеством астрономических наблюдений.

Основная идея Глинера состоит в том, что космологическая постоянная представляет космическую среду с совершенно особыми свойствами, которые можно описать в терминах плотности и давления. Важно заметить, что состояния движения и покоя неразличимы относительно этой среды. Могут быть два тела, движущиеся с некоторой скоростью относительно друг друга, но эта среда будет неподвижна относительно каждого из них! Это означает, что такая среда не может служить системой отсчета. В механике это особое свойство обычно приписывается вакууму, который считается не более чем пустотой. Теперь у нас есть еще один пример вакуума, который имеет определенную плотность и давление, а значит, обладает определенной энергией. Вакуум Глинера однороден в пространстве, вездесущ и неизменен во времени.

Развивая эту идею, Яков Борисович Зельдович в конце 1960-х годов предположил, что космический вакуум молодой Вселенной был идентичен квантовомеханическому вакууму, открытому Полем Дираком из Кембриджского университета в 1927 году. Квантовый вакуум — это также не пустота, а поле с так называемой нулевой энергией — следствие квантовой природы частиц и полей. Эти вопросы столь фундаментальны и трудны для понимания, что, несмотря на усилия многих ученых, предпринятые в последние десятилетия, предположение Зельдовича не удалось ни доказать, ни опровергнуть.

Вакуум Глинера возродился в космологии современной Вселенной в виде так называемой темной энергии. Это не гипотетический первичный вакуум, а реальный вакуум, обнаруженный при космологических наблюдениях. Темная энергия невидима и проявляет себя только антигравитационным влиянием на движение галактик. Ее макроскопические свойства как среды известны благодаря Глинеру, но ее внутренняя микроскопическая структура до сих пор совершенно загадочна.

Как было рассказано в главе 23, плотность темной энергии впервые измерили на очень больших расстояниях в миллиарды световых лет, используя сверхновые как стандартные свечи. Но похоже, что ее влияние сказывается и на меньших расстояниях в несколько миллионов световых лет, в окрестностях Галактики. Это выяснила международная группа, включающая некоторых авторов этой книги. В обоих случаях хаббловский поток расширения служит естественным инструментом для обнаружения силы отталкивания темной энергии. Фактически гравитация массы Местной группы и антигравитация темной энергии компенсируют друг друга в удивительной близости от нас — недалеко от границы Местной группы, на расстоянии, всего лишь примерно вдвое превышающем расстояние до галактики Андромеда! По движению галактик на таких расстояниях определена «локальная» плотность темной энергии, которая оказалась близкой к «общей» ее плотности или даже в точности равной ей. Это говорит об удивительном факте: антигравитация Эйнштейна действительно является вездесущим явлением во Вселенной, таким же, как гравитация Ньютона.

Самое начало.

В эпоху Античности Платон утверждал, что время появилось вместе с небесами (или пространством). С тех пор мы прошли длинный путь, но постоянно возвращаемся к фундаментальному вопросу: откуда все взялось и как это все начиналось? Вселенная, которую мы видим вокруг себя, каким-то образом возникла в Большом взрыве, но мы не знаем как. Хотя здравый смысл подсказывает нам, что бесплатных обедов не бывает, но все же: если вакуум может самопроизвольно заполнять себя частицами, хотя бы и короткоживущими, то почему вся Вселенная не могла возникнуть из ничего? В конце концов, почему бы и не быть бесплатному обеду, и не только в виде еды, но и в форме целого материального мира?

Такие идеи теоретики обсуждают в рамках квантовой космологии. Когда Вселенная была очень молодой, даже моложе, чем упомянутые ранее 10-32 секунды после Большого взрыва, тогда для Вселенной как целого действовал принцип неопределенности Гейзенберга. Квантовые эффекты становятся доминирующими, когда мы уходим в прошлое к так называемому времени Планка, 10-43 секунды после Большого взрыва. В эту эпоху само понятие времени становится таким запутанным, что не имеет смысла говорить о более ранних моментах времени. Соответственно и у энергии возникает такая гигантская неопределенность, что Вселенная могла бы возникнуть «из ничего». Быть может, великий принцип Гейзенберга откроет перед нами возможность хотя бы в принципе понять, как пространство и время родились 14 млрд лет назад в их особом состоянии, из которого они эволюционировали в то, что мы сегодня имеем. Детали всего этого пока известны очень плохо.

Глава 25 Темная сторона Вселенной

Невидимое вещество пришло в астрономию в XIX веке, когда Фридрих Бессель сделал вывод, что крошечные движения Сириуса на небе вызваны обращением вокруг него темного тела. Этот спутник Сириуса, белый карлик, был обнаружен позднее, в 1862 году, когда талантливый американский оптик Алван Кларк испытывал объектив для нового телескопа диаметром 46 см. Бессель не дожил до этого открытия, но он был убежден, что у Вселенной свои темные секреты: «Нет причин считать, что сияние является неотъемлемым свойством небесных тел. Бесчисленность видимых звезд не исключает существования такого же множества невидимых». Как мы уже говорили, спутник Сириуса — тусклый и плотный белый карлик — не совсем лишен свечения, однако сейчас астрономы говорят об ином и притом совершенно темном веществе.

Открытие темной материи в скоплении Волосы Вероники.

Исследование темной материи началось в 1933 году, когда швейцарский астроном Фриц Цвикки (1898–1974), эмигрировавший в 1925 году в США, заметил, что галактики в скоплении Волосы Вероники (Coma; рис. 25.1) движутся относительно друг друга слишком быстро. Чтобы удержать галактики в пределах скопления, оно должно иметь массу, намного превышающую суммарную массу его галактик. Цвикки подсчитал, что скопление в основном состоит из темной материи и только малая его часть состоит из видимого вещества. По современным оценкам, необходимое количество темной материи должно в десять раз превышать количество видимого вещества.

А можно ли объяснить большой разброс скоростей галактик без гипотезы о темной материи? В 1956 году армянский астроном Виктор Амазаспович Амбарцумян (1908–1996) из Бюраканской обсерватории близ Еревана предположил, что скопления галактик в целом могут находиться в состоянии расширения. В этом случае нет, необходимости в наличии большой массы темной материи. Однако позже наблюдения показали, что центральная область скопления Coma состоит из двух субскоплений. Эти два уплотнения из темной материи отмечены двумя ярчайшими галактиками с их спутниками. Они явно обращаются друг вокруг друга, как звезды в двойной системе, но в значительно большем масштабе.

Рис. 25.1. Скопление галактик в созвездии Волосы Вероники (Coma Berenices). Оно в пять раз дальше ближайшего к нам скопления в Деве (Virgo). Некоторые яркие точки — это звезды нашей Галактики, они на переднем плане. Размытые пятнышки — это далекие галактики, в основном из скопления Coma. Обратите внимание на две крупные галактики в центре скопления. (NASA/JPL–Caltech/GSFC/SDSS).

В основном ускорение галактик вызвано их притяжением к темной материи, заключенной в этих двух субскоплениях. Но ситуация усложняется ввиду двойственности центральной массы. Обычная галактика, попадая в центральную область скопления Coma, становится членом тройной системы, в которой два других тела — это темные субскопления. Как мы уже знаем, система из трех тел в большинстве случаев неустойчива: рано или поздно одно из тел будет выброшено из системы. В нашем случае этим телом станет самый легкий член системы — влетевшая туда галактика, которая в результате взаимодействия с субскоплениями получает дополнительную скорость. При этом ее энергия может стать достаточной для того, чтобы вообще покинуть скопление. Некоторые галактики в скоплении Coma, без сомнения, находятся на орбите убегания, так что в какой-то степени Амбарцумян был прав. Но предположение, что скопление как целое удерживается темной материей, в последние годы становится все более убедительным. В целом идея Цвикки была верной: большинство галактик в скоплении Coma связаны вместе притяжением темной материи.

Темная материя в спиральных галактиках.

Изучать темную материю немного легче в спиральных галактиках, где звезды и газовые облака обращаются вокруг центра галактики в довольно плоском диске. При измерении движения звезд и газа вдали от центра галактики обнаруживаются настолько высокие скорости вращения, что их нельзя объяснить действием суммарной массы обычных звезд внутри орбиты. В первом приближении суммарную массу звезд можно определить по полному количеству излучаемого ими света, если известно, сколько света излучает типичная звезда средней массы. В качестве таковой можно взять Солнце, для которого точно известна и масса, и мощность излучения (светимость). Суммарное излучение звезд галактики, умноженное на отношение массы Солнца к его светимости, дает полную массу обычных звезд, намного меньшую, чем полная масса галактики, определенная по орбитальному движению далеких звезд и облаков. Кажется, что в галактике кроме звезд и газа есть еще какое-то вещество, которое вносит большой вклад в общую массу галактики. Обычно предполагают, что темная материя находится в более или менее сферическом гало вокруг галактики.

Наличие массивных гало вокруг галактик впервые предположили эстонские астрономы Яан Эйнасто и его коллеги в 1970-х годах, и приблизительно тогда же эту идею высказали Джеремая Острайкер и Джим Пиблз. Позже существование гало надежно доказали американские астрономы Вера Рубин и Кент Форд, детально изучившие вращение спиральных галактик. В 2002 году Веру Рубин наградили престижной Груберовской космологической премией за роль в открытии темной материи. (Пиблз получил свою Груберовскую премию в 2000 году за теоретические работы по космологии.)

Мы не знаем, из чего состоит эта темная материя. Ясно, что она обладает массой и оказывает гравитационное влияние, но это и все, что о ней известно после десятков лет изучения. Поэтому иногда раздаются голоса, что, возможно, темной материи вообще не существует. Быть может, слишком большие значения масс получаются из-за неточности «взвешивания» галактик и их скоплений или же даже из-за неизвестных свойств ньютоновской гравитационной силы? Однако регулярно поступают новые независимые свидетельства того, что темная материя все же есть.

Новые методы обнаружения темной материи.

Даже если природа темной материи неизвестна, мы тем не менее можем вычислить полное количество темной материи во Вселенной. Один из лучших способов — использовать рентгеновское излучение. В скоплениях галактик содержится огромное количество газа, причем настолько горячего, что он излучает рентгеновские лучи. Очевидно, скопление своим притяжением должно быть способно удержать этот газ внутри себя, и этот факт позволяет определить полную массу гравитирующего вещества в скоплении. Большой неожиданностью стало то, что масса самого газа больше суммарной массы галактик в скоплении, но даже если сложить массу газа и массу галактик, остается еще большой пробел, который можно заполнить только темной материей. Рентгеновские обсерватории, последовавшие за «Ухуру» (это «Коперник», запущенный в 1972 году, «Эйнштейн» в 1979 году, а затем обсерватории ХММ и «Чандра»), детально изучили рентгеновское излучение газа, что позволило определить массу темной материи, необходимой для удержания этого газа в скоплениях (как, например, в скоплении Coma, рис. 25.2).

В последнее десятилетие получил развитие новый эффективный метод выявления темной материи: гравитационное линзирование. Он использует гравитационное влияние темной материи на лучи света. Согласно общей теории относительности, луч света искривляется, когда проходит рядом с массивным телом. Еще в 1919 году было обнаружено искривление лучей света, проходящих вблизи Солнца. На возможность эффекта гравитационной линзы впервые указал в 1924 году профессор Санкт-Петербургского университета Орест Даниилович Хвольсон (1852–1934). В 1936 году Эйнштейн сам провел детальные вычисления и пришел к выводу, что в среде звезд наблюдать этот эффект очень трудно. Однако вскоре Фриц Цвикки понял, что галактики, которые намного массивнее звезд, могут создавать изображения фоновых объектов вполне наблюдаемого размера — несколько секунд дуги. Спустя несколько десятилетий такое изображение действительно обнаружилось: галактика создала двойное изображение далекого квазара. В главе 26 мы вернемся к примерам гравитационного линзирования.

Рис. 25.2. Сочетание рентгеновского и оптического изображений крупной галактики М86 в скоплении Дева (Virgo). Рентгеновское излучение имеет наибольшую яркость в центре галактики и ослабевает к ее краям. Обратите внимание на рентгеновский хвост, возникший из-за движения галактики сквозь скопление и потери горячего газа из зоны гравитационного влияния галактики. С разрешения NASA/CXC/SAO/X-ray: С. Jones, W. Forman и S. Murray;Optical: Pal Obs. DSS.

Как видимая, так и темная материя в скоплении галактик своим притяжением искривляют лучи света, идущие от более далеких галактик, создавая этим эффект гравитационной линзы. Измерив искривление, можно вычислить массу такой «линзы». Этот метод как бы делает темную материю «видимой». Приятно осознавать, что определенная этим способом масса темной материи совпадает с определенной по рентгеновскому излучению. Сейчас измерения полной массы темной материи в галактиках и скоплениях галактик считаются вполне надежными (рис. 25.3 и 25.4).

Рис. 25.3. Скопление галактик Эйбелл 2218. По всему снимку, полученному космическим телескопом «Хаббл», разбросаны дугообразные изображения галактик, в 50 раз более далеких, чем само скопление. Эти изображения возникли из-за эффекта гравитационного линзирования, вызванного темной материей скопления, масса которого около 7 x 1014 и масс Солнца. С разрешения NASA, ESA, Andrew Fruchter (STScI) и группы ERO (STScI + ST-ECF).

Рис. 25.4. Схемаt показывающая, как гравитационное поле скопления Эйбелл 2218 формирует дугообразные изображения далеких галактик фона. С разрешения NASA, ESA, Andrew Fruchter (STScI) и группы ERO (STScI + ST-ECF).

Что же это за темное вещество?

Что такое темная материя? Это обычное вещество или что-то совсем иное? «Обычным» мы называем барионное вещество с разным числом протонов в ядрах разных элементов и разным числом нейтронов в изотопах данного элемента. Вспомним, например, что у обычного водорода в ядре один протон, а в ядре дейтерия — протон и нейтрон. Теперь мы вернемся к одному тонкому моменту вычисления состава барионного вещества при ядерном синтезе во время Большого взрыва, как это было описано в главе 24. Итоговое относительное количество различных изотопов каждого элемента (как и относительное количество самих элементов) сильно зависит от доли барионного вещества в полном количестве вещества Вселенной. Считается, что полное количество вещества соответствует критической плотности, которая требуется во фридмановских моделях, чтобы сделать общую геометрию Вселенной плоской. Это замечательно, что по относительному обилию некоторых элементов, измеренному в ближайших окрестностях Галактики, можно определить долю обычного вещества во всей Вселенной!

Особенно полезны для таких оценок дейтерий и водород, обладающие одинаковыми химическими свойствами. В частности, доля сохранившихся к концу первичного нуклеосинтеза ядер дейтерия зависит от отношения современной плотности вещества к критической плотности Вселенной. Если бы критическая плотность полностью обеспечивалась обычным веществом, то обилие дейтерия составляло бы лишь одну миллиардную часть обилия водорода. Но наблюдаемое количество дейтерия в 10 000 раз больше! Согласно теории, это означает, что плотность обычного вещества составляет только 4 % от критического значения. С другой стороны, полное количество вещества в форме газа и звезд в галактиках составляет менее 1 % критической плотности. Следовательно, в действительности имеется два вида «скрытой» материи: обычное барионное вещество и в еще значительно большем количестве — загадочная не-барионная темная материя.

Некоторая часть невидимого барионного вещества в спиральных галактиках может быть в форме нейтронных звезд, белых карликов, черных дыр, тусклых красных звезд и планет. Те нейтронные звезды и черные дыры, которые обнаружены по рентгеновскому излучению, связаны с довольно коротким периодом эволюции двойных звезд. Поэтому рентгеновские звезды очень редки. Но это не означает, что настолько же редки сами нейтронные звезды и черные дыры. Просто в одиночном виде их почти невозможно обнаружить. Так что можно рассчитывать на дополнительное количество барионного вещества, но всего лишь в количестве нескольких процентов от критического значения.

Что же касается оставшегося большого количества небарионной темной материи, то нам неизвестна ее природа. Возможно, существуют неизвестные частицы, которые посредством гравитации и слабого взаимодействия влияют на знакомое нам вещество. Эти гипотетические частицы даже имеют названия (например, нейтралино) и предполагаемые свойства, но они не обнаружены в лабораторных экспериментах. Одна из таких частиц — фотино — считается похожей на нейтрино, но должна быть более массивной. Есть надежда, что новые ускорители частиц дадут какую-то информацию об этих частицах в ближайшие годы.

Раньше считалось, что нейтрино — безмассовые частицы, но в последние годы было доказано, что они обладают очень малой массой. Даже если бы масса у нейтрино была в 10 000 раз меньше, чем у электрона, суммарная масса всех нейтрино во Вселенной превысила бы массу обычного вещества. Но масса у нейтрино еще меньше. В экспериментах на ускорителе в Европейском центре ядерных исследований (CERN) было показано, что масса у нейтрино меньше, чему электрона, как минимум в 30 000 раз. Этот результат подтвердился в 1987 году, когда вспыхнула сверхновая в соседней с нами галактике Большое Магелланово Облако (рис. 25.5). Это самая близкая сверхновая, наблюдавшаяся за последние 400 лет. Она была настолько яркой, что в максимуме блеска ее можно было видеть на небе невооруженным глазом. Но гораздо важнее то, что впервые мы получили возможность зарегистрировать нейтрино, рожденные при взрыве сверхновой. К счастью, в тот момент работало несколько нейтринных детекторов, два из которых (в Японии и США) зафиксировали нейтрино. Время в пути для нейтрино составляет 163 000 лет (таково расстояние до Большого Магелланова Облака в световых годах), но оно должно немного различаться для разных нейтрино, если у них есть масса. Но все нейтрино пришли примерно в одно и то же время, а это означает, что их масса по крайней мере в 50 000 раз меньше массы электрона.

В последние годы возникло предположение, что существует теневой мир, состоящий из частиц, которые вообще не взаимодей-ствуют ни с одним детектором и влияние которых проявляется только в виде гравитации и связанной с ней кривизны пространства. Поскольку наблюдать такие частицы безумно сложно, вопрос об их существовании остается темой для отвлеченных дискуссий. Теневой мир может существовать, и даже в этот самый момент большие глыбы теневого вещества могут проходить сквозь нас, но способа убедиться в этом у нас нет. Если огромное количество темной материи, проявляющей себя через гравитацию, мы не сможем объяснить ничем другим, то последней возможностью останется теневой мир.

Рис. 25.5. Сверхновая, взорвавшаяся в 1987 году в Большом Магеллановом Облаке, видна как яркая звезда чуть правее центра. С разрешения European Southern Observatory.

Еще темнее: темная энергия.

Обычное вещество вносит примерно 4 % в критическую плотность, а темная материя — около 25 %. Но если общая геометрия Вселенной плоская, а у нас есть веские причины не сомневаться в этом, поскольку на это указывают свойства космического фонового излучения, то должен существовать недостающий компонент массы, который не является ни обычным темным веществом, ни темной материей. Как нам уже известно, этот новый компонент называется темной энергией. Что скрывается за словом «темный», пока совершенно непонятно. Мы только знаем, что каким-то образом эта темная энергия обеспечивает ускоренное расширение Вселенной и в то же время позволяет объяснить плоскую геометрию Вселенной.

Математически темную энергию использовал еще Эйнштейн, когда ввел в свои уравнения лямбда-член, чтобы обеспечить неподвижность Вселенной. И только в 1965 году Глинер понял, что естественным объяснением лямбда-члена является особый тип вакуума. Слово «темная» точно отражает тот факт, что мы не понимаем, откуда взялся этот уровень вакуума. Сама по себе концепция вакуумной энергии не столь уж необычна, но в первую очередь нужно объяснить, почему природа выбрала именно такой уровень темной энергии, заполняющей нашу Вселенную.

Четыре фундаментальных элемента: внутренняя симметрия.

Из чего состоит Вселенная? Эмпедокл в V веке до н. э, а позже Аристотель и другие мудрецы Античности считали, что все в мире состоит из четырех «основных элементов», или стихий, — земли, воды, воздуха и огня. Это неплохо соотносится с четырьмя знакомыми нам состояниями вещества — твердым, жидким, газообразным и плазменным. (Если вы думаете, что незнакомы с плазмой — горячим ионизованным газом, — то посмотрите на пламя свечи, или на Солнце, или на огоньки звездного неба. Звезды — это гигантские плазменные шары; большая часть обычного вещества во Вселенной существует в виде плазмы.) Но и современная космология тоже говорит нам о четырех основных элементах, или космических энергиях, как их теперь называют. В современную космическую эпоху темная энергия космического вакуума является доминирующим элементом, содержащим около трех четвертей полной энергии Вселенной. Все тела в природе погружены в эту однородную среду, но ни одна структура не состоит из нее — только сам вакуум.

Три остальные энергии — это темная материя (примерно 20 %), обычное барионное вещество (4 %) и излучение, доля которого сейчас очень мала (0,01 %). В прошлом эти соотношения были другими, и в будущем они тоже изменятся. Например, в первые три минуты космического расширения условия были совершенно иными: тогда вклад вакуума приближался к нулю, а в излучении содержалось почти 100 % энергии.

Такой космический рецепт, меняющийся со временем, может показаться случайным и сложным, представляющим нашу Вселенную странной и даже абсурдной. Но это только на первый взгляд. Фактически за всем этим скрывается некоторая закономерность. Это новый тип симметрии, который, в отличие от знакомой нам геометрической симметрии (однородность и изотропия), не затрагивает пространство и время. Негеометрические симметрии обычно называют внутренними симметриями. Простой пример внутренней симметрии можно найти в физике частиц: симметрия между протоном и нейтроном. Они очень похожи, но имеют разную массу, электрический заряд, время жизни и т. д. Каждая из частиц может одинаково участвовать в сильных взаимодействиях внутри атомного ядра, и эта похожесть объединяет их в группу под названием «ядерный дублет».

Подобным образом космическая внутренняя симметрия объединяет четыре космических энергии в правильную группу — квартет. Каждый из членов группы обладает постоянной физической характеристикой под названием «фридмановский интеграл». Эта величина имеет размерность длины и была введена Фридманом в его моделях мира. У этой длины истинно космологический размер, сравнимый с расстоянием до космического горизонта — около 10 млрд световых лет. Значения всех четырех интегралов близки по порядку величины. Но поскольку совпадение неточное, то и сама симметрия не строгая, она нарушается. Тем не менее эта группа космических длин выглядит простой и естественной. Так как интегралы постоянны во времени, они дают нам «вечный» рецепт смеси космических энергий, который сохраняется всегда, пока существуют эти четыре энергии в природе; по крайней мере, с первых минут космического расширения.

Внутренняя космическая симметрия придает стройность космической энергетике и наводит на мысль, что существуют глубокие связи между фундаментальными элементами природы. В этой симметрии Вселенная обнаруживает новый порядок и красоту, основные качества, приписываемые нашему космосу первыми космологами Античности.

Глава 26 Активные галактики: послание на радиоволне

На протяжении веков глаз человека оставался важнейшим средством наблюдения. В начале XVII века был изобретен телескоп. Постепенно размер крупнейших телескопов увеличивался, а с изобретением фотографии они позволили наблюдать Вселенную еще дальше. В 1930-х годах этот процесс был в полном разгаре, и вряд ли кто-нибудь мог представить, что кроме дальнейшего усовершенствования обычных телескопов может появиться какое-либо иное средство, способное расширить наши представления о мире.

Детство радиоастрономии

В 1933 году инженер, сотрудник телефонной компании «Белл» Карл Янский изучал трансатлантическую радиотелефонную связь, пытаясь найти источники помех. Он заметил, что радиошумы усиливаются каждый день в один и тот же час. Но через некоторое время он обнаружил, что усиление шума происходит не точно в один и тот же час, а начинается на 4 минуты раньше, чем в предыдущий день. Напомним, что Солнце, по которому мы отсчитываем гражданское, или солнечное, время, в течение года движется среди звезд на восток. Поэтому звезды и галактики каждый день восходят на 4 минуты раньше, чем в предыдущий день. Как раз эти 4 минуты и подсказали, что источник радиошумов должен располагаться вне Земли. Янский понял, что источник шумов находится в Млечном Пути, но продолжить это исследование не мог, так как был занят своей основной работой (рис. 26.1).

Одним из немногих людей, знавших об открытии Янского, был американский инженер и любитель астрономии Гроут Рёбер (рис. 26.2). Во дворе своего дома он соорудил антенну в виде тарелки диаметром 10 метров и начал в свободное время исследовать космический радиошум. Он подтвердил открытие Янского и, кроме того, выявил на небе области наиболее сильного излучения, названные радиоисточниками. Одним из них оказался центр Галактики. Гораздо труднее было отождествить другие источники, которые обычно называли радиозвездами. Спустя годы стало ясно, что радиоисточники не являются звездами; некоторые астрономы поняли это еще в 1940-х годах, когда стало понятно, что радиоизлучение Солнца было бы очень трудно обнаружить, если бы оно находилось на таком же расстоянии, как другие звезды.

Рис. 26.1. Карл Янский (1905–1950) со своей радиоантенной. Источник: NRAO/AUI/NSF.

Рис. 26.2. Гроут Рёбер (1911–2002) провел первые наблюдения радиоисточников. Источник: NRAO/AUI/NSF.

Ученые не знали про антенну Рёбера, но для его соседей в Уитоне (шт. Иллинойс) она стала предметом изумления и пересудов. Большинство считало, что это поливальная установка, так как тарелка собирает дождь, который стекает через дырку в ее основании. Объяснения Рёбера, что он слушает радиошумы из космоса, тогда, в 1937 году, казались фантастикой. Когда Рёбер написал статью о своих открытиях в Astrophysicak Journal, один из издателей журнала сам приехал к нему, чтобы собственными глазами увидеть антенну на заднем дворе. Издателей мучили подозрения, что этот неизвестный инженер просто выдумал историю о космических радиоволнах.

Но это не было выдумкой: настало время исследовать небесные радиоволны. Во время Второй мировой войны антенные технологии сделали огромный шаг вперед, и после войны огромное количество антенн осталось без работы. Астрономы воспользовались этой возможностью, и в конце 1940-х годов родилась радиоастрономия. Кроме Янского и Рёбера нужно отметить еще Мартина Райла (19181984) из Кембриджского университета, который стал одним из первых исследователей в этой новой области науки и получил Нобелевскую премию. Астроном Ян Оорт, о котором мы уже говорили в связи с его исследованиями Галактики, также очень рано понял значение радиоволн как нового инструмента для исследования Вселенной.

Выяснилось, что интенсивность радиоизлучения примерно одинакова на различных частотах — в этом случае говорят о непрерывном спектре. Рёбер считал, что источником излучения служат электроны, которые в ионизованной среде, проходя вблизи атомных ядер, движутся по искривленной траектории. Но наблюдения не подтвердили эту идею: такое «тормозное излучение» действительно имеет непрерывный спектр, но его характерная форма и точка обрезания не соответствуют радионаблюдениям. Райл и Оорт считали, что радиоволны приходят от звезд, которые отличаются от Солнца тем, что по какой-то причине обладают очень мощным радиоизлучением; но и они ошиблись.

Загадка радиошума начала проясняться, когда Карл Кипенхойер (1910–1975) в 1950 году предположил связь между космическими лучами и радиошумами. В том же году Ханнес Альвен (Швеция) и Николаи Херлофсон (Норвегия) предположили, что причиной шума является распространение космических лучей со скоростью, близкой к скорости света. Такое синхротронное излучение наблюдается и в ускорителях частиц, где магнитные поля заставляют заряженные частицы двигаться по кругу. В космосе высокоэнергичные электроны вращаются в магнитных полях, испуская радиоизлучение; в принципе, то же самое происходит при колебании электронов в антенне радиопередатчика (рис. 26.3). Виталий Лазаревич Гинзбург (1916–2009, Нобелевская премия 2003 года) и Иосиф Самуилович Шкловский (1916–1986) были среди тех ученых, кто развил теорию синхротронного излучения.

Рис. 26.3. Электроны, обращаясь вокруг магнитных силовых линий, испускают синхротронное излучение.

Спектральные линии радиоизлучения.

В 1944 году молодой голландский студент Хенк ван де Хюлст (1918–2000) по совету Оорта занялся исследованием того, могут ли быть спектральные линии в радиоизлучении. Спектральные линии доказали свое значение в оптической астрономии, где их используют для изучения движения звезд и галактик, а также и многих других свойств этих объектов. Радиоизлучение со спектральными линиями открыло бы новое окно во Вселенную.

Ван де Хюлст обнаружил, что переход атома водорода между его двумя энергетическими уровнями может привести к излучению на длине волны около 21 см, что попадает в область радиоволн. При этом электрон не прыгает с одной орбиты на другую, а лишь чуть-чуть меняет свое положение. Как уже было сказано, у электрона есть свойство, называемое спином, которое можно представить себе как вращение вокруг оси. Ядро атома водорода — протон — тоже имеет свой спин. Спины протона и электрона могут быть параллельны или антипараллельны; в первом случае атом водорода находится в возбужденном состоянии. Когда из возбужденного состояния атом переходит в свое основное состояние, он излучает фотон, энергия которого равна энергии возбуждения. Поскольку эта энергия очень мала, соответствующая частота излучения низка (1420,4 МГц), а длина волны велика и составляет, если точно, 21,1 см (рис. 26, 4).

Рис. 26.4. Испускание излучения с длиной волны 21 см при переходе атома водорода из возбужденного состояния в основное.

Водород — самый распространенный элемент Вселенной, поэтому нет недостатка в потенциальных излучателях на радиоволне 21 см. Атомы водорода могут переходить в возбужденное состояние при взаимных столкновениях. Примерно через и млн лет это возбуждение «разряжается», и рождается квант с длиной волны 21 см. Несмотря на то что каждый атом излучает так редко, в Галактике настолько много атомов водорода, что вместе они могли бы дать мощный сигнал. Действительно, в 1951 году сигнал был обнаружен в наблюдениях, проведенных в США и Нидерландах. Источником излучения оказались холодные межзвездные облака, на существование которых раннее указывали лишь косвенные данные.

Если оптическая астрономия позволила выяснить распределение звезд в Галактике, то радиоастрономия дала возможность узнать, как распределен в пространстве другой ее важнейший компонент — межзвездный газ. Уже к 1958 году была составлена радиокарта Галактики с четкими признаками ее спиральной структуры. Эту работу проделали Ян Оорт, Фрэнк Керр (1918–2000) и Гарт Вестерхаут. В 1951 году Керр приступил к программе наблюдений южного неба в линии 21 см и начал составлять карту Магеллановых Облаков. Так впервые была зафиксирована радиолиния в спектре другой галактики.

Водород не единственный излучатель спектральных линий в радиодиапазоне. Молекула ОН, состоящая из одного атома водорода и одного атома кислорода, была обнаружена в космосе в 1963 году по ее спектральной линии 18 см. Затем в 1968 году нашли излучение молекул воды и аммиака, после чего поток новых открытий молекул в космосе уже не прекращался. В 1970-е годы по спектральным линиям ежегодно обнаруживали около пяти новых молекул, так что сейчас их число около 150. Тем временем накапливались данные о межзвездных облаках разного типа. Наиболее обильными местами обнаружения молекул в космосе являются молекулярные облака. В них при относительно высокой плотности газа и происходят сложные химические реакции. Молекулярное облако может быть весьма массивным: массивнее чем 100 000 звезд.

Радиогалактики обнаружены.

А что представляют собой радиоисточники за пределами нашей Галактики? В Кембриджском университете и в других местах, особенно в Австралии, составляли списки новых радиоисточников. В Первом Кембриджском каталоге, появившемся в 1950 году, Райл и его коллеги собрали информацию о 50 радиоисточниках. Четыре года спустя появился Второй каталог с 1936 источниками, а Третий каталог 1959 года содержал уже 471 источник. До сих пор самые яркие радиоисточники называют по их номеру в Третьем Кембриджском каталоге (3С). Например, ярчайший радиоисточник в созвездии Лебедь известен под именем 3С 405. Для южного неба такую же работу проделала радиоастрономическая обсерватория в Парксе (Австралия). Кроме того, ярчайшие источники часто называют по имени созвездия, в котором они располагаются: например, 3С 405 имеет второе имя — Лебедь А.

Но составление каталогов и наименование радиоисточников еще не дают нам возможности судить об их природе. С самого начала перед исследователями встали две основные проблемы: первая — низкая точность определения положения источника на небе; вторая — отсутствие у типичных источников спектральных линий, которые можно было бы использовать для определения красного смещения. Нетрудно сфотографировать небо в направлении радиоисточника, но на снимке будет так много разных объектов, близких и далеких, что обычно невозможно определить, который из них является источником радиоизлучения. Поэтому отождествление радиоисточников с оптическими объектами стало особой проблемой, потребовавшей больших усилий для своего решения.

Первый радиоисточник отождествили в Сиднее (Австралия) Джон Болтон с коллегами: радиоисточник Телец А совпал с Крабовидной туманностью — остатком сверхновой 1054 года. Дева А и Кентавр А оказались связаны с довольно близкими к нам галактиками (М87 и NGC 5128). Они стали первыми примерами радиогалактик, мощно излучающих в радиодиапазоне. А затем сюрприз преподнес Лебедь А.

На радиокарте Рёбера источник Лебедь А был пятном настолько большого размера, что любой из тысяч расположенных в этой области неба объектов мог оказаться источником радиоизлучения. Отождествить Лебедь А не удавалось до 1951 года, когда наконец Грехем Смит из Кембриджского университета определил его положение с точностью в 1 минуту дуги (с такой точность Тихо Браге наблюдал невооруженным глазом!). Смит послал координаты Вальтеру Бааде, работавшему в Паломарской обсерватории и имевшему регулярный доступ к новому, крупнейшему тогда в мире, 5-метровому телескопу. Бааде решил в ближайшую же ночь сфотографировать область Лебедя А заодно со своими основными наблюдениями. На следующий день он проявил фотопластинку и начал ее просматривать:

«Как только я взглянул на пластинку, то сразу понял, что там есть что-то необычное. По всему фото были видны галактики общим числом около 200, и самая яркая из них находилась в центре картинки. У нее были заметны приливные возмущения, следы гравитационного притяжения двух ядер. Раньше я не видел ничего подобного. Это настолько заняло все мои мысли, что, возвращаясь на автомобиле вечером домой, я вынужден был остановиться, чтобы подумать».

Затем вдруг блеснула мысль, и Бааде все понял: он стал свидетелем редкого «дорожного происшествия» — столкновения двух галактик. Оценив вероятность такого события как один к ста миллионам, Бааде понял, что он стал первым из людей, увидевших это. Два огромных звездных мира встретились и столкнулись, а радиоизлучение принесло нам весть об этом событии. Вместе с Лайманом Спитцером Бааде опубликовал теорию, которая объясняла большинство радиоисточников как результат столкновения галактик.

Вскоре другой сотрудник Паломарской обсерватории Рудольф Минковский организовал семинар по радиоисточникам, где рассмотрел разные теории их происхождения. Как было принято в то время, Минковский считал, что радиоисточники находятся внутри нашей Галактики, а вовсе не в других галактиках. «Невероятную теорию» Бааде он упомянул лишь мимоходом. После лекции Бааде подошел к Минковскому и сказал: «Ставлю тысячу долларов за то, что Лебедь А — это столкновение галактик». Минковский только что купил дом и не мог позволить себе такой дорогой спор. Поэтому они поспорили на бутылку виски и договорились о том, какие именно наблюдаемые признаки смогут разрешит!» их спор.

Через несколько месяцев Минковский заглянул в кабинет Бааде и спросил: «Какую марку предпочитаете?» Он показал спектр Лебедя А, где четко были видны линии, о которых они договаривались как о свидетельстве столкновения. Эти новые результаты они опубликовали в 1954 году в Astrophysical Journal.

Кто же, в конце концов, оказался прав? Спустя несколько лет теория Бааде стала терять популярность, когда выяснилось, что радиоизлучение исходит не из самих сталкивающихся галактик, а из областей рядом с ними. Однако в последние десятилетия идея сталкивающихся галактик вновь вошла в моду. Правда, сейчас мы понимаем, что радиоизлучение возникает в результате гораздо более сложных процессов, чем могли себе представить Бааде и Спитцер.

Самым важным в спектре Лебедя А было его красное смещение, равное 0,057. Основываясь на нем, Бааде и Минковский вычислили расстояние до этой галактики: при современной шкале расстояний оно получается равным 8оо млн световых лет (250 Мпк). Лебедь А оказался на поразительно большом расстоянии, если учесть, что это второй по яркости радиоисточник на небе. При известном расстоянии легко вычислить, что радиоизлучение этого источника соответствует мощности излучения сотни миллиардов звезд! Это в десять раз превышает мощность излучения всех звезд галактики Лебедь А. В звездах протекают термоядерные реакции; но откуда же берется та загадочная энергия, которая превосходит ядерную в десятки раз?

Лебедь А настолько ярок, что его можно было бы легко заметить с помощью радиотелескопа, даже если бы он был в десять раз дальше. Его радиоизлучение исходит из двух областей, разделенных на небе расстоянием чуть больше одной минуты дуги, а сама галактика лежит как раз посередине между областями излучения (рис. 26.5). Лебедь А — это пример двойного радиоисточника. Его две радиообласти удалены друг от друга на 0,4 млн световых лет. У других двойных радиоисточников расстояние между областями излучения бывает иное. Грандиозный масштаб этого явления связывают с тем, что центральные галактики двойных радиоисточников входят в число самых крупных галактик во Вселенной.

Рис. 26.5. Двойной радиоисточник Лебедь А в направлении созвездия Лебедь. Тонкий джет связывает активное ядро галактики с внешними радиокомпонентами. Карта VLA с разрешения R. А. Perley.

Открытие квазаров

Измерения размеров радиоисточников активизировались в конце 1950-х годов. Группа радиоастрономов из Манчестера специализировалась на источниках малого углового размера, но даже их радиотелескоп не мог разрешить структуру нескольких источников: они выглядели как точки. Одним из этих источников был 3С 48. Его точное положение на небе измерил Томас Мэтьюз, использовав радиотелескоп в долине Оуэнс (Калифорния), и передал координаты в Паломарскую обсерваторию Аллану Сэндиджу. Тот сфотографировал эту область неба и нашел на месте радиоисточника тусклую звезду. В конце 1960 года Сэндидж доложил о своем открытии на съезде Американского астрономического общества. Он пришел к выводу, что это первая реальная радиозвезда в нашей Галактике. При этом он заметил, что это могла бы быть и далекая галактика, но поскольку ее наблюдаемый блеск меняется, гипотеза о том, что это галактика, выглядит невероятной. Действительно, как могут сотни миллиардов звезд изменяться настолько синхронно, чтобы вся галактика становилась ярче или тусклее?

Пока в Америке Сэндидж и Мэтьюз размышляли о природе 3С 48, Сирил Хазард из Манчестерской группы разработал метод очень точного определения положения радиоисточников и вместе со своими австралийскими коллегами применил его. Когда Луна проходит перед радиоисточником, его излучение исчезает, как только край Луны закрывает радиолуч. Движение Луны по небу известно очень точно, следовательно, момент исчезновения радиоисточника, как и момент его последующего появления, позволяют точно определить его положение.

Этим способом определили положение радиоисточника 3С 273 и послали данные в Паломарскую обсерваторию. Мэтьюз обнаружил, что этот источник точно совпадает со звездой в созвездии Дева. Голландский астроном Мартен Шмидт, работавший в Паломарской обсерватории, сфотографировал спектр этой звезды и нашел в нем семь линий. Ни он сам и никто другой в обсерватории не могли сказать, какому элементу принадлежат эти линии. Чтобы выяснить это, Шмидт начал измерять точные длины волн спектральных линий, используя ближайшую бальмеровскую линию водорода как стандарт.

Длина волны первой линии оказалась в 1,16 раза больше, чем длина волны ближайшей бальмеровской линии. Длина волны второй линии тоже была в 1,16 раза больше, чем у следующей бальмеровской линии. И у третьей линии выявилась та же закономерность. Шмидт понял: эти неизвестные линии сами являются бальмеровскими линиями, но все они сдвинуты на 16 % по отношению к обычным длинам волн. Иными словами, красное смещение в спектре источника 3С 273 равнялось z = 0,16. Если обычным образом использовать красное смещение как индикатор расстояния, то получается, что 3С 273 удален на 2400 млн световых лет (в тысячу раз дальше галактики Андромеда!).

Теперь стало ясно, почему так трудно было интерпретировать спектры радиозвезд. У звезд нашей Галактики линии не могут быть сдвинуты так сильно! Никто не предполагал, что смещение линий в этих спектрах может быть таким большим, характерным для далеких галактик. Тем же способом разгадали загадку спектра 3С 48. В этом случае красное смещение оказалось равным z = 0,37, а расстояние около 6000 млн световых лет. Несмотря на такие колоссальные расстояния, 3С 273 и 3С 48 хорошо видны в телескоп. Легко посчитать, что каждая из этих «звезд» светит в сотню раз мощнее крупной галактики.

Вскоре обнаружились новые радиозвезды. Их назвали квазарами (quasi-stellar objects), поскольку выглядят они как звезды, но в действительности эквивалентны миллионам звезд. Кроме того, их блеск часто меняется за короткое время, например от одной ночи к другой. А скорость изменения говорит нам о размере источника. За сутки свет проходит расстояние в одни световые сутки, что составляет около 200 астрономических единиц, или чуть больше размера Солнечной системы. Источник, который становится значительно ярче за одни сутки, не может быть больше этого размера. Ведь чтобы он смог изменить свой блеск всего за сутки, он должен за это время перестроить все излучающие поверхности на новый уровень блеска. А такую перестройку невозможно произвести со скоростью выше скорости света. Если же перестройка происходит медленнее, то квазар может быть существенно меньше Солнечной системы. Таким образом, в квазаре размером не больше Солнечной системы выделяется больше энергии, чем во всей галактике диаметром 100 000 световых лет!

Аллан Сэндидж открыл также множество объектов, похожих на квазары, но не испускающих заметного радиоизлучения. Фактически таких «радиотихих» квазаров примерно в десять раз больше, чем «радиогромких». Сегодня в каталогах числятся десятки тысяч квазаров; на небе их значительно больше, чем видимых звезд, но все они слишком тусклые для невооруженного глаза. А полное число квазаров превышает миллионы.

Проблема красного смещения.

В некоторый момент у вас могло зародиться сомнение: а верна ли вся эта цепочка рассуждений? Что, если расстояния до квазаров определены неправильно? Тогда светимость квазаров не будет такой большой. Расстояния до квазаров вычислены на основании красного смещения линий в их спектрах и с использованием закона Хаббла. А не может ли быть другой причины для появления красного смещения в спектре, кроме сдвига, обусловленного расширением Вселенной?

Чем больше длина волны излучения, тем меньше частота колебаний. А что, если по какой-то причине колебания атомов в квазарах замедляются и поэтому спектральные линии сдвигаются в длинноволновую сторону? В принципе, это возможно, если пространство-время в области излучения сильно искривлено, например вблизи черной дыры. С точки зрения внешнего наблюдателя, в такой области течение времени и частота колебаний кажутся замедленными. Специально проведенные исследования на предмет возникновения красного смещения в сильных гравитационных полях показали, что другие особенности спектра, помимо красного смещения, не согласуются с таким предположением. Затем исследователи обратились к так называемым механизмам аномального красного смещения. В лабораторных опытах такого не наблюдается, но есть гипотеза, что это может быть в необычных условиях квазаров. Впрочем, до сих пор свидетельства этого в целом не выглядят настолько убедительными, чтобы заставить изменить фундаментальную физическую теорию.

И радиогалактики, и квазары выделяют огромную энергию. Сходство между этими двумя классами объектов стало еще более очевидным, когда обнаружилось, что радиоизлучение может исходить с обеих сторон от квазара, в дополнение к излучению самого квазара. Если квазары и радиогалактики наблюдать только в радиодиапазоне, то они очень похожи. У радиогалактик центр, или галактическое ядро, соответствует квазару. Это наводит на мысль, что квазары — это ядра галактик. От обычных ядер галактик они отличаются своим колоссальным блеском: квазары такие яркие, что в их сиянии не видны окружающие звезды. Это удалось прямо подтвердить, зарегистрировав свет, излучаемый звездами самой галактики, внутри которой находится квазар. Одной из первых стала галактика, содержащая квазар 3С 273 (рис. 26.6).

Рис. 26.6. Квазар 3С 273 и его узкий джет длиной 150 000 световых лет на снимке, полученном телескопом NOT на острове Ла-Пальма. Материнская галактика видна как удлиненное образование вокруг яркого ядра. Рядом заметны и другие галактики. Яркое пятно вблизи верхнего левого угла — это звезда нашей Галактики. С разрешения Leo Takalo и Kari Nilsson.

Где источник невероятной мощности квазаров?

Мы можем вычислить полное количество энергии, высвобождаемой ядром галактики в течение активного периода. Обычно это соответствует массе в миллион масс Солнца, если использовать соотношение Эйнштейна между массой и энергией. Это огромное количество, если учесть, что в естественных процессах высвобождается лишь малая доля полной энергии массы. Например, Солнце за всю свою жизнь с помощью ядерных реакций превращает в излучение только 0,1 % своей массы. Чтобы произвести энергию, характерную для ядра активной галактики, гипотетическая сверхзвезда при такой же эффективности в 0,1 % должна была бы иметь массу в миллиард масс Солнца. Но расчеты показывают, что такие сверхзвезды не способны жить настолько долго, чтобы обеспечить наблюдаемое количество квазаров.

Однако более эффективным источником энергии, чем ядерные реакции, может быть потенциальная энергия коллапсирующего небесного тела. Вещество, падающее на поверхность плотного небесного тела, приносит с собой огромное количество энергии: в процессе падения вещество достигает большой скорости, и эта энергия при столкновении вещества с поверхностью тела переходит в другие формы энергии. Некоторая ее часть может перейти в излучение. Вычисления показывают, что в этом процессе в виде излучения может высвобождаться до 10 % энергии покоя массы падающего вещества. Для этого небесное тело должно быть очень плотным — черной дырой или звездой на стадии коллапса в черную дыру. Но до коллапса в черную дыру небесное тело может пройти стадию сверхзвезды. На какое-то время, порядка миллиона лет, сверхзвезда может существовать как быстро вращающееся тело с ядерным горением в ядре. В конце концов оно взрывается, а то, что остается в ее центре, вероятно, коллапсирует в черную дыру. Скорее всего, такие процессы повсеместно происходили в молодой Вселенной, внутри протогалактик, а сегодняшние черные дыры в центрах галактик должны расти за счет аккреции газа и слияния с другими черными дырами.

Согласно современным взглядам, в ядрах галактик находятся сверхмассивные черные дыры с массами от нескольких миллионов до миллиардов масс Солнца. Пока такие черные дыры непосредственно не наблюдались, поэтому их массы точно не измерены. Наилучшее определение массы черной дыры получают из скорости движения звезд вокруг них. Таким способом была определена масса черной дыры в центре нашей Галактики: она оказалась равной 3,7 млн масс Солнца. У крупной галактики М87 в скоплении Дева (Virgo) масса черной дыры в тысячу раз больше, и это обычное значение для масс сверхмассивных черных дыр в квазарах.

Сама черная дыра не излучает, но наблюдаемые в квазарах явления происходят вблизи нее. Черная дыра стремится поглотить газовые облака из своих окрестностей и затянуть их внутрь радиуса Шварцшильда. Большинство газовых облаков не прямо падают в черную дыру, а в течение некоторого времени обращаются вокруг центрального тела. Вращающийся газ образует вокруг черной дыры аккреционный диск, в котором вещество движется в соответствии с законами Кеплера и в то же время постепенно приближается к центру. Когда часть газа достигает внутреннего края аккреционного диска, черная дыра затаскивает его в свою «пасть». Пока неясно, какая часть газа пропадает внутри черной дыры, а какой удается избежать этой участи. Но ясно, что некоторой части газа все же удается убежать от черной дыры, и это проявляется в форме двух противоположно направленных джетов (струй), вытекающих с большой скоростью вдоль оси вращения аккреционного диска. Газ в диске очень горячий и сильно намагничен. Считается, что практически все излучение квазаров так или иначе связано с аккреционным диском. Источником энергии служит гравитационная потенциальная энергия, часть которой прямо превращается в излучение, а некоторая часть высвобождается через джеты.

Размер шварцшильдовского радиуса черной дыры квазара по порядку величины сравним с орбитой планеты во внешней части Солнечной системы. Столь малый размер современные телескопы могли бы разрешить только на расстоянии ближайших звезд. Например, обращающаяся вокруг соседней звезды планета была бы ясно видна, если бы она была достаточно яркой, чтобы заметить ее рядом с гораздо более яркой звездой. Двойные звезды часто бывают разделены таким расстоянием, и все же их можно рассмотреть по отдельности. Но ближайшие звезды расположены на расстояниях несколько световых лет, а расстояния до квазаров составляют миллиарды световых лет. Солнечная система на расстоянии квазаров выглядела бы в миллиарды раз меньше того предела, который доступен современным телескопам. Следовательно, не только сейчас, но и в обозримом будущем прямые наблюдения центров квазаров невозможны. Для изучения сверхмассивных черных дыр в квазарах требуются косвенные методы.

Переменность блеска и высокое разрешение.

Одним из способов исследования процессов внутри квазаров служат наблюдения за их переменностью. Как мы уже знаем, самое короткое характерное время изменения блеска указывает наибольший размер излучающей области. Вскоре после открытия квазаров было установлено, что большинство из них имеет размер в одни световые сутки (200 расстояний от Земли до Солнца). С тех пор за изменением их блеска следят во многих обсерваториях, в том числе и в радиообсерватории Метсяхови Технического университета г. Хельсинки и в обсерватории Туорла университета г. Турку (Финляндия). Эти наблюдения показали даже изменения в течение суток.

Вариации блеска легли в основу теоретической модели странного объекта OJ 287 (рис. 26.7). Судя по всему, этот источник состоит из двух сверхмассивных черных дыр, обращающихся друг вокруг друга. Большая часть излучения связана с аккреционным диском вокруг большей черной дыры и с ближайшей с нему областью. Радиоизлучение генерируется гораздо дальше — в джетах. Орбитальный период черных дыр составляет 9 лет, а их массы равны 0,1 и 18 млрд масс Солнца.

Еще один способ исследования структуры квазаров связан с увеличением угловой разрешающей способности телескопов. Космический телескоп «Хаббл», не страдающий от искажения изображений в атмосфере, достиг разрешения в 0,1". Новое поколение больших оптических телескопов, таких как «Очень большой телескоп» (VLT) Европейской южной обсерватории (ESO) в Чили, смог с поверхности Земли достичь примерно такого же разрешения (хотя обычно наша атмосфера размазывает изображение звезды в пятнышко размером в 1" или даже больше).

Наилучшее разрешение достигнуто сейчас в радиоастрономии. Мы помним, что вначале основной проблемой радиоастрономии было именно низкое угловое разрешение. Впрочем, и сейчас предельное разрешение радиотелескопа с одной тарелкой не превышает 1 минуты дуги. В этом смысле у него нет преимуществ перед человеческим глазом. Но если использовать много радиотелескопов и суммировать их сигналы, то можно добиться прекрасного разрешения. При этом, чем дальше друг от друга располагаются тарелки, тем лучше. Например, если радиотелескоп с 15-метровой тарелкой разрешает два радиоисточника, разделенные на небе углом 300", то система из двух таких телескопов, антенны которых разнесены на 300 х 15 м = 4,5 км, может достичь разрешения в 1".

Рис. 26.7. (а) Модель сильно переменного квазара OJ287, созданная в обсерватории Туорла. Показаны центральная черная дыра, аккреционный диск и черная дыра-спутник. (б) На кривой блеска видны периодические всплески излучения.

В 1972 году в Кембриджском университете группа Райла создала такой радиотелескоп, состоящий из восьми тарелок. Это был первый составной радиотелескоп, давший столь же четкое изображение, как у оптического телескопа. Затем были построены интерферометрические системы MERLIN Манчестерского университета с базой (максимальным расстоянием между антеннами) 217 км и VLA Национальной радиоастрономической обсерватории (NRAO) в Нью-Мексико с базой 36 км.

После этого прогресс ускорился. Даже далекие друг от друга радиотелескопы стали соединять между собой, так что наибольшее расстояние между ними почти достигло диаметра Земли. А поскольку это в 2000 раз превышает расстояние между телескопами кембриджской системы, то и предельное разрешение такой глобальной системы стало менее одной миллисекунды дуги (0,001"). Использование далеко разнесенных телескопов в одной системе называется радиоинтерферометрией со сверхдлинными базами (РСДБ), по-английски: Very Long Baseline Interferometry (VLBI). Для проведения таких наблюдений обсерватории в разных частях мира наводят свои телескопы в одно и то же время на один и тот же источник. Для увеличения разрешения к сети VLBI присоединяются и многие другие радиотелескопы. Например, 14-метровый телескоп в Финляндии часть времени работает как член Европейской системы VLBI. В США есть собственная система VLBA (Very Long Baseline Array, Сеть с очень длинной базой), которая все время занята интерферометрическими наблюдениями. Антенны американской сети VLBA размещены по всей стране — от Гавайских островов и Аляски до самых восточных штатов, включая остров Пуэрто-Рико. А в чилийской высокогорной пустыне Атакама сейчас силами европейских (ESO) и американских (NRAO) астрономов сооружается во многих отношениях самая мощная из подобных систем — ALMA (Atacama Large Millimeter/submillimeter Array, Атакамская большая сеть миллиметрового и субмиллиметрового диапазонов).

Радиоизображения квазаров демонстрируют интересную картину: квазары состоят из центрального точечного ядра, окруженного излучающими облаками, которые время от времени убегают от ядра. Скорость облаков настолько велика, что их движение наблюдается как увеличение углового расстояния от ядра. Это совершенно исключено при наблюдении галактик. Поперечные движения по небу обычно вообще незаметны из-за больших космических расстояний.

Нормальные галактики движутся со скоростью несколько сотен километров в секунду. При наблюдении соседних галактик это приводит к смещению порядка 0,001 секунды дуги в год. Но квазары находятся гораздо дальше соседних галактик, скажем, в 1000 раз. Следовательно, угловая скорость 0,001 "/год, как это определено по наблюдениям VLBI, соответствует пространственной скорости сотни тысяч километров в секунду. Иными словами, скорости во вспышках квазаров близки к скорости света. Нередко наблюдаемые на небе поперечные смещения в квазарах при их пересчете на пространственную скорость дают значения в 3-10 раз больше скорости света, но на самом деле это оптическая иллюзия. Реальные скорости близки к скорости света, но никогда не превосходят ее.

Часто на изображениях квазаров видна светлая полоска, называемая джетом и выходящая прямо из ядра квазара. Вероятно, джет — это траектория вещества, вытекающего из ядра. Во многих случаях существуют продолжение этого короткого джета за пределы активной галактики. Такой длинный джет был обнаружен, например, у Лебедя А (см. рис 26.5). После открытия крупномасштабных джетов у астрофизиков сформировалась общепринятая сейчас точка зрения, что существуют гигантские каналы передачи энергии от ядра к внешним излучающим областям, удаленным на сотни тысяч световых лет. Но в длинных джетах до сих пор не замечено какого-либо движения, за исключением областей, очень близких к ядру (короткий джет), где движение происходит почти со скоростью света.

Мы не знаем, существует ли простая связь между короткими и длинными джетами. Отметим, что представление о длинных джетах как об «энергетических магистралях» сталкивается с проблемами. С учетом неизбежных потерь энергии в таких каналах количество наблюдаемой энергии, выделяемое на внешнем конце джета, порою в миллион раз больше того, которое втекает в короткий джет, и к тому же в миллион раз больше, чем можно ожидать из окрестностей массивной черной дыры. Альтернативное объяснение может быть таким: длинные джеты — это следы, оставленные черными дырами, выброшенными из ядра галактики. Каждая из внешних излучающих областей может содержать собственную черную дыру, вырабатывающую энергию. Тогда не возникает трудностей с потерей энергии, поскольку расстояние ее переноса мало (рис. 26.8). До сих пор нет убедительных свидетельств в пользу той или иной модели.

Рис. 26.8. Модель радиогалактики с выбросом черных дыр, предложенная Маури Валтоненом. Каждая область радиоизлучения содержит выброшенную сверхмассивную черную дыру.

Гравитационные линзы.

В 1979 году сотрудник Манчестерского университета Денис Уолш обнаружил два квазара на расстоянии всего лишь 6 угловых секунд друг от друга (рис. 26.9). Он сообщил эту новость в Национальную обсерватории Кит-Пик (США) Роберту Карсвеллу и Рею Вейману, попросив их изучить спектры этих квазаров. Каково же было их удивление, когда оказалось, что оба спектра совершенно одинаковые: в них имелись одни и те же линии с одинаковой интенсивностью и одинаковым красным смещением. Это было поразительно! Все известные до этого момента квазары отличались своей индивидуальностью: спектр каждого квазара был так же индивидуален, как отпечатки пальцев. Каким же образом эти два квазара Q0957+561А и В оказались близнецами?

Рис. 26.9. Первая гравитационная линза Q0957 + 561 А и В. С разрешения Bill Keel.

Разгадка заключалась в том, что на самом деле это один квазар, но его изображение раздвоилось из-за массивной галактики, лежащей на луче зрения между нами и квазаром. В результате эффекта гравитационной линзы (см. главу 25) свет квазара может доходить до нас разными путями, огибая галактику с двух разных сторон. В случае Q0957+ 561 эти два пути оказались видны на небе под углом 6". Галактики не являются идеальными линзами. Вместо одного изображения они создают два, три или даже больше. В случае Q0957 + 561 эффект гравитационного линзирования подтвердил Алан Стоктон с Гавайских островов, обнаруживший галактику, действующую как линза. Сегодня нам известны и многие другие гравитационные линзы (рис. 26.10).

Рис. 26.10. Знаменитое кратное изображение, созданное гравитационной линзой: «Крест Эйнштейна», открытый в 1984 году Джоном Хакра. Гравитация галактики расщепила изображение далекого квазара на четыре части. Фото: A. Jaunsen и М. Jablonski, телескоп NOT. о. Ла-Пальма.

Для астрономов гравитационная линза — очень полезный инструмент. В главе 25 мы рассказали, как с их помощью обнаруживают темную материю. А в будущем эффект гравитационной линзы поможет находить черные дыры. Одиночная черная дыра действительно почти черная и выдает себя только своей гравитацией. Если она окажется перед далекой звездой или квазаром, то изображение расположенного позади нее объекта увеличится или разделится, и по этому признаку мы заметим эффект линзирования. Полезен этот эффект и для космологии. Например, лучи света, создающие два изображения одного квазара, приходят к нам по разным путям, поэтому и время распространения у них разное: на одном изображении квазар немного моложе, чем на другом. Точное различие времен распространения можно использовать для вычисления общей шкалы расстояний во Вселенной. Определенное таким образом значение постоянной Хаббла согласуется с ее значениями, установленными другими способами.

Квазары и их родственники.

В 1943 году американец Карл Сейферт открыл галактики с яркими ядрами (рис. 26.11). Их спектры свидетельствуют, что эти ядра похожи на миниатюрные квазары. Хотя у сейфертовских галактик ядра ярче, чем у обычных галактик, но, в отличие от настоящих квазаров, они светят все же слабее самих галактик. Поэтому на снимках «сейферты» не похожи на звезды, а выглядят как галактики. Этот промежуточный класс между квазарами и галактиками показывает, что и ядра нормальных галактик обладают потенциальной возможностью проявлять квазароподобную активность. Сейфертовские галактики встречаются довольно часто (2 % от числа спиральных галактик), и поэтому некоторые из них обнаруживаются недалеко от нас, так что их легче изучать, чем квазары. Радиогалактики тоже не редкость: 10 % эллиптических галактик относятся к этой категории. Чем больше мы узнаем про этих родственников квазаров, тем лучше понимаем и сами квазары. Хотя в деталях их механизмы до сих пор неясны, идея о том, что квазары — это «старшие братья» сейфертовских галактик, подтверждается.

Сейфертовские галактики делятся на три типа. Первый тип (сейферт-1) близок к квазарам, тогда как сейферты-3 находятся на другом конце этой классификации и выглядят как обычные галактики, демонстрируя активность ядра только в своих спектрах. Сейферты-1 связаны со спиральными галактиками более раннего типа (обычно Sа), чем сейферты-2 (обычно Sb), которые в свою очередь являются более ранними, чем сейферты-3. Понятия «ранний тип» и «поздний тип» для галактик определяется долей звезд в балдже относительно числа звезд в плоском диске. Чем более ранний тип, тем больше звезд в балдже. Эллиптические галактики, вообще не имеющие диска, оказываются даже более «ранними», чем спиральные галактики класса Sa.

Выяснился очень интересный факт: масса центральной сверхмассивной черной дыры пропорциональна массе сферического балджа. Это объясняет, хотя бы частично, деление сейфертовских галактик на типы: сейферты-3 с небольшим балджем проявляют более слабую активность ядра, чем сейферты-1 раннего типа, поскольку сейферты-1 обладают более крупными черными дырами, чем сейферты-3. Эти рассуждения можно распространить и на квазары: их черные дыры еще крупнее, чем у сейфертов-1 (ведь они ассоциируются с эллиптическими галактиками), поэтому квазары проявляют большую активность ядра. Радиогалактики находятся между сейфертами-1 и квазарами, так как их центральные черные дыры имеют как раз промежуточную массу между черными дырами сейфертов-1 и черными дырами квазаров.

Рис. 26.11. Сейфертовская галактика NGC 7742, сфотографированная космическим телескопом «Хаббл». С разрешения HST/NASA/ESA.


Чтобы центральная сверхмассивная черная дыра стала ярко светить, ей нужна «пища» — в ее окрестностях должен оказаться газ. Нам известны по крайней мере два способа это сделать. Гравитационные приливы, вызванные соседней галактикой, возмущают галактический диск и вызывают мощное течение газа к центральной черной дыре. Это может привести к усилению активности сейфертовских галактик по сравнению с «нормальными» неактивными галактиками. При слиянии галактик, когда большая галактика проглатывает меньшую, центральные черные дыры обеих галактик опускаются к центру новой, объединенной галактики и образуют двойную систему. Эта двойная черная дыра притягивает газ гораздо сильнее, чем одиночная. И в самом деле, в квазарах часто видны признаки слияния в прошлом двух галактик. А в некоторых случаях даже есть свидетельства наличия двойного ядра.

Какова бы ни была причина активности квазаров, ясно одно: в прошлом было гораздо больше квазаров, чем сейчас (поскольку квазаров с большим красным смещение намного больше, чем с малым). Точно так же и ярких радиогалактик в прошлом было больше. При красном смещении z = 0,5 количество квазаров и радиогалактик в 5 раз больше, чем в нашей окрестности Вселенной. При z = 1 это количество в 50 раз, а при z = 3 в 1000 раз больше, чем вблизи нас. При красном смещении 0,5 свет был испущен квазаром и двинулся в нашу сторону 5 млрд лет назад; z = 1 соответствует 8 млрд лет, а z = 3 удалено от нас на 12 млрд лет (предполагая возраст Вселенной равным 14 млрд лет).

Раньше расстояния между галактиками были меньше, чем сейчас. Из-за расширения Вселенной шкала космологических расстояний изменяется обратно пропорционально 1 + z. Поэтому при красном смещении 3 среднее расстояние между галактиками было вчетверо меньше современного. Соответственно и взаимодействие между галактиками было сильнее, и слияния галактик происходили чаще. Считается, что в этом и состоит основная причина высокой активности квазаров при z = 3 и причина ослабления их активности позже.

Если уходить в еще более раннее прошлое, чем эпоха z = 3, то число квазаров и радиогалактик не будет увеличиваться; наоборот — мы увидим все меньше и меньше квазаров. Почему? Согласно современным взглядам, галактики постепенно строились из меньших кусков между красными смещениями z = 30 (соответствует возрасту всего 100 млн лет после Большого взрыва) и z = 3. В этот же период в центрах протогалактик формировались черные дыры, которые к тому же росли при слиянии ранних галактик. И только через 2 млрд лет после Большого взрыва (z = 3) появилось много полностью сформировавшихся галактик с большой центральной черной дырой. Они могли дать жизнь полноценным квазарам. А до этого квазары были редкостью: мы знаем всего несколько квазаров с красным смещением 6 или больше.

Как видим, квазары могли родиться вместе со своими материнскими галактиками и вырасти в их центрах. В следующей главе мы обратимся к последнему вопросу этой части нашей книги: как же возникли сами галактики?

Глава 27 Происхождение галактик

Современные теории происхождения небесных тел отсылают нас в древние времена, о которых мы рассказывали в главе 24. В ту эпоху примерно через 400 000 лет после Большого взрыва, Вселенная была равномерно заполнена водородно-гелиевым газом с температурой 3000 °C. Сегодня, по прошествии 14 млрд лет, мы видим, что повсюду сформировались галактики и что мы живем в одной из них — в нашей Галактике, которую частенько называют просто «Млечный Путь». В ней около 200 млрд звезд и бесчисленное количество газовых облаков разного размера, обращающихся вокруг центра Галактики. Когда мы смотрим вдаль, то видим несметное число других галактик, более или менее похожих на нашу. Сотни миллиардов галактик разбросаны в космическом пространстве, но все их можно разделить на несколько типов. В большинстве своем это эллиптические и спиральные галактики, состоящие в основном из темной материи и некоторого количества звезд и газа. Это означает, что процесс формирования всех галактик имел глубокие корни н в основе своей был единым, протекавшим повсюду во Вселенной. Как могла однородная, лишенная каких-то особенностей среда превратиться в наблюдаемую сегодня сложную систему сверхскоплений, пустот и цепочек?

Распад или рост?

Эволюция структуры, в принципе, может происходить в двух направлениях: либо некий большой объект делится на маленькие кусочки, либо много мелких кусочков собираются вместе и образуют большой объект. В Московском государственном университете Яков Борисович Зельдович (1914–1987) с коллегами разработали сценарий, согласно которому сначала рождались большие структуры, а затем они постепенно делились на более мелкие фрагменты. Этими большими структурами, по их расчетам, были газовые облака, более массивные, чем скопления галактик. Поскольку в процессе коллапса в одном из направлений (случайном!) каждое облако непременно сжималось быстрее, чем в других направлениях, в итоге оно становилось плоским, блинообразным. Затем гигантские «блины» распадались на галактики. Это должно было объяснить, почему даже в наше время многие галактики организованы в плоские структуры. Однако открытие очень далеких галактик, на расстояниях с красным смещением z = 6 и даже ю, то есть в очень ранний период истории Вселенной, противоречит этой теории фрагментации, согласно которой галактики должны были рождаться намного позже.

В своей переписке 1692 года Ньютон и Бентли обсуждали поведение однородного вещества в пространстве под действием гравитации (см. главу 23). По этому поводу Ньютон высказал поразительную идею: «…если бы вещество было равномерно распределено по бесконечному пространству, то оно никогда не смогло бы собраться в одну массу, но часть его сгущалась бы тут, а другая — там, образуя бесконечное число огромных масс, разбросанных на огромных расстояниях друг от друга по всему этому бесконечному пространству. Именно так могли образоваться и Солнце и неподвижные звезды, если предположить, что вещество было светящимся по своей природе».

Как видим, Ньютон описал процесс формирования звезд. Если вещество равномерно распределено по бесконечной Вселенной, то оно неустойчиво: под действием гравитационной силы притяжения из мелких уплотнений — «зародышей» — образуются сгущения. В целом это тот же процесс, который изучают современные астрономы, пытаясь понять происхождение галактик. Общепринятая точка зрения гласит, что первыми рождались мелкие объединения, а затем они собирались вместе и образовывали более крупные структуры. Самые мелкие «кусочки», входящие в гало современных галактик, имеют массы примерно в миллион масс Солнца. Постепенно они объединялись, образуя все б?льшие и большие агрегаты, до тех пор пока не сформировалось все многообразие галактических гало — от карликовых сфероидов с массами несколько миллионов масс Солнца до гигантских гало с массами в несколько триллионов солнечных масс. Эти гало собирали окружающий газ, и со временем некоторая его часть превратилась в звезды. Так образовались видимые галактики. В то же самое время эти галактики, стянутые вместе огромным гало из темной материи, собирались в скопления. По-видимому, карликовые сфероидальные галактики и шаровые звездные скопления являются выжившими остатками той стадии эволюции галактик.

От уплотнений к галактикам.

В конце эпохи доминирования излучения плотность газа была низкой, примерно такой же, какую сегодня мы наблюдаем в разреженных межзвездных газовых облаках. Чтобы из такого вещества могла сформироваться звезда, его следовало уплотнить в десять миллионов раз. Для первичного почти однородного газа достаточно было более умеренного уплотнения, чтобы образовались не звезды, но галактики и их скопления.

Причиной роста уплотнения служит притягивающая сила гравитации. Чем больше размер заполненной веществом области, тем сильнее гравитация относительно других сил. Основным противником гравитации служит внутреннее давление газа, зависящее от его температуры и плотности. Можно вычислить критический размер газового облака, необходимый для того, чтобы оно начало сжиматься под воздействием собственной гравитации: при меньшем размере оно сжиматься не будет, а при большем — будет. Эту критическую массу облака называют массой Джинса, а размер такого облака называют длиной Джинса (этот критический размер прямо пропорционален квадратному корню из температуры газа и обратно пропорционален квадратному корню из его плотности) (рис. 27.1).

Рис. 27.1. Если в газовом облаке размер области с немного повышенной плотностью (область возмущения) меньше длины Джинса, то это не приводит к конденсации газа. Только в том случае, если размер этой области равен или больше длины Джинса, начинается ее сжатие. Иными словами, чтобы плотность продолжала возрастать, масса возмущенной области должна быть равна или больше массы Джинса. Автором этой теории был Джеймс Джинс.


В эпоху доминирования излучения длина Джинса была такой же большой, как космологический горизонт той эпохи, поэтому гравитационное сжатие было невозможно на любых масштабах. Даже чисто интуитивно понятно, насколько трудно создать какую-либо структуру из излучения. Вскоре после окончания эпохи излучения давление газа резко снизилось, и в результате этого масса Джинса уменьшилась до нескольких сотен тысяч солнечных масс. У галактик массы намного больше этого значения, следовательно, формирование галактик стало возможным. Но существовали ли какие-либо первичные уплотнения, «зародыши», которые в дальнейшем могли развиться в нечто такое большое и плотное, как галактики?

Какими должны быть эти зародыши, чтобы за приемлемое время вырасти в галактику? Рост конденсаций происходит примерно в том же темпе, что и расширение Вселенной. Например, возмущение могло иметь контраст в одну тысячную долю, то есть на тысячу атомов мог быть один лишний атом, который мы назовем первичным возмущением. Когда Вселенная расширилась в десять раз, уже было десять дополнительных атомов на тысячу атомов той же конденсации. После стократного расширения Вселенной было уже 100 дополнительных атомов на каждую тысячу (10 %-ное возмущение). Наконец, возмущение достигает 100 % при расширении в 1000 раз, то есть первоначальная тысяча атомов притянула еще тысячу из своих окрестностей. На этой стадии сгущение настолько явно выделяется из окружающего газа, что сжимается в некую структуру за время, пока Вселенная расширяется еще вдвое. Что получится из этого сгущения, зависит от его массы.

После окончания эпохи доминирования излучения Вселенная расширилась примерно в 5000 раз, так что упомянутого выше возмущения в 0,1 % вполне было бы достаточно для начала процесса формирования современных галактик. Но тут нас ожидает конфуз. Как мы уже говорили, при измерении космического фонового излучения наблюдаются небольшие пятна с вариациями температуры. Они говорят нам о реальном уровне зернистости космического газа после окончания эпохи доминирования излучения. Судя по измерениям, эти вариации слишком малы, а значит, газ был слишком однородным для того, чтобы из него смогли образоваться галактики. Тогда откуда же взялись галактики?

Требуется темная материя.

Ответ на этот вопрос, как мы его сегодня понимаем, заключается в том, что решающие возмущения плотности возникли не в обычной, а в темной материи. Она нечувствительна к влиянию излучения, и поэтому ее скучивание могло начаться раньше — еще в эпоху доминирования излучения, когда обычная материя, пронизанная излучением, была упругой и имела слишком большую длину Джинса. Пятна фонового излучения отражают скученность только обычного вещества в эпоху рекомбинации. Но возмущения плотности темного вещества в тот момент уже могли иметь гораздо больший масштаб, примерно 1 % или около того. Следовательно, темная материя конденсировалась в отдельные уплотнения, которые затем стягивали к себе окружающее их обычное вещество. Таким образом, первыми образовавшимися структурами были гало из темной материи. Они и стали основой галактик, которые позже росли в процессе многочисленных слияний разных гало и захваченного ими обычного вещества.

Откуда взялись эти 1 %-ные возмущения? Предполагается, что они возникли в темном веществе довольно рано. Сначала эти уплотнения были похожи на те, которые возникают в звуковых волнах (волны давления), распространяющихся от одного места к другому. Неужели кто-то громко кричал сразу после рождения Вселенной? На самом деле, возможны естественные процессы, возбуждающие звуковые волны. Например, они могли возникнуть в конце эпохи инфляции. Если переход от инфляции к нормальному расширению произошел (согласно принципу неопределенности Гейзенберга) не совсем одновременно повсюду во Вселенной, то быстро расширяющиеся части Вселенной могли сталкиваться с более медленно расширяющимися частями. Это должно было возбуждать волны давления, которые могли дожить до момента, когда темная материя отделилась от излучения (конец эпохи Вайнберга-Салама; см. врезку 24.1); после этого они могли эволюционировать в виде медленно сжимающихся конденсаций.

Согласно одной из идей, первичные возмущения образовались под влиянием космических струн. Струнами называют предполагаемые складки пространственной метрики, где пространство сильно искривлено. Можно представить себе струны как невидимые нити, проходящие по Вселенной, которые можно обнаружить только по их гравитации. До сих пор космические струны не обнаруживались, однако, согласно физическим теориям великого объединения, множество струн могло образоваться в эпоху теорий великого объединения. Через несколько лет после Большого взрыва эти струны постепенно должны были свернуться в простые петли. Затем замкнутые петли должны были стать теми областями пространства, вокруг которых собирались протогалактические возмущения. В конце концов струны должны были сжаться и окончательно исчезнуть, отдав свою энергию гравитационным волнам и частицам. Поэтому нет смысла искать космические струны в современных галактиках: если они действительно запустили процесс образования галактик, то сами должны были исчезнуть еще до того, как галактики сформировались.

Формирование крупномасштабной структуры.

Галактики образуют цепочки и слои, разделенные почти пустыми областями; однако это не свидетельствует в пользу космических струн или космических блинов. Теперь мы знаем, что подобные структуры образуются в расширяющейся Вселенной в ходе естественного скучивания галактик в скопления под влиянием силы тяготения. Невозможно заранее сказать, какие формы создаст гравитация; впервые на это обратил внимание норвежец Сверр Аарсет из Кембриджского университета, проведя с коллегами компьютерное моделирование в 1979 году. Примерно тогда же в Гарварде Хакра, Геллер и другие под впечатлением от карт, представленных Йыэвеером и Эйнасто на совещании в Таллине в 1977 году (см. главу 22), начали большой обзор распределения галактик. Появилась возможность сравнить структуру реальной Вселенной и мира, созданного в компьютере.

Сейчас научные коллективы многих стран используют высокоскоростные компьютеры и сложные вычислительные коды для трехмерного моделирования гравитационного скучивания материи в расширяющейся Вселенной. Расчеты показывают, что гравитация ответственна за формирование галактических структур в масштабах примерно от 1 млн до 200–300 млн световых лет (рис. 27.2).

Рис. 27.2. Галактики распределены в пространстве весьма сложно и неоднородно. Похожую картину дает и компьютерное моделирование. Представленная этой серией рисунков численная модель демонстрирует эволюцию 130 млн частиц темной материи от почти равномерного распределения при красном смещении z — 7,7 до сложного сотообразного распределения в нашу эпоху (z = 0). Сторона каждой картинки равна 200 млн световых лет (60 Мпк). Вычисления проведены на 256-процессорном суперкомпьютере Cray ХТ4 Финского научного вычислительного центра. С любезного разрешения: Нурми П., Ниеми С., Холопайнен Я., Хейнямяки П.


Гравитация способна сделать сложные объекты из простых начальных форм. Уильям Саслау (Вирджиния и Кембридж, Англия) заинтересовался вопросом, что же случится, если первоначальные галактики разбросать по листу бумаги случайным образом (закон Пуассона, см. главу 22). Он обнаружил, что гравитация собирает галактики и способна создать сильно структурированную Вселенную из случайно распределенных единиц. Но для этого нужно время. Если начать с галактик, распределенных в пространстве менее чем за миллиард лет от начала и до сих пор, можно получить почти ту же структуру скоплений, которую мы и наблюдаем на небе.

Много лет назад Иммануил Кант в своей книге «Всеобщая история мира и природы» писал о том, как, по его мнению, простой закон гравитации создает структуры: «…без всякой цели и намерений, упорядоченное целое возникает под руководством установленных законов, целое, так похожее на ту систему мира, которая у нас перед глазами, которой я не могу помешать быть такой». Кант имел в виду очень простую иерархию в стационарной Вселенной, а сегодня мы можем почувствовать почти то же самое, глядя на совпадение реальной Вселенной с ее моделью. В этом сложной теме все еще существуют проблемы, но мы уверены, что гравитация является главным архитектором впечатляющей структуры Вселенной.

Поколения галактик.

Согласно современным взглядам, в течение первых двух миллиардов лет первыми сформировавшимися структурами стали небольшие гало из темной материи с массами, заключенными в промежутке между массами современных крупных шаровых скоплений и маленьких карликовых галактик. Каждое такое гало имело свою центральную сверхмассивную звезду, которая впоследствии взорвалась, оставив после себя черную дыру. При этом взрывы сверхновых производили первые тяжелые элементы, необходимые для формирования нормальных звезд. Галактики первого поколения в основном состояли из темной материи. Лишь позднее стали формироваться обычные звезды. В начале эволюции происходили многочисленные слияния этих маленьких галактик и постепенный рост гигантских галактик.

Рождение первых сверхзвезд может обнаружить себя в фоновом излучении. Дело в том, что излучение сверхзвезды в основном должно иметь синхротронную природу, то есть быть обусловлено движением электронов в весьма однородных магнитных полях, а значит — это излучение должно быть поляризовано. Когда на фоновое излучение накладывается поле фотонов, испущенных звездами, регистрируемое приемником суммарное излучение будет частично поляризованным. Отсюда возникает возможность определить время появления первых галактических гало и родившихся в их центрах сверхзвезд — около 200 млн лет после Большого взрыва. Эта цифра пока еще очень неуверенная, но ее можно будет уточнить с помощью измерений на космической обсерватории «Планк».

Химический состав галактик все это время эволюционировал. Вначале первичный газ состоял из 76 % водорода, 24 % гелия и не содержал тяжелых элементов. Считается, что звезды, сформировавшиеся из этого газа, имели массу около 300 масс Солнца и жили всего несколько миллионов лет, а потом взрывались как сверхновые. Такой чистый водородно-гелиевый газ больше не существует, и процесс звездообразования сдвинулся в сторону звезд меньшей массы, таких как Солнце. Нынешние основные составляющие межзвездного вещества — например углерод, азот, кислород и более тяжелые элементы — образовались в последовательном процессе звездной эволюции. Вначале не могло быть межзвездной пыли и планет, для формирования которых нужны тяжелые элементы.

В галактиках газ конденсируется, образуя звезды, а в конце своего жизненного цикла звезды возвращают часть переработанного вещества в межзвездную среду. Другая часть газа остается в маленьких долгоживущих звездах или остатках звездной эволюции. Этот газ выбывает из круговорота в галактике. Некоторая его часть замещается газом, попадающим в галактику извне, но в целом частота формирования звезд в галактике снижается. Это влияет и на вид галактик: со временем они в среднем становятся краснее, так как доля новорожденных голубых звезд сокращается. Такая эволюция особенно хорошо видна у эллиптических галактик.

Юная Галактика и звездные населения.

Теперь мы детально рассмотрим процессы, происходящие в типичной спиральной звездной системе — в нашей Галактике. Мы полагаем, что наша Галактика прошла тот же эволюционный путь, что и любая типичная галактика. Она сформировалась при слиянии многих гало из темной материи, имеющих суммарную массу около тысячи миллиардов масс Солнца. Общее число объединившихся гало могло исчисляться миллионами; у нас нет надежных свидетельств этого, за исключением нескольких сохранившихся карликовых сфероидальных галактик, располагающихся вблизи нашей Галактики. Газовые облака из обычного вещества падали к центру этого гало и фрагментировали на звезды. Некоторые из этих звезд сохранились в шаровых звездных скоплениях; остальные рассеялись, образовав звездное гало Галактики.

Звезды первого поколения в галактических гало были значительно массивнее тех, которые мы видим на небе сегодня. Вероятно, эти звезды были в 300 раз массивнее Солнца и жили всего несколько миллионов лет. В конце своей жизни эти звезды взрывались как сверхновые. Они производили первые элементы тяжелее гелия и при взрыве смешивали их с окружающим межзвездным газом. Центральная часть сверхновой коллапсировала в черную дыру массой более 100 масс Солнца. Взрыв выдувал весь оставшийся газ из гало темной материи. Таким образом, в каждом гало рождалась только одна звезда, и все они или большинство из них становились черными дырами. Для внешнего наблюдателя результат всей этой ранней эволюции вообще не был похож на галактику. Темная материя была невидимой, черная дыра — тоже, за исключением газового диска, который, возможно, окружал ее. Таким образом, Вселенная выглядела как мир газовых облаков с иногда проплывающими сквозь них черными дырами.

Эволюция продолжалась путем слияния гало. При этом черные дыры из центров гало попадали в общий центр, где они образовывали двойную черную дыру. Еще одно слияние — и новое гало уже имело в своем центре систему из трех черных дыр. По мере слияния все новых и новых гало все больше и больше черных дыр могло бы собраться вместе. Но мы помним про задачу трех тел: как только три черные дыры окажутся рядом, их система становится неустойчивой (см. рис. 11.3). Две черные дыры отбрасывают третью, после чего как одиночная, так и двойная (в результате отдачи) вылетают из центра в результате того, что мы назвали эффектом рогатки. Так начинается Эпоха рогатки, в течение которой именно этот процесс определяет эволюцию; и продолжается до тех пор, пока не сформируются массивные гало и выброс черных дыр не станет не таким частым. Эпоха рогатки заканчивается при красном смещении около z = 6, когда формируются массивные черные дыры в центрах полномасштабных гало галактик. Выброс черных дыр механизмом рогатки должен проходить даже в наши дни, но с гораздо меньшей частотой, поскольку слияния галактик сейчас довольно редки.

А что осталось в нашей Галактике с Эпохи рогатки? Фрагменты тех небольших гало, из которых сложилось массивное гало нашей Галактики, уже перемешались в единое целое. Многие черные дыры, сбежавшие из этих маленьких гало, непрерывно покидали систему, но значительная их часть должна была сохраниться в сформировавшейся Галактике. Они и теперь должны находиться в ней, обращаясь вокруг центра Галактики по вытянутым орбитам, но оставаясь совершенно невидимыми. Чтобы стать видимыми, им нужно иметь газовый диск вокруг себя. Но такой диск постепенно втягивается в черную дыру, и этот процесс «поедания» диска давным-давно должен был закончиться. Сколько осталось этих черных дыр и какая доля массы Галактики заключена в этих остатках звезд первого поколения, до сих пор неизвестно.

Гравитационное линзирование является единственным способом выявления этих невидимок первого поколения. Черная дыра может усилить яркость фонового объекта, например — звезды другой галактики. Поскольку черная дыра и звезда движутся друг относительно друга, эффект линзирования длится недолго: только то время, пока оба эти объекта лежат практически на одной линии с наблюдателем. Этот метод активно использовался для поиска темных тел в гало Галактики, но до сих пор было обнаружено только 17 объектов. Собственное излучение некоторых из них затем удалось зарегистрировать: все они оказались тусклыми холодными звездами, а не массивными черными дырами. Этих маломассивных объектов слишком мало для объяснения полной массы гало.

Газ, из которого сформировались звезды следующего поколения, уже содержал некоторое количество элементов тяжелее гелия, но доля этих элементов в нем все еще была низкой: менее 0,1 % от их содержания в современных газовых облаках. Однако звезды теперь могли формироваться в нормальном диапазоне своих масс: от менее чем 0,5 до более чем 15 масс Солнца. Изменение диапазона масс формирующихся звезд связано с процессом охлаждения газа. Наличия даже небольшого количества тяжелых элементов достаточно, чтобы охлаждение шло более эффективно, чем в чистом водородно-гелиевом газе. Столкновения атомов Н и Не не приводят к рождению фотонов низкой энергии, которые могли бы унести энергию от формирующейся звезды, то есть охладить ее и тем самым стимулировать сжатие. А присутствие более тяжелых элементов делает это возможным. Сформировавшиеся тогда звезды наименьших масс до сих пор эволюционируют на главной последовательности и в большом количестве окружают нас: в основном они населяют сферическую составляющую Галактики и шаровые звездные скопления. Более массивные звезды синтезировали в своих недрах тяжелые элементы — от углерода, азота и кислорода до железа и никеля. Самые массивные звезды взорвались как сверхновые, произведя самые тяжелые элементы — от никеля до урана — и выбросив их в межзвездную среду.

Как отмечалось в главе 24, рождение химических элементов в недрах звезд и момент их взрыва впервые объяснили Фред Хойл и его коллеги в середине 1950-х годов. В эту группу входили Уильям Фаулер, ставший затем лауреатом Нобелевской премии за вклад в эту работу, а также Маргарет и Джеффри Бербиджи.

Каков возраст нашей Галактики?

Отношение обилия наиболее тяжелых изотопов можно использовать для определения возраста нашей Галактики. Например, оба изотопа урана 235 и 238 радиоактивны, время их полураспада составляет 713 и 4510 млн лет. Поскольку 235-й изотоп распадается быстрее 238-го, количество первого относительно второго постоянно снижается. Сейчас их соотношение составляет 0,00723. Экстраполируя в прошлое, находим, что в эпоху образования Солнечной системы 4,6 млрд лет назад это отношение было 0,31. Уже в 1929 году Резерфорд, используя этот метод, пришел к выводу, что Галактика должна была возникнуть на миллиарды лет раньше Солнечной системы.

Каким же было исходное соотношение 235-го и 238-го? В 1957 году канадский астроном Аластер Камерон и Джеффри Бербидж с коллегами впервые вычислили, что взрывы звезд дают на 50 % больше урана-235, чем урана-238. Так что начальное соотношение изотопов было 1,5, но со времени это отношение в межзвездном газе уменьшалось. Взрывы звезд проходили на протяжении всей истории Галактики. Мы можем начать с отношения 0,31 и идти в прошлое, учитывая как рост этого отношения, обусловленный сверхновыми, так и его уменьшение за счет радиоактивного распада. Если частота взрывов сверхновых всегда была такой же, как сегодня, то соотношение изотопов должно достичь своего начального значения за 10 млрд лет до образования Солнечной системы. С другой стороны, если взрывы сверхновых в молодой Вселенной происходили чаще — на что указывают многие признаки, — то начальное значение отношения изотопов урана достигается за более короткое время. В 1980 году, используя этот метод для соотношения изотопов разных элементов, Фаулер определил, что синтез тяжелых элементов начался за 4–8 млрд лет до рождения Солнечной системы. Позже Роже Кейрел (Roger Cayrel) из Обсерватории Париж-Медон с коллегами получил значение 8 ± 3 млрд лет. Это означает, что нашей Галактике около 12,5 млрд лет, и это разумно, поскольку меньше возраста Вселенной, составляющего около 14 млрд лет.

Неопределенность при измерении возраста Галактики методом радиоактивного датирования, к сожалению, очень велика (особенно по сравнению с очень точным радиоактивным датированием минералов на Земле и в Солнечной системе; см. главу 29). Но существуют и другие методы, точность которых выше. Можно использовать время жизни маломассивных звезд главной последовательности для определения возраста шаровых звездных скоплений, которые, по-видимому, являются самыми старыми среди выживших компонентов Галактики. Если изобразить диаграмму Герцшпрунга-Рассела (см. главу 19) для шарового скопления, то обнаружится четкая главная последовательность, резко обрывающаяся в некоторой точке. Последовательность звезд, ведущая к красным гигантам, начинается с конечной точки главной последовательности. Время жизни звезды на главной последовательности почти полностью зависит от ее массы. Например, время жизни звезды главной последовательности с массой 0,8 массы Солнца составляет 14 млрд лет, тогда как звезда с массой 1,1 массы Солнца проведет на главной последовательности только 5,1 млрд лет, а затем начнет эволюционировать к состоянию красного гиганта. Возрасты шаровых скоплений впервые определил этим методом Аллан Сэндидж в 1953 году. В 1970 году он получил средний возраст для четырех шаровых скоплений, равный 11,5 млрд лет, а работа 2003 года Лоуренса Краусса (Lawrence Krauss) и Брайана Шабойе (Brian Chaboyer) дала средний возраст 13,2 ± 1 млрд лет.

Существует и другой метод, использующий белые карлики (рис. 27.3). Эти компактные звезды остывают довольно медленно, поэтому в пределах возраста Галактики их поверхность должна оставаться довольно горячей: ее температура не может опуститься заметно ниже 4000 К. Поэтому нужно найти самый холодный белый карлик, он будет самым старым, и по температуре его поверхности можно вычислить его возраст. В 2002 году Брэд Хансен (Brad Hansen) с коллегами определили возраст шаровых скоплений в 12,7 ± 0,7 млрд лет. В этой же работе было показано, что белые карлики галактического диска значительно моложе, что свидетельствует о более позднем формировании диска внутри гало из темного вещества. В итоге все данные указывают, что возраст Галактики близок к 13 млрд лет, а ее диск постепенно собирался после этого в течение миллиардов лет.

Никогда еще не удавалось обнаружить звезды первого поколения, состоящие из чистого водорода и гелия. Возможно, это означает, что все они были очень массивными и давно уже взорвались. За последние годы было найдено несколько звезд, содержащих очень мало тяжелых элементов; они могли бы быть звездами первого поколения. Чаще обнаруживают звезды, у которых обилие тяжелых элементов составляет 1 % от их обилия у Солнца.

Рис. 27.3. Древние белые карлики возрастом 12–13 млрд лет в шаровом звездном скоплении М4 в созвездии Скорпион. На верхнем снимке показано скопление целиком. На нижнем левом снимке — небольшая область этого скопления, сфотографированная космическим телескопом «Хаббл» (HST). На нижнем правом снимке — снятая с большей экспозицией и увеличенная часть этой области, где видны очень тусклые карлики, отмеченные кружками. С разрешения NASA и Н. Richer (University of British Columbia); NOAO/AURA/NSF.

Традиционно их называют звездами населения II не потому, что они произошли вторыми после первого поколения, а потому, что они были предшественниками «обычных» звезд типа Солнца, принадлежащего нынешнему населению звезд — населению I, которое отделено от звезд населения И, возможно, многими поколениями. Все звезды населения II с массой Солнца или более массивные уже прошли свой эволюционный путь до конца, и только маломассивные звезды населения II до сих пор ярко светят и будут светить еще некоторое время.

Меняющаяся Галактика.

Этот туманный пояс на ночном небе считается символом постоянства, но если мы начинаем считать время миллионами лет, то понимаем, что в нашей звездной системе непрерывно что-то меняется. Диск Галактики содержит звезды разного возраста, а также газовые облака. Новые звезды постоянно рождаются в спиральных рукавах диска — в полосах, закрученных в форме спирали. Считается, что на том расстоянии от центра Галактики, где располагается орбита Солнца, спираль представляет собой волну плотности, распространяющуюся по звездному диску Галактики. Точнее говоря, волна движется вокруг центра Галактики медленнее, чем вокруг него обращаются звезды и газовые облака. Поэтому звезды и газовые облака проходят сквозь волну плотности один раз в 200 млн лет или около того. Звезды, идя сквозь волну, не особенно сильно ощущают ее влияние, зато газовые облака сжимаются волной, и этого сжатия достаточно для начала формирования новых звезд. Именно эти яркие молодые звезды и придают спиральному рукаву его впечатляющий вид.

Поскольку звезды и газ непрерывно обращаются вокруг галактического центра, в спиральной галактике продолжается формирование новых звезд. Но даже в спиральных галактиках частота формирования звезд постепенно снижается из-за уменьшения количества газа. В конце концов газ полностью закончится, и формирование звезд практически остановится.

Теперь мы можем полностью представить историю нашей Галактики. Дело было так: множество маленьких гало из темного вещества объединились и образовали темное гало Галактики. В эту «потенциальную яму» из темной материи стал падать газ из обычного вещества. Уже на ранней стадии его падения сформировалось некоторое количество звезд, и они образовали внешнюю часть звездного гало. Самые массивные из них взрывались и увеличивали долю тяжелых элементов в галактическом газе. Только что обогащенный газ вместе с газом, падающим снаружи, оседает и образует диск в центральной области темного гало. Из газа этого диска формируются новые звезды, и постепенно образуется звездный диск Галактики. Наше Солнце — это одна из тех довольно поздно сформировавшихся звезд диска, которые образовались из первичных легких элементов Большого взрыва и некоторого количества тяжелых элементов, родившихся в результате эволюции нескольких предыдущих поколений звезд. Содержание тяжелых элементов в веществе, окружающем эти звезды, оказалось достаточно высоким для того, чтобы из него сформировались планеты земного типа. И по крайней мере на одной из этих планет возник тот сложный комплекс явлений, который мы называем жизнью.

Наше современное представление о гравитационном формировании галактик и их гигантских скоплений производит глубокое впечатление. Оно вновь заставляет вспомнить слова Канта, который одним из первых пытался осмыслить происхождение планетных систем и природу туманностей. Он предсказывал, что устройство окружающей нас Вселенной скорее будет понято (на основе гравитации), чем происхождение даже простейших живых существ (в пример он приводил гусеницу) удастся объяснить с точки зрения механики.

Конечно, сейчас мы знаем о Вселенной и ее структуре гораздо больше, чем знал Кант, и понимаем, что гравитация — намного более изощренный архитектор, чем можно было предполагать на основе простого ньютоновского закона обратных квадратов. Мы знаем, что доля обычного вещества, из которого состоят звезды, планеты и живые существа, крошечна по сравнению с темным веществом и темной энергией, играющими важную роль в эволюции расширяющейся Вселенной и в формировании галактик, этих гигантских звездных сооружений.

Тем не менее все же мы согласны с Кантом, что жизнь — это более сложное явление, чем даже огромное скопление галактик с тысячами его членов, каждый из которых состоит из 1-100 млрд звезд и планетных систем. В теле человека около 100 триллионов (= 1014) клеток, в каждой из которых примерно столько же атомов. С мыслями об этом мы приступаем к последней части нашей книги, где обсудим происхождение планетных систем и вопросы астробиологии.

ЧАСТЬ IV ЖИЗНЬ ВО ВСЕЛЕННОЙ
Глава 28 Что такое жизнь?

Здесь и сейчас, спустя 14 млрд лет после загадочного рождения Вселенной, во внешней области рядовой галактики, в планетной системе, сформировавшейся 5 млрд лет назад вокруг типичной звезды, мы наблюдаем совершенно особое явление: поверхность одной из планет покрыта биосферой, то есть сложной сетью органических соединений, существующих в водной среде. Эти химические реакции в основном осуществляются за счет энергии, поступающей от звезды, и поддерживают все разнообразие живых существ — от одноклеточных микробов до крупных растений и животных. Они объединены в сложные экологические сообщества с многоступенчатой последовательностью преобразования энергии (пищевая цепь), которая эффективно переносит соединения углерода между окисленным и восстановленным состояниями. В частности, зеленые растения и водоросли путем фотосинтеза, использующего солнечный свет, превращают окисленный углерод (СO2) в восстановленные соединения углерода (сахара), которые используются в том числе и другими организмами в качестве источника химической энергии. Фотосинтез связывает большое количество углерода в органические соединения (биомассу), а дыхание животных и гниение органических веществ возвращает СO2 обратно в воздух. Эти реакции сильно повлияли на содержание двуокиси углерода в атмосфере и таким образом — на климат. В процессе фотосинтеза для восстановления используются протоны из молекул воды (Н2O), при этом атмосфера планеты обеспечивается кислородом.

Жизнь и Вселенная.

Живые существа состоят из вполне обычных химических элементов — кислорода, углерода, водорода, азота, кальция, фосфора и др. (Врезка 12.1). Несмотря на это, жизнь сильно отличается от окружающего ее неодушевленного мира. Она основана на очень сложных химических соединениях, и в ней все время происходят сложные биохимические реакции, которые невозможны в неживой окружающей среде. Таким образом, жизнь стимулирует резкое увеличение порядка в своих структурах по сравнению с простой совокупностью составляющих ее атомов. Иными словами, она уменьшает энтропию в своих системах (Врезка 28.1). Может показаться, что жизнь нарушает второй закон термодинамики. Но это не так. Порядок создается за счет энергии окружающей среды и контролируется обширной внутренней информацией, содержащейся в сложных молекулярных структурах. Между живой системой и ее окружением нет равновесия.

Врезка 28.1. Энтропия.

По собственному опыту мы знаем, что многие вещи постепенно теряют свой налаженный порядок или структуру, а некоторые вообще превращаются в пыль. Второй закон термодинамики утверждает, что если физический процесс протекает без взаимодействия с внешним миром, то в такой замкнутой системе величина, называемая энтропией, всегда увеличивается. Это совсем не похоже на поведение полной энергии, которая в замкнутой системе сохраняется (согласно Первому закону термодинамики).

Энтропия характеризует уровень порядка: чем выше энтропия, тем больше беспорядка, хаоса. Можно также сказать, что энтропия в некоторой степени характеризует число отдельных единиц в системе: то, что вначале было одним целым, стремится к концу разделиться на части и достичь наиболее вероятного состояния. Кроме того, эта тенденция определяет направление стрелы времени в реальной жизни, тогда как в простой механике понятие о направлении времени не существует.

Для того чтобы ощутить рост энтропии, обычно рассматривают сосуд, заполненный газом. Предположим, что начальное состояние было совершенно невероятным: в какой-то момент времени все молекулы оказались на одной поло-вире сосуда, а вторая его половина была совершенно пустая. Очевидно, что после этого момента молекулы будет стремиться заполнить сосуд целиком, распределившись в нем однородно. Такая ситуация наиболее вероятна и соответствует максимальной энтропии.

Заметим, что это естественное стремление к «хаосу» зависит от предположения, что система (сосуд плюс газ) замкнутая. Нетрудно представить себе внешнее воздействие, способное перевести систему из ее «наиболее вероятного» состояния в явно «невероятное». Жизнь — это такое явление, которое, на первый взгляд, нарушает закон возрастания энтропии. Но нужно помнить, что жизнь не может развиваться в изолированном сосуде, а целиком зависит от потока энергии из окружающей среды в живую систему и обратно. Если рассматривать биосферу и окружающую ее космическую среду (включая звезду, излучающую энергию), то энтропия всей этой области, естественно, возрастает.

Жизнь — это не только упорядоченная система, получающая энергию и химические питательные вещества из окружающей среды. Жизнь способна поддерживать себя и воспроизводиться, причем в процессе воспроизводства она обретает новые черты и приспосабливается к новым условиям. Эта способность к адаптации привела к разнообразию видов, к развитию новых качеств, таких как многоклеточность. Появление разнообразных стратегий выживания вызвало возрастание сложности организмов и экосистем. Развитие инстинктов и способности к обучению позвоночных видов усилило их адаптивность и выживаемость в новых экологических нишах. Рост умственных способностей привел к появлению социального поведения, любознательности и коммуникации внутри видов и даже между разными видами.

В нашу эпоху высочайший уровень умственных способностей достигнут родом человеческим. Эти черты проявляются у людей в том, что они расселились по всем пригодным для обитания областям Земли, которую они детально исследовали. Уже составлена перепись большинства других видов и заложены основы клеточной и молекулярной биологии. Этими исследованиями движет любознательность: мы хотим знать, что нас окружает и как это работает. Другой движущей силой служит стремление использовать естественные ресурсы, поэтому за последние несколько веков человечество заметно повлияло на биосферу Земли.

Мы многое узнали о мире и о жизни в том виде, в каком она сейчас существует. Но связь между жизнью и Вселенной все еще не ясна. В каких условиях и как зародилась жизнь? Возникновение жизни — это редкое событие или повсеместное? Имеют ли основные химические элементы живого вещества (С, Н, О, N, Р) врожденную способность к образованию сложных структур, ведущих к зарождению жизни? Должна ли жизнь непременно быть «нашего типа» или она может оказаться совершенно другой? Если пригодные для жизни места есть где-либо еще, то существуют ли там жизнь? Если внеземная жизнь существует, то какая она? Насколько разнообразной и сложной может быть жизнь? Способны ли разные формы жизни общаться друг с другом?

До сих пор мы не обнаружили жизнь где-либо за пределом Земли. Исходя из этого, можно предположить, что жизнь — не очень распространенное явление во Вселенной; но это может быть только отражением нашей неосведомленности, вызванной тем, что мы не способны заметить признаки жизни на больших расстояниях даже в пределах нашей Солнечной системы, и тем более — где-либо еще. С другой стороны, жизнь на Земле возникла довольно быстро, почти сразу же, как только условия для нее стали пригодными. Говорит ли это о том, что жизнь — рядовое явление во Вселенной? Но ведь мы даже не знаем, насколько особыми были начальные условия здесь, на Земле. Поэтому, даже если условия для поддержания жизни широко распространены, мы не знаем, смогла ли зародиться в одном из этих мест жизнь. Найти ответы на эти вопросы должна новая междисциплинарная область науки — астробиология.

Наши представления о жизни меняются.

Животные рождаются, размножаются и умирают. Растения растут и цветут в вегетационный период. Даже крошечные создания — невидимые одноклеточные микробы, способны размножаться в подходящих условиях и заполнить все доступное им жизненное пространство. У неодушевленных предметов нет этих способностей. Раньше считали, что неживой предмет может ожить, если получит «жизненную силу» — vis vitae, а в момент смерти эта сила должна покидать его. Теория «витализма» была широко распространена несколько столетий. Потребовалось сделать множество открытий, прежде чем от нее отказались и стали рассматривать жизнь как особый физико-химический процесс. Разносторонний естествоиспытатель Роберт Гук (см. главы 8 и 10, рис. 28.1) увидел в свой микроскоп клетки растений в 1665 году и впервые для их описания использовал слово «клетка». С того момента до начала полноценных исследований клетки прошло много времени. Шотландский ботаник Роберт Броун (1773–1858) заметил в 1831 году темный объект внутри клетки. Это было ядро.

Рис. 28.1. Микроскоп Роберта Гука; рисунок из его книги «Микрография». Он автор термина «клетка».

Отцами теории клетки считаются немцы Маттиас Шлейден (1804–1881) и Теодор Шванн (1810–1882). Шлейден изучал право и стал адвокатом. Позже он заинтересовался биологией и в 1838 году выдвинул идею, что рост и развитие живых существ обусловлены рождением клеток. Он предугадал, что клетки растут вокруг ядер. В том же году Шванн предположил, что растения и животные обла-дают одной и той же основной единицей — клеткой. Таким образом, он разрушил барьер между миром растений и миром животных. Более поздние исследования показали, что основными частями клетки являются цитоплазма (род жидкости), ядро и огромное количество маленьких органелл.

Немец Оскар Гертвиг в 1876 году описал процесс оплодотворения как слияние сперматозоида с яйцеклеткой. В 1882 году (в этом десятилетии астрономы начали фотографировать туманности) Вальтер Флемминг продемонстрировал первые фотографии деления клетки и ее ядра. После этого клетку стали считать «атомом» жизни — не только структурной, но и операционной единицей. Особо выделенной оказалась роль ядра.

Основные структуры и функции живого.

Жизнь на Земле очень разнообразна: она охватывает диапазон от гигантских секвой и китов до одноклеточных бактерий и от активно самовоспроизводящихся клеток до неподвижных или даже спящих стадий. Но при всем этом разнообразии формы земной жизни имеют в своей основе очень схожие химические структуры и реакции, управляющие их функциями. Клеточные функции даже простейших созданий чрезвычайно сложны и включают в себя множество химических реакций. Мы опишем только те особенности жизни, которые присущи всем ее формам, то есть основные признаки земной жизни. Единообразие этих особенностей указывает, что у них было общее происхождение — последний всеобщий предок (Last Universal Common Ancestor, LUCA) всех форм жизни.

Основная единица жизни — клетка (рис. 28.2). У нее могут быть разные формы, но в большинстве случаев она микроскопическая. Клетку можно рассматривать как мельчайшую фабрику, где постоянно происходит множество сложнейших действий. Клетка окружена полупроницаемой мембраной с «воротами» и «насосами», через которые снаружи в нее поступают питательные вещества и прочие молекулы. Эта мембрана работает и в обратную сторону, выпуская наружу молекулы отходов.

Внутренности клетки заполнены водным раствором — цитоплазмой и множеством различных макромолекул (крупные молекулы, которые фактически заполняют все пространство). В простейших клетках объем, огороженный мембраной, представляет собой единую ячейку.

Рис. 28.2. Два типа клеток. (а) Эукариотическая клетка (содержащая ядро); (б) прокариотическая клетка (без ядра).

У более развитых видов клетка имеет отдельный координационный центр — ядро. Те одноклеточные организмы, у которых нет ядра, называются прокариотами, а те, у которых есть ядро, — эукариотами. Прокариоты делятся на бактерии и археи. Археи (они часто процветают в экстремальных условиях, например при высокой температуре) до 1970-х годов не рассматривались отдельно от бактерий.

К эукариотам относятся многие одноклеточные животные и растения, а также многоклеточные существа (как мы с вами), состоящие из систем клеток. Вместе эукариоты, бактерии и археи образуют три известных домена жизни.

Химия жизни.

Белки — основная рабочая сила и структурный материал клетки. Они имеют различную форму и размер, и каждый из них выполняет в клетке свою задачу.

Некоторые белки формируют основные клеточные структуры, такие как нитевидный цитоскелет — каркас клетки, а также компоненты клеточных стенок и разнообразные «ворота» и «насосы» в клеточной мембране.

Другой важнейшей функцией различных белков является их работа в качестве химических сигналов и регуляция работы других белков. Например, экспрессия каждой единицы наследованной информации (гена) осуществляется через посредничество и под управлением многих других белков, так же как и активация или инактивация продуктов генов.

Среди важнейших задач белков — их работа в качестве ферментативных катализаторов. Эти катализаторы участвуют во всех биохимических реакциях, связывая вступающие в реакцию молекулы (субстраты) и удерживая их вместе в оптимальном положении, так чтобы они могли реагировать легко и эффективно. Присутствие ферментативных катализаторов может повысить скорость реакции на много порядков и заставить реакции протекать эффективно в умеренных условиях и при низкой концентрации вступающих в реакцию веществ, субстратов. Ферменты заботятся также о том, чтобы происходили правильные реакции и тормозились неправильные. Эти катализаторы действительно главные «помощники», необходимые для того, чтобы в клетке протекали биохимические реакции, большая часть которых просто остановилась бы при отсутствии ферментов (рис. 28.3). Пытаясь представить себе самые ранние формы жизни, мы сталкиваемся с проблемой: как они могли осуществлять любую из необходимых для своего размножения и выживания функций, если еще не были способны производить необходимые для этого ферменты?

Живой клетке требуется множество разных белков для осуществления всевозможных структурных, регуляторных и каталитических функций. Человеческая клетка производит более 40 000 разных белков, причем многие из них могут существовать в различных формах (например, активной и неактивной). Но откуда берутся или как производятся белки?

Рис. 28.3. Ферментативный катализ, (а) Фермент-катализатор захватывает реагирующие молекулы (субстраты) и держит их вместе в оптимальном положении, поэтому они могут легко прореагировать и создать продукт. (б) Влияние ферментативного катализа на скорость биохимических реакций в зависимости от времени.

Открытие генетики и ее химические основы.

Австрийский монах Грегор Мендель (1822–1884) проделал основополагающую работу для определения законов и механизмов наследственности. В течение многих лет на монастырском огороде он выращивал горох и детально описал все 10 000 выращенных им растений. При этом он смог проследить в течение нескольких поколений характер наследования некоторых признаков, таких как цвет семян, и нашел закономерности наследования. Он опубликовал свои результаты в 1886 году, но оценить их смогли только после того, как в начале 1900-х годов некоторые закономерности были открыты заново. Мендель выдвинул идею о единице наследственности — сейчас ее называют геном, — которая определяет каждое наследуемое свойство.

Раньше считалось, что гены содержатся в белках, управляющих большинством клеточных функций. О существовании ДНК было известно, но, поскольку в ней только 4 основания, ее структура считалась слишком простой, чтобы кодировать большое количество генетической информации. К ДНК относились как к языку, в алфавите которого всего четыре буквы. Но затем некоторые ученые (Освальд Эйвери, Колин Маклауд и Маклин Маккарти в 1944 году, а также Алфред Херши и Марта Чейз в 1952-м) показали, что генетические свойства все же передаются при помощи ДНК, а не белков. Постепенно стало выясняться, каким огромным потенциалом кодирования обладает ДНК, а ее структуру в виде двойной спирали впервые разгадали Розалинда Франклин, Морис Уилкинс, Джеймс Уотсон и Фрэнсис Крик. Структура была выявлена с помощью рентгеновской дифракционной фотографии ДНК, полученной и расшифрованной Розалиндой Франклин. Сама Розалинда умерла от рака в 1958 году, в возрасте 37 лет, до того, как ее работа получила признание, и раньше, чем ее коллегам дали за эту работу Нобелевскую премию 1962 года.

Генетический код, состоящий из триплетов нуклеотидов, был разгадан в лаборатории Крика в Кембриджском университете и в американских лабораториях М. Ниренберга, X. Г. Кораны и Р. Холли в 1961–1965 годах. Интересно, что принципы кодирующего механизма были правильно предсказаны еще в 1954 году физиком Георгием Гамовым, важнейшие исследования которого в области космологии описаны в главе 24. Было известно, что генетическая информация закодирована последовательностью четырех разных нуклеотидов, и эти нуклеотидные последовательности определяют порядок расположения 20 разных аминокислот в белках. Основываясь на этой информации, Гамов пришел к выводу, что генетический код должен основываться на нуклеотидных триплетах.

Теперь мы знаем, что белки не воспроизводят себя, а синтезируются по инструкциям, хранящимся в виде генетической информации, записанной нуклеотидной последовательностью в геномной ДНК. Для интерпретации этого послания необходима другая нуклеиновая кислота — РНК.

Мы часто слышим термин ДНК, но что это такое? Пожалуйста, посмотрите внимательно на рис. 28.4.

Рис. 28.4. Компоненты нуклеотидов РНК и ДНК.

ДНК и РНК — очень похожие и тесно связанные между собой молекулы. В их названии «НК» означает «нуклеиновая кислота», и это говорит о том, в каком месте клетки обнаруживаются обе эти молекулы — в ядре (nucleus — ядро). В термине «РНК» первая буква Р произносится как «рибо» и относится к сахару рибозе, или циклическому кольцу молекулы сахара, содержащему пять атомов углерода (две нижние правые молекулы на рис. 28.4). В «ДНК» буква Д означает дезоксирибозу, или кольцевую молекулу сахара, содержащую пять атомов углерода и очень похожую на рибозу, только без группы ОН, присоединенной к углероду на позиции 2 (2'-углерод) в кольце рибозы. Оба типа нуклеиновых кислот состоят из нуклеотидов. В нуклеотидах кольцо сахара работает как центральная молекула, которая связывает основание со своим 1'-углеродом. Как видно на рис. 28.4 (два верхних ряда и первая молекула в третьем ряду) основания состоят из циклических соединений азота и углерода. В каждой из нуклеиновых кислот используется четыре различных типа оснований. В ДНК основаниями служат аденин (А), гуанин (G), цитозин (С) и тимин (T). В РНК три основания те же самые, лишь вместо тимина используется урацил (U).

Комбинация из сахара и основания составляет единицу, называемую нуклеозидом. Чтобы образовать нуклеотид, группа фосфата (слева в нижнем ряду на рис. 28.4) соединяется с 5'-углеродом сахара. Как показано слева на рис. 28.5, фосфатные группы связывают соседние нуклеозиды (фосфо-ди-эфирная связь), чтобы создать длинные нуклеотидные цепочки. Фосфат, связанный с 5'-углеродом сахара, всегда присоединен к 3'-углероду предыдущего нуклеотида. Это означает, что цепочка всегда растет в одном направлении: новый нуклеотид может присоединиться только к 3'-положению последнего нуклеотида в цепочке, как показано на рис. 28.5 слева.

На рис. 28.5 справа вы видите нить ДНК без мелких деталей, представленных слева. ДИК состоит из двух антипараллельных копий длинных нуклеотидных цепочек, скрепленных друг с другом подходящими парами комплементарных нуклеотидов. Из-за особенностей трехмерной структуры этих пар оснований они стремятся встать друг над другом таким образом, что завивают параллельные цепочки в правильную спираль. Именно поэтому двойная спираль ДНК выглядит как винтовая лестница, а точнее — закрученная веревочная лестница, у которой две линейные магистрали, состоящие из длинных цепочек сахаров и фосфатов, удерживаются вместе парами комплементарных нуклеотидных оснований. Каждая из цепочек содержит «зеркальную» относительно второй цепочки генетическую информацию, поэтому одна из цепочек (активная) считывается, и ее информация используется для синтеза белка, а вторая цепочка нужна лишь для репликации первой.

Итак, молекула ДНК имеет две магистральные цепи, обвивающие друг друга и образующие знаменитую «двойную спираль».

Основания показаны в виде букв на ступенях этой «лестницы», соединяющих магистрали обеих нитей в единую спираль. Для воспроизводства генетической информации нуклеотидная последовательность ДНК копируется (реплицируется) на параллельную нить, образующую затем с исходной нитью двойную спираль. Интересно, что вторая цепь двойной спирали идет не в том же направлении, что исходная цепь ДНК, и, хотя она состоит из таких же нуклеотидов, их порядок имеет противоположное направление, и располагаются они по принципу дополнительности: А соединяется с T, а G соединяется с С.

Рис. 28.5. Объединение нуклеотидов в нить ДНК (а) и то, как эти нити соединяются в двойную спираль посредством взаимодействия комплементарных оснований (б).

В двойной спирали попарно связанные основания имеют подходящие друг к другу формы своих окончаний, за счет чего обеспечивается однозначная связь А с T и G с С. Поэтому, когда дубликат нити копируется вновь, оригинальная информационная последовательность восстанавливается. Структура двойной спирали очень стабильна и прочна, и поскольку процесс копирования очень точный, генетическая информация надежно сохраняется в ДНК. При копировании ДНК (рис. 28.6) двойная спираль на какое-то время разделяется, и рядом с каждой из родительских цепей строится комплементарная копия; так образуются две дочерние двойные спирали. Одновременно с репликацией ДНК, происходящей в ядре клетки, все содержимое клетки делится пополам, и дочерние ДНК направляются каждая к своей дочерней клетке. Таким образом, каждая дочерняя клетка наследует идентичный ДНК геном. Тем не менее эти клетки могут выполнять разные роли и функционировать по-разному в зависимости от конкретной экспрессии генов, ответственных за развитие клетки. Такая клеточная дифференциация очень распространена в многоклеточных организмах, где одна и та же генетическая информация руководит формированием специфических типов клеток в разных органах (типа кожи или внутренних органов).

Рис. 28.6. Репликация ДНК.

Генетический код и его экспрессия.

Генетический код хранится в нуклеотидной последовательности ДНК в форме следующих один за другим триплетов нуклеотидов, причем каждый из триплетов соответствует определенной аминокислоте. Порядок триплетов, или ген, показывает, в какой последовательности должны объединиться аминокислоты, чтобы сформировать определенный белок. Используя триплеты, составленные из четырех разных нуклеотидов, можно создать всего 43 = 64 разных триплетов — аминокислотных кодонов. Различные триплеты и соответствующие им аминокислоты представлены в табл. 28.1. Три триплета (TAG, ТАА и TGA) зарезервированы для идентификации конца каждого гена; эти триплеты не определяют код никакой аминокислоты. ATG, или стартовый триплет, указывает на начало (хотя он также определяет и код метионина в середине гена). Последовательность триплетов, расположенных между метками начала и остановки, называется открытой рамкой считывания (ORF). При синтезе белков у большинства видов используется 20 различных аминокислот (хотя некоторые бактерии употребляют еще 2 дополнительные аминокислоты). Формулы и химические свойства этих 20 аминокислот приведены на рис. 28.7.

Таблица 28.1. Генетический код: соответствие нуклеотидных триплетов и аминокислот.

Кодировка 20 аминокислот с помощью имеющегося 61 триплета позволяет использовать для каждой из них более одного кода; в самом деле, для большинства аминокислот применяется два или три кода (см. табл. 28.1). Вырожденностъ кода означает, что генетическая информация не очень чувствительна к малым изменениям. Мутации или ошибки считывания могут изменить нуклеотиды в триплетах, но закодированный белок останется тем же.

Рис. 28.7. Структура 20 аминокислот, используемых в синтезе биологических белков. Указан электрический заряд каждой аминокислоты: (+) для положительно заряженных, (-) для отрицательно заряженных, (p) полярные незаряженные, (hp) гидрофобные, (sf) особые формы.

В открытой рамке считывания триплетный код прочитывается, и в соответствии с этой информацией синтезируется соответствующая последовательность аминокислот; этот процесс называют трансляцией (рис. 28.8). Первоначально последовательность гена из ДНК копируется в виде другой нуклеиновой кислоты — матричной РНК, или сокращенно мРНК, после чего в случае эукариот переносится из ядра в цитоплазму, где и происходит процесс трансляции (рис. 28.8). Трансляционный аппарат клетки состоит из больших каталитических комплексов, называемых рибосомами и объединяющих в себе две различные субъединицы. Интересно, что каждая из субчастиц рибосомы в свою очередь состоит из одной, двух или даже трех различных рибосомных РНК (рРНК) и большого числа специализированных рибосомных белков (табл. 28.2). Рибосомы узнают и считывают коды, записанные в нуклеотидной последовательности мРНК, и в соответствующем порядке располагают аминокислоты. Каждую аминокислоту доставляет к месту реакции своя специфическая молекула транспортной РНК (тРНК), как это показано в средней правой части рисунка.

Рис. 28.8. Механизм экспрессии генетического материала.

Таблица 28.2. Количество рибосомных компонентов в эукариотах и прокариотах.

В процессе трансляции аминокислоты связываются друг с другом пептидными связями (рис. 28.9).

Рис. 28.9. Процесс трансляции, связывающий друг с другом две аминокислоты пептидной связью с выделением воды. Карбоксильные и аминные группы заключены в рамки, а переменные боковые цепочки обозначены буквой R.

В пептидных связях карбоксильная группа поступающей аминокислоты связывается с аминогруппой предыдущей аминокислоты. Таким образом, аминокислотная цепь растет линейно, так же как и нуклеиновая кислота. Образованная цепочка аминокислот называется полипептидом. Химические свойства боковых групп аминокислот (их заряд, полярность или электронейтральность) определяют, как они взаимодействуют друг с другом в полипептиде и с окружающим их водным раствором. Положительно и отрицательно заряженные аминокислоты стремятся взаимодействовать друг с другом и связываться вместе, полярные аминокислоты пытаются расположиться на внешней поверхности белковой глобулы, а гидрофобные аминокислоты стараются собраться вместе и перебраться из воды во внутреннюю ее часть. Эти силы взаимодействия заставляют длинную линейную молекулу свернуться в очень специфичную трехмерную структуру, в которой каждая аминокислота расположена точно на своем месте. Эти правильно сложенные белковые продукты могут быть еще модифицированы присоединением к определенным аминокислотам дополнительных молекулярных групп, таких как сахара или остатки фосфорной кислоты, а также связываться с другими белковыми глобулами, причем это могут быть как одинаковые, так и разные белки. Таким образом, окончательные функциональные белковые комплексы рождаются в замечательном процессе, в котором первичная последовательность генов превращается в последовательность аминокислот, сворачивается в аккуратную трехмерную структуру и окончательно превращается в функциональный комплекс.

Генетика и эволюция жизни.

Чарлз Дарвин (1809–1882) был первым, кто ясно понял, что новые виды формируются в результате генетических изменений и что движущая сила эволюции — это естественный отбор. Дарвин только что окончил Кембриджский университет, когда его пригласили участвовать в многолетней экспедиции на корабле «Бигль», отправлявшемся в кругосветное путешествие. Кульминационным моментом экспедиции Дарвина стало посещение Галапагосских островов, где он обнаружил много новых видов, которые были во многом схожи, но явно отличались друг от друга на разных островах. Здесь эволюция видов от общего предка была очевидна. Собранный в ходе путешествия материал был очень богат; потребовалось несколько лет для его изучения и систематизации.

Дарвин держал при себе выводы об эволюции видов, сделанные им на основе собранного материала. Наконец в 1858 году письмо от его друга Альфреда Уоллеса (1823–1913), который в то время был на Малайском архипелаге, заставило Дарвина действовать: в письме Уоллеса содержалось краткое описание теории эволюции. На собрании Линнеевского общества в 1858 году Дарвин сделал общий доклад об открытиях, совершенных им и Уоллесом. Через год Дарвин опубликовал свою книгу «Происхождение видов», в которой он описал основную теорию (свою и Уоллеса): эволюция происходит путем естественного отбора небольших изменений унаследованных свойств. Эти изменения, происходящие от поколения к поколению, представляются нам как эволюция внутри популяции. Эволюция видов обусловлена усовершенствованием программы жизни. Когда существо умирает, программа переходит к следующему поколению, а естественный отбор следит за тем, чтобы существа с наилучшими программами преуспевали и воспроизводились.

Идею превращения одного вида в другой уже высказывали древние греки Анаксимандр и Эмпедокл, а позже об этом же говорил француз Жан Батист Ламарк (1744–1829). Но идея эволюции по Ламарку отличалась от идей Дарвина: Ламарк считал, что особенности, приобретенные существом в течение его жизни, наследуются его потомками. Например, шея жирафа длинная, потому что добывание пищи с веток деревьев немного удлиняло шею каждой особи, и поэтому каждый потомок наследовал шею, которая была немного длиннее, чем у его родителя. Согласно Дарвину, причина длинной шеи совсем другая: длинная шея способствует выживанию животного, поэтому небольшие внутренние изменения в генах в пользу длинной шеи дали предпочтение и были отобраны в течение многих поколений.

Немец Август Вейсман (1834–1914) в 1880-х годах разработал теорию передачи наследственных свойств через репродуктивные клетки — яйцеклетки и сперму. Сначала он был врачом и занимался микроскопическими исследованиями, но его зрение ухудшилось, и это вынудило его заняться теоретической работой. Его теория о том, что свойства каждого вида передаются репродуктивными клетками, дало новую жизнь эволюционной теории Дарвина о естественном отборе. Теория Вейсмана имела и важный социальный аспект: она показала, что моральные качества не передаются по наследству, а приобретаются путем обучения.

Как только Дарвин применил свою теорию к происхождению человека, у него начался конфликт с религиозными кругами. Вероятно, именно по этой причине он затягивал публикацию своей теории. Хотя сам Дарвин не участвовал в диспутах, мнение людей резко разделилось: у него появились сторонники и оппоненты. Говорят, во время дебатов между сторонником Дарвина Томасом Хаксли (устар. Гекели) и Оксфордским епископом Самюэлем Уилберфорсом последний спросил у Гекели, по линии деда или бабки тот ведет свое происхождение от обезьяны. Хаксли парировал, что обезьяну в качестве предка он предпочел бы человеку, который расходует свои способности и влияние на превращение серьезной научной дискуссии в балаган.

Впечатление, которое производит этот знаменитый анекдот, можно уравновесить тем, что ранее писал Уилберфорс в рецензии на книгу Дарвина «Происхождение видов»: он полагал, что научные теории следует оценивать лишь на научной основе и что нельзя отвергать какой-либо вывод только потому, что он кажется вам странным: «Настойчивые размышления Ньютона позволили ему в падении яблока открыть закон, управляющий величественным движением звезд. Если мистер Дарвин сможет так же аргументированно доказать нам наше происхождение от поганок, мы смирим свою гордыню и с характерной для философов скромностью признаем наше неожиданное родство с грибами».

После обсуждения всех известных ему в том далеком 1860 году фактов Уилберфорс заявил, что теория Дарвина, по его мнению, неверна. Но для наших современных спорщиков, у которых эволюция в целом и ее приложение к человеку все еще вызывают сильные эмоции, Уилберфорс оставил послание:

«Мы не симпатизируем тем, кто противится любому, пусть даже подозрительному факту в природе или же любому заключению, логически выведенному из этих фактов, лишь только потому, что, как им кажется, это противоречит учению Библии. Нам представляется, что подобные возражения отдают робостью, которая, в действительности, несовместима с твердой верой».

Основные свойства живого следуют из общности происхождения.

Вспомним, что сущность теории Дарвина состоит в появлении небольших изменений в генетическом материале и, в результате, в организме. В то время механизм этих изменений еще не был известен. Мы уже говорили, что избыточность генетического кода допускает некоторые изменения нуклеотидной последовательности без изменений в кодируемых белковых продуктах. Кроме того, аминокислоты, кодируемые подобными последовательностями, структурно похожи друг на друга. Далее, формирование конечных трехмерных белковых продуктов допускает такие изменения в коде, что созданные белки получаются не идентичными, но похожими и могут выполнять те же функции. Если аминокислота в белке заменена на другую, имеющую похожие химические свойства (тот же заряд или полярность), то в полипептидной цепочке она будет вести себя так же, как исходная, и создавать те же или похожие объемные структуры, которые будут выполнять те же функции. Поскольку именно функция белков является наиболее важным их свойством, которое необходимо сохранить, последовательности могут в некоторой степени изменяться при передаче генов от поколения к поколению, но трехмерная структура и функции генных продуктов (белков) остаются неизменными. На основании неизменных свойств ген, унаследованный от общего предка двумя линиями потомков, может быть признан как родственный (гомологичный) ген этих двух линий, хотя в каждой из них в нем накопился определенный уровень мутаций с момента отхода от общего предка. Так видоизменяются постулаты Дарвина.

Количество мутаций у двух родственных видов напрямую связано со временем, в течение которого они эволюционировали врозь, так что это различие можно использовать для статистических измерений родственных связей между двумя видами. Эти связи удобно изобразить в виде филогенетических деревьев, где ветви представляют родственные связи организмов, а длина ветвей указывает на генетическое расстояние (расхождение) между видами после их разделения. Большинство мутаций либо незначительны, либо вредны, но некоторые действительно способствуют выживанию. Таково современное представление о корневом механизме эволюции.

Все упомянутые выше основные свойства жизни, такие как структура и состав генетического материала, генетический код и 20 аминокислот, используемых во всех белках, а также аппарат трансляции, почти совершенно идентичны у всех видов, живущих сегодня на Земле. Очевидно, эти свойства были приобретены еще на ранних стадиях эволюции и, по-видимому, имелись у последнего общего предка в то время, когда из него выделились три ветви жизни. Связь всех этих форм жизни можно исследовать путем сравнения последовательностей тех РНК (например, 16S РНК), которые участвуют в трансляции — одном из наиболее эволюционно консервативных процессов. На основании последовательности 16S РНК первое филогенетическое дерево построили в 1990 году Карл Вёзе и его коллеги. Это дерево показывает, что сначала две линии прокариотов отделились от популяции последнего общего предка, а затем от них отделились эукариоты (рис. 28.10).

Рис. 28.10. Филогенетическое дерево, основанное на последовательности 16S РНК разных организмов и предполагаемом универсальном общем предке в качестве «ствола».

Заметим, что позже филогенетическое дерево и порядок происхождения трех его ветвей были поставлены под вопрос, так как по другим последовательностям генов были получены другие филогенетические связи между многими организмами. Эти различия можно объяснить тем, что многие гены обменивались между разными видами уже после их разделения по разным филогенетическим линиям, а также тем, что эволюцию разных генов, по-видимому, невозможно сравнивать на больших отрезках времени, поскольку она происходит с разной скоростью.

Кроме упомянутых выше генетических элементов жизни, еще одним вездесущим свойством жизни, берущим свое начало у очень ранних ее форм, является гомохиральностъ «строительных блоков» нуклеиновых кислот и белков. Хиральность — это свойство молекул, имеющих атом (например, углерод) с четырьмя разными связями. Так как эти связи направлены в четыре разных угла тетраэдра, структура молекулы несимметрична, и ее можно построить в двух разных ориентациях, являющихся зеркальными отражениями друг друга. В нашу эпоху связи центрального (а) углерода во всех аминокислотах несимметричны (рис. 28.11), так же как и связи углерода номер 4 в рибозе и дезоксирибозе сахаров (см. рис. 28.4).

Рис. 28.11. Две возможные хиральности аминокислот. R обозначает переменную боковую цепочку.

В искусственно синтезированных аминокислотах и сахарах эти молекулы с углеродными связями, направленными и в ту и в другую сторону, обычно встречаются в равном количестве (поэтому они не гомохиральны). Но все биогенные аминокислоты гомохиральны и имеют ?-углеродные связи в L-конфигурации (L = levo, левый), и все сахара тоже гомохиральны и имеют связи у 4-го углерода в D-конфигурации (D = dextro, правый). Происхождение этой особой гомохиральности до сих пор не получило объяснения. Ясно, что гомохиральность по сути является химическим «диктатором», позволяющим связать мономерные звенья в изящный линейный полимер, тогда как обратная хиральность перегибает структуру, закручивая ее в противоположную сторону. Но непонятно, почему и как жизнь выбрала левые аминокислоты и правые сахара. Пока мы лишь начинаем понимать, почему именно 20 аминокислот используются в белках и почему именно эти четыре разных нуклеотида применяются в ДНК и РНК. Сейчас нам кажется, что это мог быть случайный выбор молекул, которые существовали в древней окружающей среде, и этот «случай» закрепился и стал «правилом». Как бы то ни было, сейчас мы знаем несколько важнейших свойств жизни на Земле. Если мы когда-нибудь найдем жизнь где-то еще, то будет очень интересно узнать, обладает ли она теми же свойствами. Это покажет, имеет ли обнаруженная жизнь то же происхождение, что и наша, или она возникла самостоятельно.

Необходимые для жизни условия.

Хотя жизнь основана на клеточной структуре, генетической информации и ее репликации и эволюции со временем, всего этого еще не достаточно для того, чтобы жизнь могла существовать. Структуры и функции создают жизнеспособную единицу только в той окружающей среде, которая способна ее поддержать. Для всех своих процессов жизнь нуждается в энергии. Практически единственный исходный источник энергии для жизни на Земле — это Солнце. Его энергию используют даже животные, питающиеся растениями, которым для роста нужен солнечный свет. Впрочем, некоторые бактерии и археи живут за счет энергии, добываемой химическим путем из минералов, но эти источники энергии очень ограничены и не могут поддерживать существование биосферы значительного объема. Жизнь также нуждается в питательных веществах — строительном материале для поддержания и воспроизведения своей структуры. Это органические соединения, а также и минеральные, существующие в окружающей среде и циркулирующие между органическими и неорганическими соединениями. А еще жизни нужен растворитель чтобы растворять и переносить все эти химикаты. Здесь на Земле растворителем служит вода, которая к тому же является важным компонентом живых организмов.

Без сомнения, вода — самый подходящий растворитель для всех биохимических реакций. Молекула воды состоит из одного атома кислорода и двух атомов водорода, связанных между собой ковалентными связями; это означает, что общая электронная пара движется вокруг атома кислорода и каждого из атомов водорода (рис. 28.12).

Атом кислорода притягивает электроны сильнее, чем водород, поэтому они располагаются ближе к кислороду. Это приводит к тому, что кислородный конец молекулы имеет небольшой отрицательный заряд, а водородный конец — положительный: молекула воды является электрическим диполем (полярной молекулой). Эта особенность сильно влияет на химические свойства воды. Электрическая полярность молекул воды вызывает слабое электростатическое взаимодействие — водородную связь — между соседними молекулами (см. рис. 28.12); это заставляет воду вести себя как объединенную слабосвязанную сеть. Водородные связи вынуждают молекулы притягивать друг друга, превращая жидкость в немного «липкую», вязкую. Из-за этой «липкости» нужна довольно высокая температура и много тепловой энергии, чтобы испарить воду, перевести ее в газовую форму. Поэтому вода сохраняет жидкое состояние в широком диапазоне температуры. Эта «липкость» препятствует также повышению температуры воды (усилению теплового движения молекул), потому для этого требуется много тепловой энергии. С другой стороны, так же много энергии высвобождается при остывании воды; это делает воду очень хорошим термостатом — и в окружающей среде, и внутри клетки.

Рис. 28.12. Молекулы воды в жидком состоянии (слева) и в составе льда (справа). Водородные связи показаны линиями.

Вода охотно взаимодействует с другими заряженными молекулами; это делает ее очень хорошим растворителем всех ионных соединений из положительно или отрицательно заряженных атомов. Вода растворяет и полярные соединения, когда положительный и отрицательный заряды находятся в одной молекуле, но раздельно (как у воды). С другой стороны, вода не может растворять неполярные молекулы, такие как длинные незаряженные углеводородные цепочки.

Это свойство очень важно для биологии, поскольку оно означает, что эти молекулы «гидрофобны», то есть в водном растворе они стремятся объединиться друг с другом, а не с молекулами воды.

Очень важным типом молекул являются липиды (жиры), К одному концу такой молекулы прикреплена полярная или заряженная группа, делающая этот конец гидрофильным, то есть растворяющимся в воде. А к другому концу прикреплена неполярная группа (например, углеводородная цепочка), превращающая этот конец в гидрофобный. Такие молекулы с двойными свойствами амфифильны: они собираются в водном растворе и образуют двухслойные мембраны (рис. 28.13). Гидрофильные и гидрофобные взаимодействия сильно влияют на образование трехмерной структуры и всех других молекул, включая белки, и помогают им принять правильную функциональную форму.

Из-за притяжения водородных связей и под действием поверхностного натяжения и испарения вода в окружающей среде ведет себя очень хорошо. Благодаря капиллярному эффекту она может двигаться против притяжения, например в сосудистой системе растений, по которой она поднимается до кроны высоких деревьев. Вода движется и по капиллярным каналам почвы, самостоятельно поднимаясь с уровня грунтовых вод к корневой системе растений. Водородные связи влияют и на плотность воды при разной температуре совершенно особым образом. При понижении температуры водородные связи становятся сильнее и короче, так что при температуре +4 °C молекулы воды располагаются наиболее близко друг к другу; при этой температуре вода наиболее плотная. При дальнейшем снижении температуры молекулярная конфигурация начинает меняться в сторону более слабых шестиугольных водородных связей, типичных для кристаллов льда (рис. 28.12), поэтому объем воды начинает увеличиваться. Лед низкой плотности образуется на поверхности воды при температуре 0 °C, а более плотная вода с температурой +4 °C остается на дне водоема. Таким образом, если водоем достаточно глубокий или мороз не слишком сильный, вода с температурой +4 °C может оставаться в жидкой форме под ледяной корой даже в холодный период, что позволяет выжить в глубокой воде и не замерзнуть подо льдом. Это очень важное и очень редкое свойство. Например, аммиак, который, возможно, мог бы быть подходящим альтернативным растворителем для жизни, в твердой форме тяжелее, чем в жидкой.

Рис. 28.13. Липиды, (а) Различные типы липидов: многие липиды состоят из двух гидрофобных углеводородных цепочек и одной полярной боковой группы (ROCH3), связанных с глицериновой основой. Липиды с эфирными связями существуют в мембранах архей, а липиды со сложно-эфирными связями между глицериновыми основами и боковыми цепочками аминокислот существуют в бактериях и эукариотах, (б) Разное строение мембран: амфифильные молекулы, собранные в двухслойную, монослойную и мицеллярную формы.

Это означает, что пруд из аммиака промерзал бы до дна и мог бы все время оставаться замерзшим. Из-за отсутствия водородных связей аммиак существует в жидком состоянии только в очень узком диапазоне температур и при гораздо более низких температурах, чем вода (между -78 °C и -33 °C на уровне моря). При этих температурах все биохимические реакции протекали бы очень медленно. Кроме того, аммиак легко разрушается ультрафиолетовым светом, и его легкий компонент — водород легко улетает в космос. Солнечные ультрафиолетовые лучи разрушают и воду, но эта реакция протекает медленнее и дает кислород (O2) и озон (O3), который блокирует ультрафиолетовое излучение и предотвращает дальнейшее разрушение воды. Поэтому вода существует в большом количестве в атмосферах планет, похожих на Землю, а аммиак — нет.

Основные законы жизни.

Итак, мы узнали, что общим свойством жизни в первую очередь является клеточное строение. Клетка — это ограниченная и выделенная из своего окружения структура, основанная на генетической информации, которая позволяет поддерживать специфический химический состав и сложные структуры и функции внутри клетки. Все клеточные структуры и молекулы сложены из весьма ограниченного ряда химических элементов: в основном это углерод, водород, кислород, азот и фосфор, а также немного серы, кальция, калия и некоторых других элементов. Мы также знаем, что вся жизнь, известная нам здесь, на Земле, структурно и функционально однотипна, то есть основана на одном и том же генетическом материале, едином генетическом коде и механизме его экспрессии, а также на очень схожих основных метаболических реакциях. Однообразие всех форм жизни указывает, что все они происходят от единственной исходной формы жизни — последнего общего предка. Это однообразие всех форм жизни здесь на Земле и создает проблемы при ее описании. Из этого единственного примера жизни мы не можем судить, могла ли она быть другой или же насколько иной она может быть в другом мире. Но мы можем сделать некоторые обоснованные предположения.

Кажется, что любой сложный биохимический процесс должен иметь в своей основе соединения углерода, использовать в качестве растворителя воду, а также свет ближайшей звезды как долговременный источник энергии. Разумно предположить, что принципы воспроизводства и естественного отбора (эволюции) должны быть подходящей движущей силой для поддержания жизни в любом месте. Эти процессы управляются случайными изменениями генетической информации и действием отбора со стороны окружающей среды, которая может сильно отличаться от нашей. Следовательно, результат эволюции другой биосферы в другое время и в другом месте, скорее всего, будет совершенно иным, чем у нас. Формы и функции и даже клеточные структуры и биохимия любой самостоятельной инопланетной жизни могут сильно отличатся от сегодняшней жизни на Земле.

Впрочем, другая жизнь могла бы обладать некоторыми похожими свойствами, которые есть и у нас, если они универсальны. Например, эти инопланетные формы жизни могли бы иметь некоторые средства для сбора световой энергии и преобразования ее в химическую форму. Для этого, скорее всего, будут использоваться сильно поглощающие свет пигменты. Весьма вероятно, что эти существа будут иметь средства для ощущения окружающей среды и передачи сигналов друг другу посредством света, химическим путем или звуками. Возможно, у этих существ выработаются способы передвижения. Подвижность, высокая сложность и средства коммуникации могли позволить создать орудия труда и развить умственные способности. Впрочем, последнее маловероятно, учитывая, что на Земле жизнь в течение почти всей своей истории оставалась очень простой — прокариоты и одноклеточные. Сложная многоклеточная жизнь возникла лишь недавно, так что она может быть очень редка во Вселенной.

Еще глубже в мир биохимии/

После открытия состава и системы кодирования генетического материала наше понимание жизни сильно расширилось. С 1970-х годов новые мощные методы и приборы для клеточной и молекулярной биологии произвели революцию в исследовании ДНК, функций генов, структур белков, а также регулирования и координации различных биохимических реакций в клетке. Примеры последних достижений в молекулярной и клеточной биологии приведены во врезке 28.2.

За последние пять десятилетий эти новые методы и исследования показали нам сложность клетки и молекулярной биологии. Молекулярные взаимодействия и разные регуляторные реакции и саморегулируемые циклы внутри клетки оказались многослойными и хорошо настроенными для реакции на различные внешние и внутренние сигналы. Сложность этих межклеточных молекулярных сетей сейчас может быть проанализирована с помощью компьютерных вычислений, и таким образом мы постепенно начинаем понимать биохимический мир, заключенный в наших клетках, то есть — молекулярные основы жизни.

Врезка 28.2. Современное состояние генетики и молекулярной биологии.

Один из очень эффективных методов молекулярной биологии — использование ферментов эндонуклеаз рестрикции, выделенных из бактерий и архей. Эти ферменты позволяют аккуратно разрезать ДНК на специфические кусочки. Техника клонирования позволила лигировать (вставлять) любой фрагмент ДНК в разные векторы для клонирования (плазмиды или вирусы), способные независимо амплифицироваться (копироваться) в другом хозяине, например бактерии или культивированной клетке животного. Полимеразная цепная реакция (ПЦР), которую в 1983 году придумал Кэри Бэнкс Маллис, очень эффективно амплифицирует последовательности ДНК, используя заранее синтезированные одноцепочечные комплементарные ей фрагменты, прилепляющиеся к специфическим местам исходной ДНК при быстрых колебаниях температуры.

Амплифицированные молекулы ДНК могут быть легко выделены и проанализированы для определения их нуклеотидной последовательности. Изолированные последовательности можно также подвергнуть экспрессии как in vitro, для получения белков с целью структурного или функционального исследования, так и в живой клетке, in vivo, для исследования реальных функций белка, его местонахождения или взаимодействия внутри клетки. Наши возможности перенести ген в интересующие нас организмы, такие как бактерии или растения, позволяют направленно модифицировать эти организмы для улучшения их генетических свойств, Этот генноинженерный подход уже используется во многих областях биотехнологии и, видимо, получит в будущем еще более широкое развитие.

Эффективные методы измерения уровней экспрессии генов (например, при использовании проб гомологичных нуклеиновых кислот) позволяют исследовать экспрессию интересующих нас генов при различных состояниях клетки и выяснить, как разные гены регулируют развитие и дифференциацию многоклеточных растений и животных. С помощью автоматизированных методов установления последовательности ДНК можно определить огромное количество геномных последовательностей. Уже сейчас определены сложные геномные последовательности многих прокариотических и эукариотических организмов.

Было обнаружено (см. таблицу ниже), что размеры геномов варьируют в очень широком диапазоне.

Таблица. Размеры геномов и их кодирующие части у организмов разного типа.

У самой маленькой самостоятельно размножающейся бактерии (Mycoplasma genitalium) геном состоит из 580 000 нуклеотидов и содержит около 470 генов. В геноме маленького животного, например нематоды Caenorhabditis elegans, около 100 x 106 нуклеотидов и около 20 000 генов. У человека 3400 x 106 нуклеотидов и 32 000 генов; у полиплоидных растений, например пшеницы, 17 000 x 106 нуклеотидов и 60 000 генов; а у амебы более 670 000 x 106 нуклеотидов, что является самым большим геномом среди всех известных форм жизни. Генетические последовательности продемонстрировали большие вариации в размерах и сложности геномов, а также позволили судить о схожести геномов родственных видов. Оказалось, что разница между человеком и шимпанзе составляет 1 % в последовательности ДНК.

Создание банков данных о последовательностях очень большого количества генов позволяет проводить систематические исследования экспрессионных профилей разных РНК или продуктов генов внутри клетки. Это же дает возможность изучать их молекулярные взаимодействия и регуляторные отношения. В системной биологии эти цели достигаются автоматизированным и компьютерным способом. Миниатюрные молекулярные датчики (микрочипы с большим набором разнообразных ДНК) используются для одновременного тестирования многих тысяч клеточных видов РНК. Этим методом в реальном времени можно анализировать изменения экспрессии РНК при разных внешних условиях (таких, например, как стресс или фактор роста) для выяснения влияния этих факторов на экспрессию гена. Подобным же образом можно провести анализ общих профилей клеточного белка или метаболита в разных условиях, чтобы посмотреть, как клетки реагируют на эти условия.

Глава 29 Происхождение Земли и Луны

Мы уже рассказывали, как Homo sapiens шаг за шагом открывал для себя просторы Вселенной, изобретая методы измерения расстояний и определения свойств небесных тел. Наряду с глубиной пространства перед нами открываются и глубины времени. Нам нелегко представить гигантские космические расстояния. Не менее сложно для нашего разума осмыслить и ту огромную длительность времени, которая потребовалась для рождения Земли (и, конечно, нашей Галактики). Нам трудно вообразить существование чего-то более краткого, чем десятая доля секунды; а что-то более длительное, чем возраст наших бабушек и дедушек, вообще выходит за рамки нормального мышления. Мы вынуждены использовать различные косвенные методы, чтобы представить себе столь длительные отрезки времени, как миллионы и даже миллиарды лет.

Первые оценки возраста Земли.

Знаменитое определение возраста Земли сделал в 1654 году ирландский епископ и ученый Джеймс Ашшер, воспользовавшись для этого Библией. Начав от рождения Христа и используя жизнеописания библейских персонажей, он двигался в глубь времени и пришел к выводу, что Вселенная и Земля были сотворены за 4004 лет до Рождества Христова. Такие библейские определения возраста Земли (использовавшиеся задолго до Ашшера) считались обоснованными вплоть до XIX века, пока геологи, палеонтолога, астрономы и физики не представили свидетельства более адекватной шкалы времени.

В 1779 году француз Жорж Луи Леклерк де Бюффон (1707–1788) подверг сомнению результаты Ашшера. Он утверждал, что найденные к тому времени окаменелости успели бы сформироваться только в том случае, если возраст Земли составляет не менее 75 000 лет. Это радикальное предположение стало первым геологическим определением возраста Земли. При этом оно весьма неплохо совпадало с оценкой Исаака Ньютона, предположившего в своих «Началах» (1687), что возраст Земли должен составлять 50 000 лет. Эту оценку он получил, опираясь на время охлаждения железной сферы, размер которой он экстраполировал к размеру Земли. Граф Бюффон провел подобные эксперименты со сферами различного размера.

Вскоре шотландский геолог Джеймс Хаттон (рис. 29.1) выдвинул новую идею. Он предположил, что древние события можно понять, изучив современные процессы, такие как накопление песка на берегу или выбросы лавы и пепла при извержении вулканов: если их интенсивность не меняется со временем, их можно использовать дня изучения геологических слоев и горных пород. Свои идеи Хаттон опубликовал в 1788 году в книге «Теория Земли». Он утверждал, что геологические слои формируются в течение долгого времени, что противоречило господствовавшей тогда теории катастроф, согласно которой геологические структуры сформировались почти мгновенно в ходе библейского Всемирного потопа.

Рис. 29.1. Джеймс Хаттон (1726–1797), основатель современной геологии: медленные процессы сформировали геологические структуры.

Шотландец Чарлз Лайель (1797–1875) учился в Оксфорде. Его книга «Основы геологии» (в трех томах, изданных в 1830–1833 годах) получила такое признание, что теория катастроф начала терять популярность. Он подчеркивал, что действующие сейчас физические законы работали и в прошлом и что геологические процессы всегда происходили так же и с той же скоростью, что и сегодня. Теперь-то мы знаем, что это не совсем так: некоторые процессы сильно менялись в прошлом.

Далее, под впечатлением работы Лайеля, Чарлз Дарвин обратил внимание на новый аспект в споре о возрасте, рассмотрев эволюцию от простейших организмов до человека. По его оценкам, геологические процессы должны были продолжаться 300 млн лет, и этого времени — как он полагал — достаточно и для эволюции жизни. Ирландский геохимик Джон Джоли в 1899 году получил для возраста Земли примерно такой же результат — 90 млн лет. Он основывался на вычислении времени, необходимого для того, чтобы океан стал соленым, вбирая в себя всю соль из речной воды. Он не вполне справедливо предполагал, что ежегодный принос соли не меняется и что океан не теряет соль. Итак, к началу XX столетия казалось, что геологический возраст Земли составляет 100 млн лет или немного больше.

Третьим способом оценки возраста Земли стало физическое определение возраста. В 1862 году Уильям Томсон, известный также как лорд Кельвин, пересмотрел оценку графа Бюффона и вычислил, сколько времени потребуется земному шару, чтобы остыть от температуры 1000 °C до 15 °C. Для этого Кельвин использовал теорию теплопроводности Джозефа Фурье (сам Фурье фактически пришел к такому же результату, но не осмелился опубликовать столь радикальный для того времени вывод). У Кельвина получился возраст Земли 98 млн лет. Подозревая, что в расчетах могут быть ошибки, он заявил, что диапазон возраста Земли составляет от 20 до 400 млн лет. Если бы недра Земли ничем не подогревались, эта оценка была бы обоснованной.

Поскольку Солнце и Земля, скорее всего, формировались вместе, их возрасты должны быть сравнимыми. Но это совершенно разные тела, поэтому для определения их возрастов требуются совершенно разные методы. В качестве первой оценки можно вычислить, что если бы Солнце состояло из углерода, который горит в кислороде, то при современной мощности излучения Солнца оно бы полностью сгорело всего лишь за 10 000 лет. Сегодня очевидно, что источником энергии Солнца не могут быть химические реакции.

Лорд Кельвин рассмотрел возможность того, что источником солнечной энергии, которую мы получаем сейчас, служит тепло, выделившееся при сжатии вещества Солнца в период его формирования, а также небольшое количество тепла, выделяющееся ныне при падении на Солнце метеоритов (их кинетическая энергия преобразуется в тепло). По его оценкам, Солнце не могло за счет этого светить 100 млн лет и, тем более, 500 млн лет. Он также оценил, что Солнце остынет примерно через миллион лет, что было весьма неприятно. Эти цифры дали и верхний предел для возраста Земли, совпадающий с независимыми оценками Кельвина.

Кельвин указывал, что его оценка в 100 млн лет для Солнца противоречит оценке Дарвина в 300 млн лет для Земли. Дарвин уступил и согласился, что подсчеты Кельвина могут быть верны. Однако вскоре конфликт между их оценками углубился: оказалось, что Кельвин переоценил возрасты Земли и Солнца. Его новые вычисления дали 20 млн лет как для Солнца, так и для Земли. При этом предполагалось, что внутренних источников энергии нет, а Земля остыла из расплавленного состояния, когда у нее была максимальная температура. Время остывания до нынешнего состояния дало максимальное значение возраста.

Конфликт длительности остывания с длительностью осадконакопления и разрешение этого спора с помощью радиоактивности.

Вначале последовательность геологических событий определялась по ископаемым остаткам растений и животных. Конкретный тип смеси окаменелостей в слое земли определяет его геологическую эпоху. Границы между разными слоями довольно резкие. Часто можно измерить различные отложения тем же способом, каким определяют возраст дерева, — по кольцам. Таким методом была измерена длительность каждой эпохи — по толщине осадочных слоев. Согласование этих слоев и их границ позволяет выстроить последовательность геологических эпох. Можно измерить современную скорость отложения осадков на дне моря в сантиметрах за год. Затем можно сложить толщину осадков всех известных геологических эпох и, разделив ее на толщину годичного отложения, и определить возраст осадочных пород Земли.

Одновременно с оценками Кельвина, профессор зоологии Оксфордского университета Эдвард Паултон, основываясь на современной скорости отложения осадков, пришел к выводу, что после кембрийского периода прошло около 400 млн лет. А для начала кембрийского периода геолог Джон Гудчайлд получил потрясающую оценку в 700 млн лет. Очевидно, что Земля и Солнце должны быть старше. Так возникло противоречие между возрастом в десятки миллионов лет, о котором говорили физики и биологи, и возрастом в сотни миллионов лет, определенным геологами.

Все эти оценки возрастов были кардинально пересмотрены после создания методов радиохронологии. Эрнест Резерфорд (открывший атомное ядро, см. главу 16) и Фредерик Содди в 1902 году измерили, сколько тепла дает радиоактивное излучение, то есть сколько энергии выделяется из одного грамма радиоактивного вещества. Результат оказался поразительным: один грамм радия дает более чем в тысячу раз больше энергии, чем химическое сгорание одного грамма углерода. Эта идея рождала верное направление мысли, но определенный этим способом возраст вступал в противоречие с мнением лорда Кельвина. В 1904 году Резерфорд выступал с докладом в Королевском институте. В аудитории он заметил Кельвина:

«Я понял, что у меня проблемы с последней частью моего доклада, посвященной возрасту Земли… К моему облегчению, Кельвин часто дремал, но когда я подошел к важному месту, то увидел, что старый ворон сидит, открыв глаза, и смотрит на меня злобным взглядом! Вдруг я почувствовал вдохновение и сказал, что лорд Кельвин ограничил возраст Земли при том лишь условии, что никакие новые источники энергии не будут открыты. И его пророческие слова относились именно к тому, что мы сегодня обсуждаем, — к радию! И вот старик уже приветливо улыбается мне».

Молодой физик утверждал, что Солнце может просуществовать значительно более 20 млн лет, возможно, даже миллиард лет и что Землю не ждет скорая смерть из-за того, что, по мнению Кельвина, Солнце начнет тускнеть. На следующий день газетные заголовки кричали: «День Страшного суда откладывается!»

Оказалось, что радиоактивность может увести нас еще дальше вглубь времен. Рассказывают, что Резерфорд как-то шел по университету с камнем в руке. Он столкнулся с геологом и спросил его: «Адамс, сколько лет Земле?» Тот ответил, что, по измерениям разными методами, около 100 млн лет. К его удивлению, Резерфорд сказал: «Возраст этого камня 700 млн лет». Он только что определил возраст камня, используя скорость распада урана. В 1907 году Бертран Болтвуд измерил возраст различных горных пород и получил значения от 400 до 2200 млн лет. Позже датировка геологических пластов была усовершенствована, и ошибка уменьшилась до 1 млн лет. Мы знаем, что возраст Солнечной системы составляет 4,567 ± 0,001 млрд лет и что Земля примерно того же возраста. В табл. 29.1 приведены скорости полураспада некоторых радиоактивных изотопов, а во врезке 29.1 даны примеры радиоактивного датирования.

Таблица 29.1. Изотопы, используемые при датировке минералов.

Врезка 29.1. Примеры радиоактивного датирования.

Как пример методов радиохронологии рассмотрим изотоп калия с атомным весом 40 единиц (4°К). Этот изотоп распадается на 89 % кальция и 11 % аргона! вес каждого из которых тоже составляет 40. Один из этих двух элементов — аргон, инертный газ, который может сохраняться в горных породах. Но если порода расплавится, газ выходит наружу. Отношение изотопов аргон-40 и калий-40 указывает, сколько времени горная порода находилась в твердом состоянии. Можно сказать, что эти часы начинают тикать с того момента, как порода последний раз застыла, ведь до этого аргон из нее свободно выходил, так что перед затвердеванием породы его там практически не было. Со временем доля изотопа аргона возрастает, и через 1200 млн лет уже собирается 11 % аргона относительно изотопа калия (это временя полураспада калия-40). Измерив в образце отношение аргона-40 и калия-40, мы определим его возраст.

Есть еще один интересный пример. Рассмотрим кристаллический минерал циркон из элемента цирконий (Zr). Кристалл циркона чрезвычайно устойчив: он выживает в условиях выветривания и даже при частичном плавлении пород в земной мантии. Самая распространенная форма циркона ZrSi04. При кристаллизации обычно возникает небольшая примесь, в результате которой менее чем в 1 % случаев атомы циркония замещаются атомами урана (USiO4) или тория ThSiO4). Это возможно потому, что ядра U и Th по размеру такие же, как ядра Zr. С другой стороны, свинец (Pb) не может входить в состав кристалла просто потому, что он слишком велик, поэтому в момент формирования в кристалле нет свинца, но вместе с большим количеством циркония есть небольшое количество урана и тория. С течением времени атомы U и Th испытывают радиоактивный распад. Атомы 235U распадаются на 207Pb с временем полураспада 703,8 млн лет, а 238U распадается на 206Pb с временем полураспада 4,468 млрд лет. Теперь мы можем оценить возраст кристалла циркона, просто подсчитав, сколько атомов 235U превратилось в 207Pb и сколько — в 206Pb. Если половина 238U превратилась в 206Pb, то возраст кристалла равен времени полураспада, в нашем случае 4,468 млрд лет. Возраст может быть определен и у других минералов, содержащих уран. На практике оценку возраста лучше делать построением изохрон, линий одного и того же возраста, вычислив Зависимость отношения 206Pb/238U к отношению 207Pb/235U. Чтобы быть уверенным, что внешнее загрязнение U и Pb не повлияло на результат.

Открытие движения тектонических плит.

Нам трудно уразуметь, что «неподвижные» звезды меняют свое положение на небе в течение тысяч лет. Точно так же трудно представить, что твердые камни под нашими ногами движутся и меняют свои очертания. Движение звезд на небе и гор с континентами противоречит нашей интуиции, поскольку мы привыкли относиться к ним как к точкам отсчета для всего, что движется быстрее, например, планеты, приливы и воздушные потоки. Огромные возрасты, полученные радиохронологическим методом, заставили по-новому взглянуть на процессы, происходящие в Земле, для которых дли-на человеческой жизни — всего лишь миг. Соответствие береговых линий восточной части Южной Америки и западной части Африки озадачило географов сразу же после создания первых достаточно точных карт этих материков. Тогда это обычно объясняли тем, что Атлантический океан представляет собой широкий каньон и средняя часть единого континента туда провалилась. Французский географ Антонио Снайдер-Пеллегрини в 1858 году предположил, что Южная Америка и Африка раскололись и разошлись на современное расстояние. Его смелая теория в точности соответствовала библейскому контексту. На пятый день творения все континенты были единой сушей. На шестой день творения появились длинные разломы. Извержение вулканических газов раздвинуло континенты. В это же время Земля сжалась, и моря залили континенты, вызвав гигантский потоп (рис. 29.2).

Рис. 29.2. Антонио Снайдер-Пеллегрини (1802–1885) нарисовал первую карту, демонстрирующую движение континентов.

Для геологов такое объяснение не имело никакого смысла. Через пятьдесят лет, когда опять был поднят вопрос о движении континентов, подмоченная репутация Снайдера вызвала отрицательную реакцию на новую теорию. В 1910 году американец Ф. Э. Тейлор предположил, что образование горных цепей обусловлено движениями континентов. По его мнению, Гималаи образовались из-за того, что Евразийский континент двигался к югу и столкнулся с Индийским субконтинентом.

Обычно отцом тектонических движений считается Альфред Вегенер (1880–1930). Немецкий ученый был поражен схожестью окаменелостей на обоих берегах Атлантики и в 1912 году предположил, что 200 млн лет назад, в мезозойскую эру, все континенты образовывали единый суперконтинент Пангею, окруженную океаном Панталасса (рис. 29.3 и 29.4). Суперконтинент раскололся на части, и современные континенты начали расходиться. Свою идею Вегенер опубликовал в 1915 году в книге «Происхождение континентов и океанов». В пользу этой теории он приводил несколько аргументов.

1. Земная кора бывает двух типов: более легкая образует континенты, а более плотная — дно океанов. Континенты плавают в океанской коре и даже скользят по ней, если возникает боковая сила.

2. Береговые линии Южной Америки и Африки совпадают. Если учитывать мелководный континентальный шельф, то это совпадение усиливается. В этом случае даже Северная Америка и Европа тоже совпадают (см. рис. 29.3).

3. Если их совместить, то легко заметить, что и геологические структуры так точно совпадают, что совершенно очевидно, что континенты раскололись и разошлись.

Рис. 29.3. Единый сурперконтинент Пангея 225 млн лет назад, окруженный океаном Панталасса. Показано совпадение береговых линий и границ континентального шельфа. Читатель легко узнает Северную Америку, Южную Америку, Евразию и Африку. Попробуйте найти Антарктиду, Индию и Австралию.

4. Окаменелости на обеих сторонах Атлантического океана тоже совпадают, что свидетельствует: эти части суши были когда-то связаны (рис. 29.4).

5. Геологические свойства говорят о том, что континенты перемещались по разным климатическим зонам: в высоких широтах можно обнаружить залежи угля, хотя сформироваться они могли только у экватора. В то же время у экватора можно обнаружить признаки полярных ледяных шапок.

Рис. 29.4. Часть единого суперконтинента Пангея. Карта показывает совпадение однотипных ископаемых остатков на современных континентах.

Вегенер не мог указать, что служит причиной движения континентов. Это и сдерживало признание его теории. Даже в 1948 году известный американский геолог утверждал, что «теория движения континентов — это фикция, это захватывающая идея, вводящая наше воображение в заблуждение». Но вскоре после этого теория Вегенера получила мощную поддержку от результатов изучения двух предметов:

1) магнитных свойств коренных и осадочных морских пород (палеомагнетизм);

2) топографии (деталей поверхности) морского дна.

Мы еще вернемся к современным взглядам на движения континентов и их физическое значение, но сначала опишем, как сформировались Солнечная система и Земля.

Происхождение Земли как части Солнечной системы: современный взгляд.

Наше Солнце, планеты и малые тела Солнечной системы сформировались в обширном газовом облаке. Та часть облака, где это произошло, была очень холодной: около -260 °C. С астрономической точки зрения, облако было плотным (около миллиона атомов в кубическом сантиметре), непрозрачным и выглядело совершенно черным. Такие облака существуют в космосе и сегодня. В основном это газовое облако состояло из водорода и гелия с примесью около 1 % более тяжелых элементов. Некоторая часть вещества была в виде льда и минеральной пыли, например кристаллов оливина, графита, очень мелких алмазов и других минералов. Облако сжималось и при этом сплющивалось и ускоряло свое вращение, как балерина в пируэте, из-за сохранения углового момента (см. главу 15). Постепенно сформировался протопланетный диск, температура и плотность которого возрастали в направлении центра. Это как раз то место, где образовалось Солнце. В экваториальной плоскости диск тоже стал плотным, и там начали формироваться планеты.

Вблизи Протосолнца протопланетный диск был горячее, чем во внешних областях. К тому времени, когда большая часть пыли осела к экваториальной плоскости диска, температура на расстоянии будущей орбиты Земли повысилась до 700 °C. Когда горячее вещество протопланетного диска стало остывать, многие минералы начали кристаллизироваться. В зависимости от начальных условий, таких как температура и скорость остывания, образовывались различные типы кристаллов. Их до сих пор находят в метеоритах. Самое древнее вещество Солнечной системы обнаружено в углистых хондритах. Эти метеориты содержат очень древнее вещество двух типов: углеродные хондрулы — маленькие черные сфероидальные частицы; а второй тип — это кальциево-алюминиевые включения, которые бледнее и немного больше хондрул (вплоть до 1 мм).

Возрасты измеряют по изотопам различных элементов. Возраст метеоритов определяется по отношению изотопов U и Pb, изотопов Al и Mg и изотопов Rb и Sr. Соотношение изотопов Al/Mg дает относительный возраст, говорящий об истории протопланетного облака. Например, по распаду короткоживущего изотопа 27Al можно определить, что разные хондрулы в метеорите образовались в одно и то же время, с точностью до 1 млн лет. Изотопы Rb/Sr также показывают относительный возраст молодой протопланетной туманности, но чаще их используют для исследования относительных возрастов индивидуальных метеоритов. Изотопы U/Pb дают абсолютный возраст, поскольку количество родительских и дочерних изотопов можно прямо измерить. Определив возрасты нескольких хондрул из метеорита, можно сказать, когда сформировался этот метеорит. Абсолютный возраст, полученный по углеродным хондрулам древних метеоритов, составляет 4,567 ± 0,001 млрд лет. Сейчас это наиболее точное значение возраста Солнечной системы.

Характерное время формирования планет было довольно коротким. Нужно помнить, что 50 млн лет — это всего лишь 1 % от возраста Солнечной системы. Как мы далее увидим, образование планетной системы было почти мгновенным, по крайней мере, в астрономическом и геологическом смыслах. Хотя еще не все детали изучены, но считается, что в целом формирование планет происходило так.

Частицы пыли начали слипаться в экваториальной плоскости протопланетного аккреционного диска. Эти конгломераты в течение нескольких тысяч лет выросли в большие рыхлые пылевые комья размером до 1 км. Двигаясь по орбитам внутри протопланетного диска, они собирали все больше пыли и сталкивались с другими подобными им комьями. Их гравитация усиливалась и делала их более компактными, освобождая таким образом пространство. Когда размер этих планетезималей достиг примерно 800 км, их собственное тяготение стало таким сильным, что они приняли сферическую форму. Это превращение не было внезапным, а происходило постепенно по мере роста тела. Примерно в это же время планета достаточно увеличилась, чтобы своим тяготением начать собирать из окружающего пространства пыль и газ и от этого расти еще быстрее.

На расстоянии современной орбиты Юпитера температура протопланетного диска настолько низкая, что лед остается замерзшим. Это означает, что там было больше твердого вещества для образования планеты. Юпитер продолжал расти и достиг массы в 30 раз большей, чем у Земли. При этом он обрел новое качество: формирующаяся планета стала настолько массивной, что ее тяготение способно было удерживать даже самые летучие элементы — водород и гелий. С ростом массы гигантская планета сгребает все вещество из окрестностей своей орбиты. Пыль, лед, камни и газ — все это увеличивает ее массу, пока не очистится пространство вдоль ее орбиты. От начала слипания пылинок и до окончания роста планеты проходит около 30 млн лет. То же самое, но медленнее, происходило и при формировании трех других планет-гигантов — Сатурна, Урана и Нептуна. А за орбитой Нептуна еще сохранилось оставшееся от образования планет вещество: пыль, астероиды, кометы и объекты пояса Койпера («плутоиды») размером до 1000 км.

Пока планеты росли и формировались, температура в центре Протосолнца продолжала повышаться. Когда она достигла примерно 4 млн градусов, начались ядерные реакции, и родилось Солнце. Определить точную дату этого события трудно. Возможно, оно произошло через несколько миллионов лет после оседания пыли к плоскости аккреционного диска. Мощное излучение Солнца, особенно сильное в ультрафиолетовом диапазоне, как у всех звезд типа T Тельца, а также солнечный ветер, представляющий быстрый поток вылетающих из Солнца частиц, очистили от остатков газа Солнечную систему.

Молодая Земля и происхождение Луны.

По мере роста Земли она все реже сталкивалась со своими конкурентами, но все же несколько раз испытала весьма сильные столкновения с телами крупного размера. Земля почти полностью сформировалась всего через 50 млн лет после того, как ее исходное вещество (пыль) осело к экваториальной плоскости протопланетного диска. На этой стадии она уже собрала 95 % своей массы, но редкие сильные столкновения еще происходили. В результате одного из таких столкновений, как мы полагаем, возникла Луна.

До полетов «Аполлонов» обсуждалось несколько теорий происхождения Луны. Еще в 1909 году американский астроном со сложной и неоднозначной биографией Томас Си (Thomas J. J. See) предположил, что Луна была захвачена Землей. Другую теорию выдвинул в 1878 году Джордж Дарвин, сын Чарлза Дарвина. Он считал, что Луна оторвалась от расплавленной Земли в результате ее быстрого вращения. В 1892 году священник Осмонд Фишер предположил, что следы этого события сохранились в виде Тихого и Атлантического океанов. Но позже тщательные расчеты Ф. Р. Мультона и X. Джефриса показали, что с точки зрения физики эта теория неверна (хотя она сохранялась в учебниках до 1960-х годов). Согласно третьей теории, оба тела — Земля и Луна — сформировались в протопланетном диске в одно и то же время практически в одном и том же месте. Эту теорию развил в 1943–1946 годах академик Отго Юльевич Шмидт, а затем разрабатывали Виктор Сергеевич Сафронов и Евгения Леонидовна Рускол, которая и сейчас продолжает эту работу в Институте физики Земли имени О. Ю. Шмидта.

Полеты «Аполлонов» в начале 1970-х годов изменили взгляды на происхождение Луны, поскольку астронавты доставили образцы ее вещества. К всеобщему удивлению, породы из темных лунных морей оказались похожи на земные базальты, а из более светлых материковых областей — на земные анортозиты. Напомним, что анортозиты — это горные породы, преимущественно состоящие из одного из подвидов полевого шпата — плагиоклаза, наиболее часто встречающегося в земной коре. Большинство других лунных минералов тоже оказались похожими на те, которые встречаются в земной коре. Средняя плотность Луны равна 3,3 г/см3, что совпадает с плотностью океанской коры Земли. Это указывает, что Луна не может иметь большое и плотное железо-никелевое ядро, какое есть у Земли. Это подтверждается и отсутствием у Луны магнитного поля. В лучшем случае, железное ядро может составлять четверть массы Луны, тогда как в железном ядре Земли заключена половина массы планеты. Это указывает, что формирование Луны не могло происходить независимо от формирования Земли.

На этих фактах развилась новая теория, предполагающая, что Луна образовалась при почти касательном столкновении Протоземли с телом в десять раз менее массивным, размером с Марс (рис. 29.5). Столкновение было таким сильным, что оба тела расплавились, их ядра в конце концов слились, а выброшенное при ударе вещество частично упало обратно на Землю, а частично оказалось на орбите вокруг Земли и, собравшись вместе, образовало Луну. Совершенно очевидно, что это столкновение испарило любую атмосферу, которая могла сформироваться до столкновения. Лунные образцы показывают, что столкновение могло произойти 4,527 ± 0,010 млрд лет назад, то есть через 40 млн лет после начала формирования Земли.

Происходили и другие мощные столкновения. Хотя древняя атмосфера, вероятно, сначала была довольно толстой, ее разрушали неоднократные удары и окончательно уничтожил «последний сорвавший атмосферу удар». При этом он, похоже, расплавил и часть Земли.

Время этого столкновения измеряется по отношению изотопов благородных газов, таких как 129Хе и 130Хе (изотоп 129Хе образуется при распаде 129I, а 130Хе стабилен). Этот удар случился 4,45 млрд лет назад, через 120 млн лет после того, как из осевшей к экваториальной плоскости протопланетного диска пыли начала формироваться Земля, и через 80 млн лет после удара, приведшего к образованию Луны.

Рис. 29.5. Схема, иллюстрирующая гипотезу рождения Луны в результате гигантского столкновения. Эту идею впервые опубликовали в 1975 году Уильям Хартман и Дональд Дэвис, а также независимо от них разработали Аластер Камерон (1925–2005) и Уильям Уод.

Описанные выше столкновения должны были происходить с объектами, двигавшимися по орбитам, близким к орбите Земли. Но в следующие примерно 800 млн лет во внутреннюю область Солнечной системы стало попадать огромное количество комет и астероидов, многие из которых сталкивались с Землей и Луной. Эту интенсивную бомбардировку производили малые тела, которые случайно сближались с планетами-гигантами, и те своим притяжением изменяли орбиты малых тел, направляя примерно половину из них во внутреннюю область Солнечной системы, а вторую половину выбрасывая за ее пределы. Эта очистительная акция, в основном произведенная Юпитером, повысила интенсивность столкновений в древности, но зато снизила ее в последующие эпохи, обеспечив благоприятную эволюцию для Земли и жизни на ней.

Эволюция Земли и соответствующие шкалы времени.

Трудно представить, как выглядела молодая Земля. Главные причины в ее высокой геологической активности, мощной эрозии и циклической переработке земной коры. Описанные выше методы радиохронологии в последнее время были усовершенствованы, и теперь с поразительной точностью можно датировать самые ранние процессы в эволюции Земли. Сейчас точность датировки геологических эпох составляет 1 млн лет и даже лучше на протяжении всей истории Земли. В табл. 29.2 представлена геологическая шкала времени (заметим, что два или более периодов составляют эру, а две или более эры — зон).

Таблица 29.2. Геохронологическая шкала (в миллионах лет).

Вспомним наше описание радиохронологического метода, использующего очень прочные кристаллы циркона (врезка 29.1). Самый старый на Земле кристалл циркона, возраст которого 4,2 млрд лет, был найден в области Джек-Хиллс в Западной Австралии, но он был в породах, уже претерпевших метаморфозы. Циркон сформировался еще до того, как эти породы частично расплавились и подверглись переработке. Древнейшие коренные породы возрастом 3,9 млрд лет обнаружены в Западной Гренландии. А в Южной Африке и Западной Австралии есть коренные породы возрастом 3,5 млрд лет. Большая часть континентов значительно моложе миллиарда лет, а возраст глубоководного дна океанов нигде не превышает 250 млн лет. Все это означает, что если вы хотите исследовать Землю в эпоху ее молодости, то количество мест, откуда можно взять геологические образцы, весьма ограничено. Как уже говорилось, датирование важных событий прошлого, основанное на соотношениях изотопов, дает нам очень надежную систему измерения. Комбинируя данные по метеоритам, астрономическим туманностям, динамическим исследованиям Земли и изотопным исследованиям земных минералов, мы получаем приведенную ниже картину.

Начиная с момента формирования протопланетного диска, примерно 4,5б7 млрд лет назад, тело Земли быстро растет. Вещество было уже горячим, его температура составляла 750 °C. Когда радиус Земли достиг 1000 км, вещество в ее недрах начало расслаиваться. Железо и более тяжелые элементы утонули и образовали ядро, а кремний и более легкие элементы устроились ближе к поверхности. Земля собирала и газы, часть из которых сформировала протоатмосферу, возможно, состоящую из Н2, НO2, СO2, СО и N2. Часть этой атмосферы тут же улетучивалась, а часть была сорвана во время сильных столкновений. Но значительная часть газов проникла внутрь Земли, например в виде воды, связанной в гидратированных минералах. Энергия, выделявшаяся в процессе формирования, задерживалась водяным паром — очень эффективным парниковым газом. Поэтому поверхность молодой Земли была горячей, около 1700 °C, и вся покрыта океаном магмы из расплавленных горных пород.

Земля остывала за счет инфракрасного теплового излучения. Примерно через 250 млн лет в некоторых местах поверхности, где температура опустилась до 550 °C, жидкий океан лавы начал твердеть. Сформировалась тонкая твердая кора, которую время от времени пробивали астероиды и кометы. Земля остывала. Когда температура упала примерно до 250 °C, начался долгий дождь. Образовался первый океан, покрывший всю поверхность. Поскольку вода из атмосферы переместилась в океан, парниковый эффект ослаб и давление атмосферы существенно уменьшилось. Условия на Земле сильно изменились. Давление воздуха снизилось раз в десять, и температура сильно упала. Оставшаяся у Земли атмосфера теперь в основном состояла из азота (N2) и двуокиси углерода (СO2). Таким мы видим процесс формирования Земли.

Движение плит.

Земля продолжала остывать, начали рождаться вулканы, некоторые из них поднялись над поверхностью воды. Горячая базальтовая лава выливалась из вулканов, смешивалась с водой и образовывала минералы, содержащие связанную воду, такие как серпентин. Росли скальные образования. В некоторых местах они становились слишком высокими, тонкая кора не выдерживала их веса, и они проваливались в мантию. Там они частично плавились при относительно невысоких давлениях и температурах, в результате более легкие породы, чем базальтовое основание, отделялись от базальта. Эти породы низкой плотности начинали «плавать» по океану, постепенно превращаясь в континенты. Первые свидетельства об океанах и возможных континентах были получены по цирконам из Джек-Хиллс, и возраст их составляет 4,2 млрд лет, они возникли всего через 400 млн лет после формирования нашей планеты.

Скорость эрозии этих молодых континентов, вероятно, была очень высокой, может быть, в миллион раз выше современной из-за высоких температур и высокого парциального давления СO2. Эрозия силикатных пород оказалась весьма эффективной для удаления двуокиси углерода из атмосферы и перемещения ее в мантию. Кальций выделялся из Са-силикатов земной коры в результате эрозии и переносился в море. Благодаря высокому парциальному давлению СO2 в море карбонаты осаждались и, следовательно, содержание СO2 в атмосфере уменьшалось. В зонах субдукции (похожих на современное тихоокеанское побережье Северной и Южной Америк) эти отложения опускались в мантию. Но позже двуокись углерода возвращалась в атмосферу при извержении вулканов. Континенты росли, и в какой-то момент начались тектонические движения. Пусковым механизмом для них мог стать подъем горячих конвективных ячеек из мантии или приливные силы близкой Луны и раскол земной коры.

В последние годы было надежно доказано и измерено движение тектонических плит, которое происходит с характерной скоростью «сантиметры в год». Например, Атлантический океан расширяется со скоростью от 2,2 см/год (Северная Атлантика) до 3,5 см/год (Южная Атлантика). На юго-востоке Тихого океана платформа Наска удаляется от Тихоокеанской платформы с рекордной скоростью 15 см/год, образуя новое океанское дно из базальта. Наряду с расширением океанского дна происходят и другие движения. В Калифорнии Тихоокеанская плита скользит вдоль края Североамериканской плиты со скоростью 5 см/год. В Индонезии Австралийская плита подныривает под Евразийскую плиту (около 6 см/год). Более легкие по составу, континенты, можно сказать, плавают в более плотных породах морского дна. Все это означает, что вещество морского дна гораздо моложе континентов.

В некоторых местах плиты сталкиваются. Эти области сейсмически активны. Если сталкиваются два континента, то они образуют высокие горы (Гималаи, Альпы). Там не наблюдается высокой вулканической активности. Горы появятся и в областях субдукции, где морское дно погружается под континентальную плиту. В этом случае прежнее морское дно частично плавится в мантии и обретает положительную плавучесть; так постепенно образуются вулканические цепи, такие как Малые Антильские острова в Карибском море или Огненное кольцо, окружающее Тихий океан и включающее Анды, Сьерра-Неваду и Каскадные горы.

Строение Земли.

Мы не можем «увидеть» недра Земли, но, к счастью, существует естественный инструмент для изучения ее строения, сейсмические волны. Они возникают при землетрясениях и регистрируются сейсмическими станциями, расположенными во многих местах Земли. На рис. 29.6 показана Земля в разрезе: ее три основных составляющих — кора, мантия и ядро.

Кора (0-40 км) — самая внешняя часть твердой Земли. Над корой расположены гидросфера, биосфера и атмосфера. В основном кора состоит из силикатов и обогащена элементами Si, Al, K и Na. Она очень тонкая, всего 10 км под океанами, но под континентами ее толщина может достигать 40–50 км. Океанская кора немного плотнее, чем континентальная, из-за того, что она обогащена Fe и Mg-силикатами.

Рис. 29.6. Внутреннее строение Земли.


Мантия (40-2890 км) делится на верхнюю и нижнюю мантию. В мантии происходит конвективное движение горных пород и минералов: холодные части тонут, а горячие всплывают.

Что касается тектоники, то верхняя часть мантии лишь частично расплавлена: ее верхние примерно 100 км почти твердые. Эту ее часть вместе с корой называют литосферой. Толщина литосферы может доходить до 200 км под старыми континентами, а под океанами она тянется в глубину всего на несколько десятков километров. Литосфера «плавает» на более «пластичном», но не жидком слое — астеносфере.

Ядро (2890–6370 км) в основном состоит из железа и никеля. Внешнее ядро на глубинах 2890–5150 км жидкое, а внутреннее радиусом примерно 1220 км твердое из-за очень высокого давления. Интересное совпадение: температура в центре Земли такая же, как в фотосфере, то есть на видимой поверхности Солнца, — около 5500 К.

Конвекция во внешнем жидком ядре довольно сильная, быть может, в миллион раз сильнее, чем в мантии. Поскольку вещество внешнего ядра имеет высокую проводимость, получается интересная среда, где быстро движущиеся и вращающиеся электрические поля взаимодействуют друг с другом. Это приводит к генерации магнитного поля. Источником энергии для конвекции служит тепло радиоактивного распада во внутреннем ядре.

Земля уникальна среди планет ее типа в том смысле, что у нее довольно сильное магнитное поле. У Меркурия, Венеры, Марса и Луны такого поля нет. Меркурий, Марс и Луна настолько малы, что у них нет твердого внутреннего ядра. В отношении Венеры полного понимания пока не достигнуто. По массе она близка к Земли, поэтому должна иметь похожее внутреннее строение. У нее должно быть магнитное поле, как у Земли, но его нет. Венера вращается очень медленно, совершая один оборот вокруг оси за 243 земных суток, и это может подавлять процесс генерации поля в ядре; либо Венера лишена твердого ядра, поскольку поток тепла из ее ядра, по-видимому, меньше, чем из ядра Земли.

Климат, атмосфера и парниковый эффект.

Климат планеты определяется ее радиационным балансом и парниковым эффектом, обусловленным ее атмосферой (впервые об этом эффекте заговорил Жозеф Фурье в 1820-х годах). Температуру Земли можно вычислить, сложив энергию, полученную от Солнца и от источников в земных недрах, и вычтя из этой суммы энергию излучения, покидающего поверхность Земли. Предположим для начала, что у нашей планеты нет атмосферы. Тогда для современной Земли мы получим температуру -20 °C. Оказывается, наша планета и в самом деле должна быть ледяным миром! Так было бы, если бы не существовало атмосферы или если бы она состояла из чистого азота (с кислородом или без). Вычисленная нами температура на 35 °C ниже, чем реальная средняя температура Земли +15 °C.

Когда Земля была моложе, скажем, 2,5 млрд лет назад, Солнце светило не так ярко: от него поступало на 10 % меньше энергии. Это означает, что температура могла быть еще ниже, примерно -28 °C. Но из геологических данных известно, что Земля большую часть своей истории была свободна от льда. Планете требовалось какое-то «одеяло», чтобы поднять температуру хотя бы чуть выше точки замерзания. Разумеется, это было газовое одеяло толщиной несколько километров, состоящее из парниковых газов — воды, двуокиси углерода и метана. Содержание каждого из этих газов менялось со временем.

Теплосберегающее воздействие парниковых газов было очень важно для жизни на Земле как в древние времена, так и сейчас. Парниковый эффект возникает следующим образом. Солнечное из-лучение нагревает Землю. Нагретая Земля сама начинает излучать, но в основном в длинноволновой инфракрасном диапазоне (а еще и некоторая доля солнечного инфракрасного излучения отражается от поверхности Земли). Часть испущенной в инфракрасном диапазоне энергии поглощается парниковыми газами, которые затем переизлучают ее во всех направлениях. Часть этого излучения уходит в космос, а другая часть нагревает нижние слои атмосферы. Этот нагрев и есть парниковый эффект. Сейчас он составляет около 35 °C, что совсем не мало. Половина эффекта возникает из-за водяного пара (но не облаков!), примерно одна пятая из-за двуокиси углерода, а остальное в основном обязано метану и озону, а также и некоторыми другими малым компонентам парникового газа. Нужно отметить, что молекулярный кислород, молекулярный азот и водород не являются парниковыми газами, так как не поглощают инфракрасное излучение.

Наша планета сейчас пребывает в состоянии равновесия. В эпохи, когда количество парниковых газов уменьшалось, Земля сползала в состояние оледенения, из которого ее выводила вулканическая активность. Но сложись все по-другому, мы бы могли оказаться перед лицом серьезной угрозы: парниковый эффект нагревания мог бы пойти вразнос.

Изменение температуры на пару градусов в любую сторону при наличии парникового эффекта может иметь серьезные последствия. Например, существенное уменьшение содержания водяного пара в атмосфере может привести к быстрому понижению температуры. А внезапное таяние метановых клатратов в глубинах морей вызовет рост содержания метана в атмосфере, что усилит парниковый эффект. Сейчас наибольшее внимание уделяется прогнозам глобального потепления из-за роста концентрации СO2. Среднее содержание СO2 увеличилось за 20 лет примерно на 30 ppm (parts per million = миллионных частей) и сейчас достигло уровня около 390 ppm. Такой рост С02 считается очень серьезным. Простой расчет поможет нам оценить его влияние на среднюю температуру. Предполагая, что пятая часть парникового эффекта обусловлена СO2, мы можем оценить его вклад примерно в 35 °C/5 — 7 °C. Через 20 лет относительное увеличение СO2 составит около 8 %. Перемножив эти числа, получим, что рост содержания двуокиси углерода в ближайшие 20 лет увеличит парниковый эффект на 0,6°! Это дает представление о серьезности проблемы. Увеличение температуры на 3° привело бы к драматическим последствиям для всей природы, включая род человеческий, поскольку изменились бы источники чистой воды, повысился бы уровень океана и начались бы проблемы с урожайностью.

Наш расчет упрощен и не учитывает многие явления, существующие в реальной природе и обеспечивающие механизмы обратной связи, такие как изменение облачности, величины капель воды, аэрозольных составляющих, а также взаимодействие рассеянной ветром морской воды с атмосферой и взаимные связи разных составляющих атмосферы, возникающие на разных временных интервалах. Не говоря уже о некоторых особых связях, таких как взаимодействие между атмосферой, Антарктическим и Гренландским ледяными щитами и приповерхностными и глубоководными океанскими течениями. Нужно также учитывать и медленное изменение светимости Солнца. Многие эти факторы уже включены в программы моделирования климата в пределах возможностей компьютеров, но даже наша грубая оценка дает значение, довольно близкое к наблюдаемому. Модели прогноза климата очень сложны и в настоящее время могут, в лучшем случае, давать более или менее правдоподобные оценки, но в целом все они сходятся в том, что температура возрастет на 1,5–4,5 °C за ближайшее столетие.

Глава 30 Возникновение и эволюция жизни

В истории можно проследить два взгляда на происхождение жизни. Один из них заключается в том, что жизнь возникла когда-то в далеком прошлом. В частности, согласно еврейской и христианской традициям, закрепленным в книге Бытия, Бог создал все живое таким, каково оно и сегодня. Иного мнения придерживались древние греки, считавшие, что жизнь может появляться в любое время самопроизвольно и прямо из неодушевленного вещества. В соответствии с этой традицией всего лишь несколько столетий назад считалось, что черви и мыши возникают из грязи. В самопроизвольное появление жизни верили такие люди, как Ньютон, Декарт и Уильям Гарвей (1578–1657), открывший кровообращение.

Рис. 30.1. Луи Пастер (1822–1895) показал, что жизнь не возникает самопроизвольно за короткое время.


Но некоторые высказывали сомнения: Франческо Реди (16261697) показал, что личинки не появляются в старом мясе, если его защитить от мух, а Лазаро Спалланцани (1729–1799) — что микробы не размножаются в прокипяченном закрытом бульоне. Наконец, французский химик Луи Пастер исследовал разнообразные микроорганизмы и показал, что многие из них распространяются по воздуху и вызывают разные явления, например инфекцию ран. Опыты Пастера по тщательной стерилизации окончательно покончили с представлением о каждодневном спонтанном зарождении жизни из неодушевленного вещества (рис. 30.1).

Химические элементы и структура живого.

Но даже если жизнь не возникает легко и регулярно из неживого вещества, было бы логично (как вариант первого исторического взгляда, упомянутого выше), что жизнь должна была по крайней мере однажды зародиться из неживой материи в далеком прошлом. Начало современным теориям возникновения жизни положил русский ученый, академик Александр Иванович Опарин (1894–1980) в книге «Происхождение жизни», изданной в 1924 году. Он утверждал, что живые структуры, вероятно, не были способны сами управлять своим синтезом или синтезом своих составляющих частей, поэтому они должны были формироваться в результате самопроизвольных химических реакций между составляющими, существовавшими до этого. Английский биолог Джон Холдейн (1892–1964) высказывал такое же мнение.

Мы не вполне понимаем, как жизнь возникла на Земле, но знаем, каковы основные функциональные компоненты жизни. Жизнь основана на генетической информации, закодированной в нуклеотидной последовательности ДНК и интерпретируемой с помощью РНК-копий, служащих матрицами для производства белков, которые в свою очередь управляют всеми биохимическими процессами в клетке. В живых организмах ДНК играет определяющую роль, поскольку содержит все инструкции о том, какие белки нужны клетке и как они устроены. Кроме того, с помощью ДНК происходит передача важнейшей информации от одного поколения к другому. Но сама ДНК не способна использовать эту информацию. Это как жесткий диск компьютера: ему требуется драйвер (РНК), чтобы прочитать информацию и передать ее исполняющим программам, которые отобразят ее на экране. Однако сама эта информация — то есть белки — тоже нужна для репликации ДНК, а также и на каждом шагу при транскрипции и трансляции гена. Таким образом, генетическая информация — это часть циклического процесса, окончательный продукт которого необходим для поддержания самого процесса. Перед нами классическая дилемма «курица — яйцо». Как могла начать функционировать эта система, если ее продукты необходимы для получения информации, а информация требуется для создания продуктов и одно невозможно без другого?

Мир РНК.

Ясно, что одна из частей современного цикла должна была возникнуть раньше других. Хотя сейчас РНК в основном служит переносчиком генетической информации от ДНК к белкам, но она же может быть и катализатором многих реакций. Ее каталитические возможности не так разнообразны, как у белков, но, несмотря на это, молекулы РНК выполняют некоторые жизненно важные функции (например, в процессе трансляции соединяют аминокислоты внутри рибосомных комплексов). Вполне вероятно, что современном}- жизненному циклу — от ДНК к РНК и затем к белкам — предшествовала более простая форма жизни, основанная лишь на РНК и белках. Эта гипотетическая эра, когда генетический код мог быть записан только в РНК-последовательности, называется РНК-белковым миром.

Если же уйти еще дальше в прошлое, то самый ранний механизм синтеза белков должен был возникнуть еще до того, как были синтезированы первые белки (до «изобретения» синтеза белков). Поскольку сейчас главным компонентом этого механизма по-прежнему является РНК, можно предположить, что изначально он обеспечивался только молекулами РНК. Поэтому комплекс молекул РНК должен был существовать и сам себя воспроизводить еще до того, как был изобретен синтез белков. Таким образом, первым шагом на пути рождения примитивной жизни, по-видимому, была репликация молекул РНК. Эта гипотетическая эра называется РНК-миром.

Каталитические свойства любой нити РНК требуют, чтобы эта нить была свернута особым способом в определенную пространственную структуру, которая может взаимодействовать с сырым веществом. Сворачивание нити определяется ее нуклеотидной последовательностью через спаривание оснований нуклеотидов в цепи, а также формированием сложного взаимодействия так называемых шпилек и петель. Поэтому для каталитических нитей требуется особая информационная последовательность, даже если они не кодируют белки. Современные каталитически активные нити РНК называют РНК-ферментами (рибосомами), и они способны управлять разными типами химических реакций. Например, рибосомы, которые служат катализаторами при репликации коротких нитей РНК, могут производиться либо путем удлинения самой молекулы, либо же путем каталитического удлинения отдельной нити (рис. 30.2). Считается, что некоторые виды рибосом могли управлять первыми процессами репликации. Это запустило молекулярную эволюцию, которая затем пошла дальше к более сложным формам жизни.

Рис. 30.2. Рибосом-репликаза, произведенная in vitro многократными циклами селекции репликативной активности. Перепечатано с разрешения Macmillan Publishers Ltd; G.F. Joyce: The Antiquity of RNA-based evolution. Nature 418:214. copyright (2002).

Условия на молодой Земле

Об условиях, господствовавших на Земле в течение первых миллиардов лет ее существования, мало что известно. Мы знаем, что через несколько миллионов лет после того, как Земля сформировалась, ее первоначально очень высокая температура понизилась настолько, что сконденсировалась и выпала на поверхность жидкая вода. Некоторые геологи даже утверждают, что из-за слабой светимости молодого Солнца температура в первые 500 млн лет могла опуститься до или даже ниже точки замерзания воды. Весьма вероятно, что условия на молодой Земле были непостоянными и временами становилось очень жарко из-за частых столкновений с метеоритами. Горячие пятна и химически активная среда возникали вокруг вулканов и геотермальных источников. Условия менялись еще и по причине сильных ветров и приливов, вызванных Луной, которая тогда двигалась значительно ближе к Земле. Наконец, суточные изменения были тогда более частыми, так как один оборот вокруг оси Земля совершала за 5 часов. Никаких осадочных пород (возникших при выпадении частиц на дно водоемов) или других неповрежденных геологических свидетельств этого древнего гадейского периода не сохранилось: все они переплавились в последующих тектонических процессах.

Наиболее древние осадочные породы возрастом 3,9 млрд лет, сохранившиеся в почти нетронутом виде, найдены в скальном образовании Исуа на западном берегу Гренландии. Эти скалы содержат небольшие углеродные вкрапления, возможно — остатки живых организмов. За прошедшее время этот углерод превратился в графит, поэтому обнаружить в данных породах какие-либо клеточные структуры или биохимические составляющие невозможно. Но на биологическое происхождение углерода явно указывает его обогащение легким изотопом 12С относительно более тяжелого 13С по сравнению с постоянным отношением этих изотопов двуокиси углерода в воздухе. (Углерод имеет два стабильных изотопа: 12С и более редкий 13С, которого около 1 % от всего естественного углерода на Земле.) Биологические процессы «предпочитают» использовать легкий изотоп углерода, поэтому обогащение изотопом 12С указывает на биологическое происхождение соединений.

Недавно выяснилось, что в результате некоторых гидротермальных, не биологических, процессов тоже может происходить разделение изотопов углерода. Само по себе это могло бы вызвать сомнения относительно биологического происхождения углерода в очень старых скалах. Но осадочная структура пород Исуа показывает, что они формировались на протяжении миллионов лет на дне глубокого водоема, вдалеке от гидротермальных источников. Это спокойное осадочное происхождение свидетельствует, что частицы углерода возникли, вероятно, из фотосинтезирующего планктона, жившего в морской воде. Столь же ясные следы ранней жизни, содержащие окаменелые структуры одноклеточных микроорганизмов и некоторые химические соединения, образовавшиеся из липидов мембран, обнаружены в следующих по старости осадочных породах в районах Пилбара (Австралия) и Барбертон (Южная Африка). Эти окаменелости показывают, что жизнь уже существовала на большой части Земли по крайней мере 3,5 млрд лет назад. Если жизнь успела распространиться уже 3,9 млрд лет назад, то она должна была зародиться в течение или сразу после эры «сильной бомбардировки», то есть массированных соударений, которые, судя по всему, происходили в конце эпохи формирования Солнечной системы, около 4 млрд лет назад.

Предбиологический синтез строительных блоков жизни.

Чтобы понять механизм происхождения жизни, мы должны выяснить: как же образовались исходные РНК-полимеры, как они выработали генетический код и способность к синтезу белка и откуда взялись рибонуклеотиды и аминокислоты? Согласно гипотезе Александра Опарина, сборка исходных полимеров должна была происходить постепенно, путем случайных, все более усложняющихся химических реакций, начавшихся от простого предшественника и продвигающихся к построению всё более сложных молекул. Все начальные строительные блоки и структуры жизни должны были образоваться в естественных физических условиях, без помощи каких-либо биологических катализаторов.

Нуклеотиды и аминокислоты были нужны в качестве строительных блоков для образования исходных полимеров, РНК-геномов и белков. Эти блоки должны были сформироваться спонтанно из своих органических предков — маленьких молекул. Наиболее важными атомами в этих предках были углерод, водород, азот, кислород, фосфор и сера. Мы уже обсуждали, как водород и химически инертный гелий родились во время Большого взрыва. Остальные элементы образовались в звездах, которые затем выбросили их в межзвездную среду, из облаков которой сформировались следующие поколения звезд с планетами. Известно, что эти относительно обильные элементы при подходящих энергетических условиях могут вступать в реакцию с образованием небольших восстановленных соединений, таких как синильная кислота (HCN), аммиак (NH3), метан (СН4) и формальдегид (СНОН). Термин «восстановленный» означает, что электроны, обычно с атомами водорода, присоединяются к центральному элементу, и при этом огромное количество энергии запасается в соединениях, превращая их в удобных предшественников для дальнейших химических реакций.

Экспериментальные исследования предбиологического синтеза органических соединений начались в 1952–1955 годах, когда Гарольд Юри (1893–1981) вместе со своим студентом Стэнли Миллером (1930–2007) изучали, как элементы жизни (С, Н, N, О, Р, S) могут превращаться в биологические молекулы в смоделированных условиях ранней атмосферы Земли. Предполагалось, что атмосфера гигантской газовой планеты Сатурн представляет собой пример исходного газового состава Солнечной системы и что древняя атмосфера Земли была похожа на нее, то есть состояла из воды, метана, аммиака и водорода. Поэтому в лаборатории изучались реакции этих газов в разных смесях с другими газами. Эта газовая смесь находилась в стеклянной колбе над слоем воды, а в качестве источника энергии были использованы электрические разряды, моделирующие молнии в древней атмосфере (рис. 30.3).

Рис. 30.3. (а) Миллер и Юри в 1953 году получили аминокислоты, возбуждая электрическими разрядами смесь водяного пара, метана, аммиака и других газов, (б) Этот эксперимент неоднократно повторялся. На фото показана аналогичная аппаратура в Исследовательском центре им. Дж. С. Эймса, НАСА. С разрешения NASA.

К удивлению ученых, в этих условиях за несколько дней в ходе различных реакций родилось большое разнообразие органических соединений, включая несколько различных аминокислот. Выход полученных продуктов зависел от состава смеси газов. Для эффективного производства органики требовалось наличие восстановленных (относительно воды) газов, таких как метан или молекулярный водород. Если в качестве источника углерода использовался окисленный углерод СО., или же в реакции участвовал молекулярный кислород, то получить органический продукт не удавалось.

Результат эксперимента Миллера-Юри был поразительным. Он четко доказал, что синтез органических соединений может происходить довольно легко из неорганического вещества. Однако гипотеза о первичной атмосфере Земли, по-видимому, оказалась ошибочной. Сейчас есть свидетельства того, что «первая» атмосфера, богатая водородом, была сорвана в результате мощной бомбардировки или же сильным солнечным ветром. «Вторая» атмосфера могла возникнуть из вулканических газов и летучих веществ, принесенных кометами. На это указывает то, что изотопный состав благородных газов в современной атмосфере совпадает с тем, что дает распад радиоактивных элементов в земной коре, и отличается от изотопного состава межзвездных облаков, из которых должна была бы сформироваться Земля. «Вторая» атмосфера в основном состояла из CO2 N2 и Н2O с примесью СО и Н2. Но эти нейтральные газы, как было сказано, не давали в эксперименте органических продуктов.

Впрочем, производство аминокислот на ранней стадии зарождения жизни — не проблема, так как их синтез мог происходить в любом месте, где маленькие восстановленные соединения вступают в реакцию при наличии источника энергии. Такие условия складывались, например, в геотермальных областях под морским дном, где морская вода проникала вглубь коры и растворяла минералы, углерод и серу. Гидролиз должен был обеспечить достаточную восстановительную энергию, а высокая температура и давление — способствовать восстановлению соединений. Затем восстановленные соединения вместе с горячей водой поднимались на морское дно в особых местах выхода (похожих на современные гидротермальные источники на подводном Срединно-Атлантическом хребте). Сульфиды вступали в реакцию с ионами железа, никеля и других металлов, насыщавших древнюю морскую воду, и образовывали сульфидные осадки, которые скапливались в пористых структурах, похожих на черных курильщиков, существующих в подобных местах в наше время. Сульфиды металлов — активные катализаторы различных химических реакций. Эти геотермальные источники могли быть эффективными инкубаторами маленьких органических соединений, включая аминокислоты (рис. 30.4).

Вещество, необходимое для зарождения жизни, могло прийти на Землю и из космоса. Многие небольшие органические соединения обнаружены в метеоритах и межзвездных облаках. Вероятно, их синтез происходит на поверхности частиц космической пыли под действием мощного ультрафиолетового излучения массивных звезд. Кроме простейшей органики в древних метеоритах, углистых хондритах, обнаружено до семидесяти различных аминокислот, органических кислот и сахаров. Вполне вероятно, что внеземная пред-биологическая химия внесла большой вклад в список земных органических соединений.

Изменились наши взгляды и на предбиологический синтез в древней атмосфере. Фенг Тиан (Feng Tian) с коллегами из Колорадского университета в Боулдере в 2005 году опубликовал вычисления, показывающие, что молекулярный водород, возможно, не улетучивался так быстро, как ранее считалось. Напротив, древняя атмосфера могла содержать до 40 % Н2, делая его способным к синтезу органических соединений. Это новое, хотя и не доказанное, предположение говорит о том, как мало мы еще знаем об условиях на ранней Земле и как различия в древней среде могли влиять на вероятные пути предбиологической химии.

Рис. 30.4. Горячий «черный курильщик» подводного геотермального источника в Атлантическом океане. С разрешения National Oceanic and Atmospheric Administration.

Возможные варианты предбиологического синтеза разных нуклеотидов были детально изучены, например, группами Хуана Оро (1923–2004) из Хьюстонского университета и Лесли Оргела (1927–2007) из Калифорнийского университета в Сан-Диего. Этот синтез должен был происходить в несколько этапов: (1) синтез азотистых оснований нуклеотидов; (2) синтез сахара рибозы в кольцевой форме (с 5'-углеродом в правой (D) ориентации, как описано в главе 28); (3) ковалентное (в (?-ориентации) связывание оснований с 1'-углеродом кольца рибозы и, наконец, (4) фосфорилирование 5'-углерода рибозы. В отличие от синтеза аминокислот, синтез нуклеотидов в предбиологических условиях в соответствии со всеми этими этапами очень затруднителен, и пока мы до сих пор не полностью понимаем этот процесс.

Загадка предбиологической сборки полимеров

Похоже, что требовалось много, а точнее — огромное количество нитей РНК достаточной длины и разнообразия, чтобы создать хотя бы один полимер, способный к самокопированию, а затем и копированию других РНК. Таким образом, требовалось высокоэффективное спонтанное формирование РНК-полимеров, чтобы запустить функционирующий РНК-мир. Предбиологическую полимеризацию нуклеотидов трудно объяснить известной химией РНК, так как для этого нужна энергия, и легко это не происходит. При оптимальных лабораторных условиях удается производить полимеры длиной 4050 нуклеотидов. В этих экспериментах нуклеотиды полимеризуют-ся в водном растворе в присутствии глинистых минералов. Тонкослойные глины из положительно заряженных минеральных частиц связывают отрицательно заряженные нуклеотиды и помещают их в нужное место, способствуя их реакциям между собой. В дальнейшем присутствие глины значительно стабилизирует готовые РНК-полимеры, которые в ином случае могли бы легко разложиться из-за гидролиза. Эти условия «вода-глина» детально исследовал, например, Джеймс Феррис (J. Ferris) из Нью-Йоркского центра изучения происхождения жизни (Политехнический институт Ренсселе).

Группа Дэвида Димера (D. Deamer) из Калифорнийского университета обнаружила иные условия, способствующие полимеризации РНК, хотя и менее успешно, чем глины. В холодных (-18 °C) ледяных растворах исходные вещества концентрируются в воде, остающейся между кристаллами льда. Низкая температура снижает скорость реакций между компонентами и позволяет возникнуть связям между нуклеотидами. В таких условиях за несколько дней появлялись полимеры, содержащие вплоть до 16 нуклеотидов.

Теперь расскажем о проблемах полимеризации. На рис. 30.5 показаны формы субъединиц нуклеозидов и их фосфодиэфирные связи в РНК-полимерах. На этом рисунке изображены и альтернативные строительные блоки, которые не могут быть использованы в РНК-полимерах. Как уже говорилось, РНК-нуклеотиды формируются из оснований — аденина, гуанина, цитозина и урацила, соединенных с сахаром рибозой (см. рис. 28.4 и 28.5). Соседние сахара рибозы должны связываться друг с другом через фосфоризирующие связи между 5'-углеродом одной рибозы с 3'-углеродом предыдущей. Фосфоризирующая связь формируется через фосфатную часть, содержащую фосфор (Р) и кислород (О). Для этого нуклеозиды должны сначала связать фосфатную группу (см. рис. 28.4) или фосфоризироваться своим 5'-углеродом, чтобы затем превратиться в нуклеотиды. На молодой Земле это было затруднительно, так как растворимых фосфатов почти не имелось. Возможно, небольшая часть фосфатов образовалась из неорганических минералов фосфата кальция (гидроксилапатит), хотя они очень плохо растворяются в воде. Возможно также, что фосфаты появились из линейных полифосфатов вулканического происхождения или продуктов их распада. Даже если эти источники обеспечивали нужное количество растворимых фосфатов, то фосфоризация нуклеозидов должна была быть очень затруднена, ведь в лабораторных условиях она может быть завершена только при наличии мочевины, хлористого аммония и тепла. Далее, для полимеризации нуклеотидов нужно еще, чтобы они были активированы какой-нибудь высокоэнергичной связью (например, связью с аналогом основания или аминокислотой) в положении 5', чтобы обеспечить энергией реакции связи между нуклеотидами.

Рис. 30.5. Полимеры, сформированные фосфодиэфирными связями (содержащими фосфор и кислород) между 5'- и 3'-углеродами ?-D-нуклеотидов. Нуклеозиды образованы из оснований аденина, гуанина цитозина, урацила и четырехуглеродной циклической формы рибозы в D-ориентации. Перепечатано с разрешения Macmillan Publishers Ltd; G. F. Joyce: The Antiquity ofRNAbased evolution. Nature 418:214, copyright (2002).

Еще одна трудность полимеризации рибонуклеотидов состоит в том, что в смеси мономеров могут происходить различные реакции. Чтобы сформировать функциональный полимер, фосфоризирующие соединения должны образовываться между 5'- и 3'-углеродами соседних нуклеотидов. Но кольцо рибозы имеет реакционноспособные группы ОН у углеродов в положениях 5', 3' и 2. В добиологических условиях между всеми этими группами могли протекать реакции, и в результате внутримолекулярных реакций между ОН-группами в положениях 2' и 3' могли формироваться циклические соединения. Более того, молекулы фосфатов могли создать разные полифосфатные связи между разными углеродами. Все эти разнообразные связи могли привести в тупик дальнейшую полимеризацию.

По мнению Джеральда Джойса (Исследовательский институт Скрипса, Ла-Хойя, Калифорния), ведущего специалиста по добиологической химии РНК, отсутствие специфичности является основной проблемой добиологических реакций. Спонтанные реакции, начавшиеся с синильной кислоты или с цианистого ацетилена, цианита и мочевины, могут дать разные аналоги оснований. Но из всех них только пурины аденин и гуанин, а также пиримидины цитозин и урацил природа использовала для формирования функциональных нуклеозидов. В составе нуклеозидов в добиологических условиях существующие основания могли быть связаны с составляющими рибозы, причем с одинаковым успехом как в а-, так и в р-конфигурациях, а фураноза (четырехуглеродное кольцо) рибозы могла сформироваться как в L-, так и в D-изоформах (лево- и правовращающих плоскость поляризации света, как описано в главе 28). Сахар рибоза также мог сформироваться в виде пятиуглеродного кольца (пираноза) путем соединения 5'- и 1'-углеродов. Добиологические реакции полимеризации между всеми различными аналогами и изоформами нуклеотидов могли привести к большому разнообразию фосфатных соединений разных атомов углерода рибозы. В целом эти реакции могли легко использовать разные варианты пуринов и пиримидинов, связываясь с которыми разные производные разных циклических сахаров формируют L- и D-конфигурации. Эти совершенно случайные аналоги нуклеозидов могут затем фосфорилироваться на разных позициях углерода, и потом опять случайно фосфорилированные аналоги нуклеотидов могли связаться друг с другом разными способами, что показано на рис. 30.5. Ни один из этих альтернативных вариантов не производит функциональноактивные РНК-полимеры.

Только правильно сформированные и полимеризированные нуклеотиды могут быть функциональными шаблонами для репликации через комплементарное спаривание оснований. Мы не понимаем, как жизнь при отсутствии каких-либо ферментных реакций отбора выбирала как раз нужные нуклеотидные компоненты и их специфические изоформы и как она контролировала формирование фосфоризующих связей только между 5'- и 3'-углеродами нуклеотидов.

Следующей проблемой при сборке длинных РНК-полимеров является их врожденная неустойчивость. РНК-полимеры легко делятся на части гидролизом, и их функциональная последовательность может быть утрачена из-за многочисленных ошибок копирования или мутаций. При рассмотрении всех этих химических обстоятельств кажется, что полный каскад реакций для формирования функциональных полинуклеотидов (включая синтез нуклеозидных оснований и рибозы, сборку нуклеозидов, их фосфорилирование и активацию и, наконец, полимеризацию и стабилизацию полимеров) был трудноосуществим в добиологических условиях. Эти процессы выглядят настолько непохожими, что возникло предположение, что РНК-миру предшествовали какие-то другие механизмы хранения и переноса информации, которые затем «управляли» (или обеспечивали катализаторами) миром РНК-оснований. Но трудно объяснить, как мог произойти переход от более примитивной генетической системы к РНК.

Разумеется, можно предположить, что мы пока еще не нашли таких условий, химических способов и факторов отбора, которые могли бы сделать возможной добиологическую химию и эволюцию. Новый многообещающий способ добиологического синтеза нуклеотидов — прямо из формамида — сейчас исследуется в лабораториях Р. Саладино (R. Saladino) и Э. Димауро (E.DiMauro) в университетах Тусции и Рима (Италия).

Формирование генетического кода.

Хотя молекулы РНК могут стимулировать некоторые типы химических реакций, теперь мы знаем, что белковые катализаторы значительно превосходят их по универсальности и эффективности. Поэтому изобретение генетически закодированного синтеза белков дает огромное преимущество для развития жизни. Это делает возможным появление и эволюцию основанных на ДНК геномов, сложных клеточных структур и современных биохимических процессов жизни. Рождение синтеза белков было настолько важным для эволюции жизни, что Энтони Пул (A. Poole) и его коллеги из Стокгольмского университета (Швеция) назвали существо, у которого появился этот механизм, прорывным организмом, или Riborgis eigensis. Но возникновение генетически закодированного синтеза белков должно было «случайно» — или совершенно неожиданно — изменить химическую эволюцию на базе РНК. В самом деле, невозможно предвидеть какие-либо эволюционные «изобретения» до момента их неожиданного появления. Как мы знаем, для синтеза белков нужен сложный аппарат, состоящий из каталитических рибосомных комплексов (чтобы считывать генетический код и формировать пептидные связи), тРНК и аминёкислот, а еще требуются катализаторы, связывающие аминокислоты с тРНК (см. главу 28). Важнейшие компоненты этого механизма формируются молекулами РНК. Поскольку обе центральные каталитические функции, вовлеченные в процесс трансляции (аминоацилирование тРНК и формирование пептидных связей), могут управляться РНК-ферментами, то возможно, что исходная форма этого аппарата была создана РНК-миром. Но такие сложные механизмы не возникают вдруг, случайно; они должны развиваться, постепенно эволюционировать из некоторых ранее существовавших функций. Раз синтеза белков до этого не существовало, значит, исходный аппарат трансляции должен был развиться из чего-то другого. Группа Дэйвида Пенни из университета Массей (Новая Зеландия) предположила, что исходной функцией этого молекулярного механизма была репликация РНК и что все компоненты более позднего трансляционного аппарата клетки (проторибосомы, прото-тРНК и аминокислоты) были уже вовлечены в эту функцию. Организуя ранние функции этих компонентов, можно облегчить переход от их исходного взаимодействия к развитию процесса трансляции.

В соответствии с гипотезой группы Пенни механизм ранней репликации мог быть основан на активности рибосом-ферментов, или ранних рибосом, по расщеплению и сшиванию. В пользу этой гипотезы говорит то, что такая активность до сих пор очень распространена среди рибосом, а прямая полимеризация индивидуальных нуклеотидов — нет. Возможно, что предшественники рибосом опознавали целевые РНК-последовательности как триплеты нуклеотидов и копировали их в новую нить, сшивая вместе дополнительные триплеты, принесенные молекулами тРНК (рис. 30.6).

Рис. 30.6. Гипотетическая трансрепликация с помощью активированной тРНК. Исходная нить РНК показана внизу в горизонтальном виде. Рождающаяся реплицированная нить РНК показана внизу слева. Адаптировано из: Poole et al. 1998, The path from the RNA world. J. Mol. Evol. 46:1

Аминокислоты могли прикрепляться к тРНК, либо зарядив их энергией, либо обеспечив правильное складывание этих молекул. В процессе репликации аминокислоты приближаются друг к другу, и это позволяет формироваться пептидным связям между ними. Возможно, в течение некоторого времени ранний процесс репликации перекрывался ранним процессом трансляции. Эволюция генетически закодированных белков постепенно привела к возникновению белков, которые могли служить катализаторами репликации; эта функция была передана белковым ферментам, а рибосомы и тРНК превратились в чистый аппарат трансляции. Обе эти функции сохранились и укрепились в процессе естественного отбора.

Заключительный шаг: формирование клеточной жизни.

Постепенное «изобретение» РНК-полимеров, генетического кода и аппарата трансляции для синтеза белков обеспечило важнейшие компоненты, необходимые для самоподдержания жизни. Но чтобы система функционировала и развивалась, все эти части должны были взаимодействовать и быть связаны друг с другом. В некоторый момент появилась окружающая мембрана, или клеточная структура, собравшая вместе геномы, трансляционный аппарат и разные белки. Только теперь из разных добиологических молекул сформировался функционирующий организм, способный взаимодействовать с окружающей средой и развиваться путем естественного отбора.

Как именно появилась клеточная мембрана — неясно. С одной стороны, это мог быть довольно простой процесс: разные молекулы липидов (жирные кислоты или другие длинные углеводородные цепочки) спонтанно собрались вместе в водном растворе в виде мицеллы, или мембраны, и могли сформировать везикулы (рис. 30.7). Такие спонтанные везикулы могут окружать разные молекулы, случайно попавшие из окружающего раствора, и таким образом функциональные РНК-полимеры могут быть заключены внутрь протоклеточных структур. В последние годы поведение таких спонтанных мембранных везикул активно исследуют. Например, оказалось, что везикулы, сформированные из молекул олеиновой кислоты (цепочки с 18 атомами углерода), полупроницаемы: они пропускают маленькие молекулы, такие как одиночные нуклеотиды или аминокислоты, но не большие полимеры, составленные из тех же субъединиц. Такой тип селективного пропускания позволяет поглощать строительные блоки из окружающей среды, но при этом удерживать полимеризованные биопродукты внутри везикулы. Такие спонтанно возникающие мембраны и везикулы могут расти, присоединяя новые липидные молекулы из окружающей среды, и они даже могут спонтанно делиться на маленькие «дочерние» везикулы! Таким образом, рождение похожих на везикулы протоклеток могло спонтанно происходить в среде, богатой липидами. Но источник этих липидов пока не ясен: формирование длинных углеродных цепочек требует много химической энергии и не происходит так просто.

Рис. 30.7. Разные молекулы липидов (жирные кислоты или другие длинные углеводородные цепочки) самопроизвольно объединяются друг с другом в водном растворе, образуя мицеллы, или мембраны, и при этом могут формировать везикулы (на рисунке).

Эволюция биосферы.

После своего появления клеточная жизнь эволюционировала и поддерживала свое существование. Она содержала все признаки, характерные для современной жизни. У нее были генетический код и аппарат трансляции белков, она производила ферменты для выработки энергии и синтеза нуклеотидов и аминокислотных строительных блоков. В какой-то момент эта совокупность клеток разделилась на самостоятельные филогенетические линии, образовавшие три домена жизни: бактерии, археи и эукариоты. Общий родительский исток, из которого выросли эти домены, называют Последним всеобщим предком (LUCA, о котором мы уже говорили; см. рис. 28.9). Не совсем понятно, в какой момент произошло это разделение: например, неизвестно, что было основой генома LUCA — ДНК или РНК. Нет ясности и в самом процессе раздела на три этих домена. Во всяком случае, после этого раздела жизнь стала разнообразной и, приспосабливаясь к новым условиям, постепенно оккупировала все пригодные для обитания области Земли.

Основным требованием для выживания любой, даже самой примитивной, жизни является наличие подходящего источника энергии, питательных веществ для производства биомолекул, жидкой воды для растворения всех химических веществ; также ей нужны условия, в которых биомолекулы не будут разрушены. По-видимому, простейшие первичные формы жизни не были способны к сложным реакциям по преобразованию энергии. Поэтому им требовалась энергия в том виде, который легко использовать для прямого химического преобразования, — в форме высокоэнергичных молекул (восстановителей), таких как молекулярный водород, метан, аммиак и сероводород. Кроме того, некоторые минералы, например соединения железа и серы, которые легко окисляются, служили хорошим источником атомов водорода или электронов. Обязательно нужны были окисленные питательные вещества, такие как фосфаты, нитраты и сульфаты, а также растворимые ионы металлов (Fe, Ni, Cu, Mg) для использования их в качестве кофакторов в различных ферментах. Такие маленькие восстановленные соединения и растворимые ионы металлов могли рождаться в добиологическую эпоху в некоторых местах наподобие гидротермальных или других вулканических систем. Весьма вероятно, что жизнь началась вблизи таких источников энергии. Затем жизнь научилась повторно использовать энергию питательных веществ, употребляя уже существующую биомассу или готовые высокоэнергичные биомолекулы в разных микробных пищевых цепочках. Это помогало жизни разделиться на новые виды с новой стратегией выживания. Затем жизнь должна была распространяться все дальше и дальше от ограниченных вулканических или литотрофных («камнеедных») источников питания и разработать новые метаболические пути. Жизнь окончательно порвала с минералами, изобретя фотосинтез — возможность преобразования энергии света в химическую энергию.

Фотосинтез, используя новый неограниченный источник энергии, позволил жизни распространиться от скалистых мест в освещенную морскую воду. В осадочных породах Барбертона (Южная Африка) и Пилбары (Австралия), датируемых 3,5 млрд лет назад, микробные окаменелости возникли в различной среде и типах осадков (рис. 30.8). Окружающие осадки показывают, что они образовались либо в пористых породах в гидротермальной среде, либо в глубоководных или мелководных осадках. Данные по фракционированию изотопов углерода и серы в этих образцах говорят о том, что организмы использовали литотрофный и фотосинтетический способы связывания углерода. Размеры и формы этих микроокаменелостей сильно различаются, поскольку жизнь к тому времени уже разделилась на множество разных видов.

Рис. 30.8. Часть микробного мата, сформированного из волокнистых, по-видимому, анаэробных фотосинтезирующих микроорганизмов на поверхности у береговой линии 3,33 млрд лет назад (Барбертон, Южная Африка). Этот микробный мат сначала частично кальцинировался, а затем силикатировался. Длина масштабного отрезка 100 мкм. С разрешения Frances Westall.

Новые формы жизни быстро приспособились к окружающей среде, обеспечив себя на молодой Земле необходимыми источниками питания и энергии. Это были горячие (выше 85 °C) источники и их окрестности, прохладные пруды, холодные воды в полярных областях и вода подо льдом, мелководье и приливные зоны и озера, окрестности наземных вулканов и глубинные подповерхностные породы и водоносные пласты. С точки зрения нашего аэробного с умеренным климатом мира, многие из этих мест могут показаться негодными для жизни. Действительно, типичные условия тогда очень отличались от современных. Без молекулярного кислорода в атмосфере вся жизнь была анаэробной. При этом не существовало озона, защищающего поверхность и мелководье от сильного ультрафиолетового излучения, поэтому жизнь была вынуждена использовать некоторые средства защиты, чтобы избежать массового уничтожения. Высокая температура, высокая соленость, щелочность или кислотность геотермальных систем требовали особой модификации клеточных мембран или макромолекул для предохранения от деградации. Однако похоже, что микробные формы жизни адаптировались к таким условиям с самого начала, и некоторые виды процветают в таких условиях до сих пор. Мы называем эти виды экстремофилами, хотя они больше напоминают оригинальные формы жизни, чем умеренные аэробные виды.

Распространившись по всей планете, ранние виды могли быть очень разными и приспособленными к различным условиям. В течение первых 2,5 млрд лет эволюции жизни все ее формы оставались простыми и одноклеточными, оставившими после себя очень мало различимых остатков в окаменелостях. Были найдены докембрийские окаменелости строматолитов, построенные, как полагают, колониями цианобактерий. Живые структуры, похожие на эти окаменелости, все еще обнаруживаются в некоторых местах на мелководье и могут представлять собой выжившие ранние формы жизни, распространившиеся в мелководной среде обитания и постепенно изменившие всю окружающую среду (рис. 30.9).

Рис. 30.9. Современные строматолиты в озере Тетис (Австралия). Найдены подобные окаменевшие строматолиты возрастом более 3 млрд лет. С разрешения Ruth Ellison, Glass Zebra Photography.

Влияние жизни на атмосферу и климат.

После образования океанов первая настоящая атмосфера Земли, по-видимому, в основном состояла из СO2, Na, Н2O, СО и Н2. Кислорода не было. Точно неизвестно, но сейчас считается, что давление атмосферы в 10–20 раз превышало современное и в нем преобладала двуокись углерода (СO2). Но как только началась эрозия силикатных пород, количество двуокиси углерода начало сокращаться. Под влиянием эрозии из кальцийсодержащих силикатов земной коры начал выделяться кальций и перемещаться в моря. Газ СO2 растворялся в морской воде, вступал в реакцию с кальцием, и образовавшиеся карбонаты осаждались на дне моря. Поэтому количество двуокиси углерода в атмосфере постепенно уменьшалось.

После окончания интенсивной бомбардировки новая развивающаяся биосфера начала влиять на атмосферу. Многие из ранних форм жизни, использовавшие водород органического или неорганического происхождения, с помощью него восстанавливали CO2 в метан (СН4). Похоже, что метан, производившийся одноклеточными микробами архея, стал важнейшим парниковым газом з млрд лет назад. В отсутствии кислорода содержание метана в атмосфере повысилось, по-видимому, до весьма серьезной концентрации: 100-1000 ppm (частей на миллион), тогда как современный воздух содержит менее 2 ppm СН4 и 390 ppm CO2. Являясь очень сильным парниковым газом, метан вызвал мощное глобальное потепление: температура повысилась до 70–85 °C, несмотря на то что Солнце светило слабее, чем сегодня. Высокий уровень метана вызывал также смог, защищавший поверхность Земли от ультрафиолетовых лучей.

Разные виды микробов были способны восстанавливать или окислять соединения углерода, серы и азота. Таким образом, биосфера могла осуществлять круговорот этих элементов между их органическими и неорганическими формами и изменять состав атмосферы. В производстве биологической энергии произошла революция, когда цианобактерии образовали фотосистемы, содержащие достаточно сильно окисляющие комплексы, которые могли использовать воду как донор электронов для реакций фотосинтеза. Эта реакция отрывает два электрона у молекулы воды и переносит их путем фотосинтеза (врезка 30.1), выделяя при этом в виде отхода кислород. По геологическим данным, первые признаки атмосферного кислорода появились около 2,2 млрд лет назад. Даже небольшое количество (1–2%) кислорода могло эффективно уничтожить сильный парниковый газ метан. Первое появление кислорода в воздухе привело к суровому глобальному ледниковому периоду (гипотеза «Заснеженной Земли», Snowball Earth). Вторая серия ледниковых периодов случилась 800–600 млн лет назад, как раз перед кембрийским периодом, когда уровень атмосферного кислорода вырос до современного значения 21 %.

Эти глобальные ледниковые периоды длились подолгу и вместе с очень серьезным изменением атмосферы привели к сильному сокращению количества живых видов. Это видно по существенному увеличению «биологического» изотопа 12C в неорганических углеродных запасах, на что указывает отношение 12С/13С в карбонатных отложениях того периода. Пытаясь сохраниться, жизнь в тот период ушла под лед.

В течение обоих глобальных оледенений тектоника работала под ледяным покровом, и в конце концов извержения вулканов вернули в атмосферу двуокись углерода в количестве, достаточном для восстановления парникового эффекта. Глобальная температура поднялась выше точки замерзания, вода открылась и начала освещаться солнцем, что вызвало быстрое размножение цианобактерий. Кислородная атмосфера вначале была опасной и даже ядовитой для организмов, адаптированных к анаэробным условиям, что привело к сильному изменению микробного населения. Открылись новые возможности для окислительного метаболизма — более эффективного способа применения энергии связи в органических соединениях. Этим воспользовались многие новые виды бактерий, а также новые более сложные организмы — эукариоты. Они ранее ассимилировали аэробную бактерию, ставшую затем внутриклеточной органеллой; речь идет о митохондриях, которые делают возможным эффективное окисление органических соединений внутри клетки. Этот новый путь метаболизма дал большое преимущество биосфере океана. К тому же в верхних областях аэробной атмосферы появилось много озона, поглощающего сильное ультрафиолетовое излучение, что позволило биосфере разрастаться сначала по мелководью, а затем и по суше.

Момент появления первых кислородных микробов был предметом жарких споров. Есть указания на следы кислородного фотосинтеза уже в самых ранних среди известных биогенных (или кажущихся таковыми) окаменелостей.

Врезка 30.1. Развитие фотосинтеза, его глобальные последствия и признаки

Очевидно, что первый вариант фотосинтеза был самым простым: он мог быть похож на фотосинтез, до сих пор используемый галобактериями, когда связанный с мембраной белок пигмента (бактериородопсин) реагирует на свет и, меняя конформацию, прокачивает протоны через мембрану, создавая таким образом высокоэнергичный градиент протонов.

Со временем появились более эффективные молекулы пигментов (хлорофиллы и бактериохлорофиллы), которые могли эффективнее превращать энергию фотонов в энергию своего возбужденного электронного состояния и затем использовать эту энергию возбуждения для отбора электронов у подходящих доноров. У многих фотосинтезирующих бактерий эта реакция происходит анаэробно, при этом в качестве доноров электронов используются Н2, Н2S, S или различные органические соединения. На некотором этапе цианобактерии создали систему фотосинтетических реакций, достаточно энергичных для окисления воды.

В этом процессе используется энергия возбуждения хлорофилла для отбора двух электронов у молекулы воды. Эти электроны перемещаются к акцептору электронов, два протона выпускаются в окружающую среду, а молекулярный кислород выбрасывается как побочный продукт. Эти богатые энергией соединения затем используются в отдельной реакции для превращения СО2 в молекулы сахара

6CO2 + 12H2O -> C6H12O6 + 6H2O + 6O2

Здесь восстановление углерода происходит с помощью фермента рибулоза-1,5-бисфосфаткарбоксилаза/оксигеназа, или просто рубиско. Фермент рубиско однозначно предпочитает использовать легкий изотоп углерода 12С вместо более тяжелого 13С. Поскольку углерод закрепляется при помощи рубиско очень эффективно, в фотосинтезирующих организмах углерод связывается в больших количествах.

Через разные пищевые цепочки он служит основным (и почти единственным) источником энергии для других жйвых существ на Земле. Накапливание изотопа 12С в биомассе вызвало его истощение в атмосфере и в неорганических карбонатных отложениях по всей Земле. В частности, наиболее эффективная система фиксации углерода, управляемая рубиско I, обычно дает истощение 12С от -28 до -30 % и обогащение карбонатных отложений изотопом 13С, называемое признаком рубиско.

Эти указания основаны на формировании окисленных минералов, например ленточных железистых формаций, найденных в скалах Исуа и отложениях Пилбара в Австралии. Поскольку в окаменевших микробных структурах нет никаких идентификационных маркеров древних видов, можно опираться только на сохранившийся биохимический материал. Древнейшее доказательство кислородной среды можно обнаружить в некоторых органических залежах, сильно обогащенных изотопом 12С. Их анализ показывает, что углерод закреплен с помощью рубиско I, действующего только в кислородной атмосфере (признак рубиско, врезка 30.1). Таковы, например, отложения в Тумбиана (Австралия), сформировавшиеся 2,7 млрд лет назад, и более старые в Степ-Рок (Канада), которым около 3 млрд лет. О кислородных условиях косвенно свидетельствуют цианобактерии, но более четкие следы можно обнаружить по окаменевшим молекулярным маркерам (мембранные липидные битумы и гопаноиды, в частности 2-метил-бактериогопанполиол), обычно синтезируемым только цианобактериями в аэробной среде. Липиды, производимые эукариотами в кислородной среде (стеролы), были обнаружены в Пилбара и определили наиболее позднюю надежную дату возникновения эукариот в 2,8 млрд лет назад. Оказалось также, что вырабатываемый на ранних стадиях кислород аккумулировался локально только в водной среде и вскоре начал связываться в окисленных минералах. Следовательно, он начал накапливаться в атмосфере только через 500 млн лет, примерно 2,2 млрд лет назад, когда выпали все окисленные осадки.

В течение следующих 2 млрд лет после появления цианобактерий обильные органические отложения накапливались в океанах. Неизвестно, каким было разнообразие видов в то время, поскольку организмы тогда не содержали твердых структур, и поэтому в осадочных породах сохранилось очень мало окаменевших остатков. Но некоторые из найденных остатков многоклеточных водорослей восходят ко времени 1,2 млрд лет назад, а значит, многоклеточность уже существовала в то время. Старейшие остатки первых мягкотелых животных (радиально-симметричные окаменевшие отпечатки) относятся к 580 млн лет назад, то есть непосредственно перед окончанием протерозойского зона, или сразу же после окончания глобальных оледенений криогенного периода. Цианобактерии с их кислородным фотосинтезом начали адаптироваться как симбиотические органеллы, формируя хлоропласты эукариотических водорослей, а затем и высших растений. А поскольку через несколько сотен миллионов лет высшие растения завоевали сушу, то фотосинтетическая фиксация углерода смогла закрепиться на и континентах, обеспечив источник энергии длинной и сложной пищевой цепочке.

Кислородная атмосфера и более эффективный метаболизм, связанный с аэробным дыханием, привели к появлению и росту многообразия многоклеточных организмов. Многоклеточность открывает путь для дифференциации частей тела и их адаптации к различным полезным задачам. Для этих организмов становятся доступными новые источники энергии и питательных веществ. Многоклеточные водоросли и растения смогли пустить корни в почву, где им стала доступна вода и растворимые питательные вещества, а также протянуть свои фотосинтезирующие листья к солнечному свету. Животные смогли искать еду и находить новые источники питания. Половое размножение резко усилило эволюционный потенциал, открыв возможность для повторной рекомбинации генетического материала в каждом поколении.

Катастрофы, влияющие на эволюцию биосферы.

Сильное изменение атмосферы — увеличение в ней количества кислорода, обсуждавшееся выше, произошло в результате более эффективного использования солнечной энергии цианобактериями, то есть причиной этого стала жизнь. Появление кислорода, очень токсичного газа для раннего анаэробного мира, вызвало мощный стресс как у самих цианобактерий, так и у других организмов. Это было катастрофой, но в то же время открывало новые возможности.

Впрочем, биосфера сталкивалась и с другими катастрофами. Глобальные ледниковые периоды, когда вся Земля или большая ее часть была покрыта льдами, могли уничтожить жизнь на поверхности. По геологическим данным мы знаем, что первые сухопутные формы жизни — спорообразующие растения — захватили континенты лишь около 450 млн лет назад, а раньше, в ледниковые периоды, на суше не было признаков жизни. В то время вся жизнь находилась либо под водой вблизи берега, либо под землей. Кроме того, в до-кембрийский ледниковый период, когда развивались фотосинтезирующие водоросли, потенциальной причиной катастрофы мог стать толстый лед. К счастью, этот лед мог не полностью покрывать тропические области. К тому же свет способен проникать даже сквозь трехметровый слой льда и поддерживать жизнь; а кроме этого, некоторые живые существа могли процветать в водяных карманах внутри льда, как это происходит в наше время в некоторых ледяных озерах Антарктиды. Если бы сегодня на Земле по каким-то причинам началось оледенение, жизнь континентальной поверхности имела бы такие же возможности для выживания, какие мы наблюдаем в Антарктиде.

В новостях нам постоянно сообщают о землетрясениях и цунами. За последние десятилетия к самым многочисленным жертвам — около 300 000 человек — привело цунами 26 декабря 2004 года, возникшее из-за мощнейшего землетрясения на морском дне. Землетрясения в густонаселенных местах могут оставить без крова миллионы людей. Но эти трагические события не приводят к глобальному уничтожению природы.

Разрушительные геологические явления могут иметь разный масштаб. Небольшой одиночный вулкан может привести к серьезным разрушениям местного масштаба. Мощное извержение вулкана имеет глобальное значение. При извержении вулкана Кракатау в 1833 году было выброшено 25 км3 вещества в форме лавы и пепла (эквивалентного 10 км3 плотной горной породы). Большая часть пепла осталась в верхних слоях атмосферы на высоте 80 км и вызвала заметное понижение температуры по всей Земле, продолжавшееся несколько лет. Базальтовая магма из мантии может добраться до поверхности через разломы коры. В области вулкана Лаки в Исландии такие разломы случались несколько раз. Последний был в 1783–1784 годах, когда 15 км3 лавы вышло на поверхность, образовав небольшое базальтовое «наводнение». При этом было выброшено много ядовитых газов. Треть населения Исландии погибла от голода и примерно три четверти домашнего скота сдохло, отравившись фтором. В Европе десятки тысяч людей погибли из-за плотного серного тумана. В 1784 году в Северной Америке была самая холодная зима за всю историю.

Бывают и более мощные извержения, но, к счастью, довольно редко. Озеро Тоба в Индонезии — это кальдера сверхмощного вулканического извержения, случившегося около 73 000 лет назад и бывшего, вероятно, самым мощным за последние несколько миллионов лет. Скальный эквивалент объема пепла этого события составил 800 км3, что в 20 раз больше самого мощного в истории человечества извержения вулкана Тамбора в 1815 году. В результате этого извержения вся Юго-Восточная Азия покрылась метровым слоем вулканического пепла. Оно вызвало глобальное понижение температуры примерно на 3 °C в течение нескольких лет и настоящую вулканическую зиму. Антрополог Стэнли Амброуз (Иллинойсский университет) предположил, что в эпохи мощных древних извержений эволюция человечества проходила через «бутылочное горлышко», когда население сильно сокращалось.

Разными по масштабу были не только вулканические извержения, но и извержения из разломов. Десятки «больших вулканических провинций» (Large Igneous Province, LIP) были обнаружены на континентах и морском дне. Формирование таких областей отчасти загадочно; возможно, оно вызвано мощными мантийными плюмами. Известно только, что большие вулканические области формировались за геологически короткое время — за пару миллионов лет, и что лава выходила на поверхность в больших объемах. Базальтовое наводнение, образовавшее плато Деккан в Индии 60–70 млн лет назад, имело объем лавы 500 000 км3 и покрыло площадь, примерно равную площади Франции. Если сравнить эти цифры с историческим Исландским разломом (см. выше), то легко представить, какие разрушения мог причинить этот базальтовый поток. В этом смысле особый интерес представляет датировка мощных Сибирских траппов на Восточно-Сибирской платформе, поскольку по возрасту они очень близки к глобальному пермо-триасовому вымиранию, случившемуся около 252 млн лет назад.

В пору молодости Земли от падающих на нее астероидов и комет была польза, поскольку они приносили нужные для будущей биосферы вещества — воду, силикаты, углерод, а также азот для атмосферы. Но после первого миллиарда лег эти космические гости уже стали источником опасности для развивающейся жизни. Доказательством этого служит падение на месте современного полуострова Юкатан (Мексика) 65 млн лет назад 10-километрового астероида, вызвавшее вымирание динозавров и многих других биологических видов.

В настоящее время угроза падения астероидов и комет исходит от двух областей их обитания. Главный пояс астероидов между орбитами Марса и Юпитера содержит десятки тысяч астероидов опасного размера и бесчисленное множество маленьких астероидов (рис. З0 10).

Рис. 30.10. Ударный кратер в Аризоне возник около 50 000 лет назад в результате падения железо-никелевого метеорита диаметром 50 м. Взрыв был эквивалентен взрыву 150 атомных бомб, сброшенных на Хиросиму. С разрешения U S Geological Survey.

К счастью, эти объекты находятся на довольно стабильных орбитах, которые практически никогда не приводят их в центральную область Солнечной системы. Но за 4,6 млрд лет орбиты некоторых из них постепенно изменились и теперь пересекаются с орбитой Земли. Чтобы найти эти потенциально опасные «околоземные объекты» (Near Earth Objects, NEO), с середины 1980-х годов функционирует несколько небесных патрулей. Потенциально опасными объектами считаются те, которые приближаются к Земле на 0,05 а. е. (75 млн км, примерно 600 диаметров Земли) и при этом имеют размер более 200 м. В августе 2008 года таких объектов было обнаружено 1400.

А полное их число, вероятно, составляет около 5500, причем 750 из них имеют размер более 1 км. Вероятность, что какой-либо из них за ближайшие 100 лет врежется в Землю, составляет менее 1/10 000. Техника и методика наблюдений постоянно совершенствуются, поэтому все потенциально опасные объекты будут обнаружены примерно к 2020 году. Повторные наблюдения позволят астрономам точно вычислить их орбиты. Если о столкновении станет известно заранее, то будет достаточно времени, чтобы отклонить астероид, то есть изменить его орбиту по крайней мере на расстояние радиуса Земли. Предположим, чтобы перестраховаться, что подлетающий объект нужно отклонить лет за 40 до опасной встречи, так чтобы он миновал Землю по крайней мере на расстоянии ее радиуса. Тогда для этого будет достаточно слабого «толчка», всего около 1 см/с.

Кометная опасность имеет совершенно другой характер. Кометы приходят из внешних областей Солнечной системы и не оставляют нам времени для подготовки к встрече с ними. Обычно их замечают, когда они приближаются к Солнцу на расстояние ближе Юпитера. Если вычисления покажут, что им грозит столкновение с Землей, то для подготовки к встрече у нас остается не более 5 лет. Только стремительные действия и мощный «толчок» могут предотвратить столкновение. Вероятность столкновения случайно залетевшей кометы с Землей можно оценить: численно она примерно равна отношению сечения Земли к площади круга радиусом как у земной орбиты:

Р (столкновений/комет) = (R3/1 а.е.)- = (6,4 ч 106 м/1,5 х 1011 м)2 = 1,8 x 10-6

При десяти кометах, залетающих во внутреннюю область Солнечной системы каждый год, в среднем требуется около 50 млн лет, прежде чем одна из них столкнется с Землей. Так как это всего лишь статистический расчет, то следующее столкновение может произойти через 5 лет, или через 50 млн лет, или же в любой момент в этом промежутке. Кроме того, скорость столкновения с кометой будет на порядок выше, чем с околоземным астероидом. Это прямо скажется на последующих разрушениях, так как выделяющаяся при столкновении энергия пропорциональна квадрату скорости, а значит, в 100 раз больше.

Крупная, скажем, 500-км комета или астероид вызвали бы очень серьезные последствия для жизни на Земле. Кинетическая энергия такого удара была бы достаточной, чтобы испарить все океаны и растопить земную кору до глубины несколько сотен метров. Случись это сегодня, жизнь на Земле оказалась бы почти полностью уничтожена. К счастью, среди комет и астероидов таких объектов сегодня ничтожно мало по сравнению с ранней историей Земли.

Польза от катастроф.

У каждой монеты есть две стороны. Это верно и в отношении катастрофических явлений. Слишком быстрые колебания условий окружающей среды могут стать причиной локальных вымираний, а более мощные события могут иметь серьезные последствия на континентальном и даже на глобальном уровне. Более 95 % биологических видов может погибнуть. Но выжившие виды получат в новых условиях уникальный шанс для быстрой эволюции путем приспособления и восстановления себя в новой, формирующейся экосистеме. Мы видели, как это происходило на протяжении истории Земли. Широко известный пример расцвета млекопитающих после вымирания динозавров в результате падения астероида — не единственный. После глобальных ледниковых периодов 600–800 млн лет назад случился «Кембрийский взрыв» — массовое появление новых разнообразных биологических видов. Самое крупное вымирание, пермо-триасовое, произошедшее 250 млн лет назад, создало условия для распространения на суше растений, рептилий, двустворчатых моллюсков, крабов и динозавров. По времени это вымирание совпало с образованием Восточно-Сибирской платформы, самого сильного вулканического события на Земле, а также, вероятно, с мощным астероидным ударом, следы которого недавно обнаружены под ледяным шельфом Антарктиды.

Если бы грандиозная катастрофа произошла с земной биосферой завтра, то после нее, без сомнения, смогли бы возродиться относительно развитые и легко адаптирующиеся виды, такие как тараканы и крысы. Даже после столкновения с крупным астероидом новый старт мог бы начаться с очень разнообразных бактерий и архей.

Глава 31 Жизнь и наша Солнечная система

Сложное и прекрасное явление жизни пока обнаружено только на Земле. Признаки жизни уже искали и до сих пор ищут на других телах нашей Солнечной системы и даже в других планетных системах. Если попытаться представить, где могла бы существовать жизнь или хотя бы предбиологические химические процессы, то в нашем окружении найдется немало интересных мест. Даже те тела, которые сейчас не могут поддерживать жизнь, заслуживают нашего внимания, поскольку они могут рассказать нам о том, где обстоятельства могут сложиться неблагоприятно для жизни.

Обзор бесперспективных и благоприятных для жизни мест (и почему они таковы).

Когда формируются планеты, они, по определению Международного астрономического союза (МАС), дочиста вычищают свои окрестности (см. врезку 31.1). Четыре внутренние планеты Солнечной системы, подобные Земле, — Меркурий, Венера, Земля и Марс — сформировались из каменистого и железо-никелевого твердого вещества в горячей внутренней части протопланетной туманности вблизи молодого Солнца. В недрах этих четырех планет плотное железо постепенно опустилось к центру, образовав железоникелевое ядро, вокруг которого осталась менее плотная мантия из каменистых пород. Атмосфера из летучих газов сложилась из упавших на молодую Землю комет и астероидов, а ее циклическое развитие под влиянием вулканической активности детально описано в главе 29.

Удержится или нет эта атмосфера на планете, зависит от силы притяжения планеты и ее близости к Солнцу. Если гравитация слаба, тепловые скорости многих молекул атмосферы превосходят скорость убегания, и эти молекулы улетучиваются из атмосферы в космос. В таком случае планета со временем теряет атмосферу.

Врезка 31.1. Определение термина «планета».

Международный астрономический союз (MAC) — это организация, объединяющая свыше 10 000 профессиональных астрономов. В 2006 году Генеральная ассамблея MAC, проходившая в Праге (Чешская Республика), приняла новое определение термина «планета» для Солнечной системы. Традиционно считалось, что в Солнечной системе девять планет и тысячи более мелких тел, таких как астероиды и кометы. Но когда определили массу девятой планеты (Плутона) на основании движения его спутника Харона (открыт в 1978 году), то оказалось, что Плутон гораздо меньше Луны и его масса примерно в 20 раз меньше, чем у Меркурия. Позже во внешних областях Солнечной системы, на расстоянии Плутона и дальше, были открыты и другие небольшие объекты. Некоторые из них сравнимы с Плутоном по массе и орбитальному' движению. Надо ли их тоже называть планетами? А что такое «планета»? Несколько лет астрономы обсуждали эту проблему, и наконец в 2006 году Генеральная ассамблея MAC проголосовала за следующее определение, в котором фигурируют три категории объектов: «планета», «карликовая планета» и «малое тело Солнечной системы».

1. «Планетой» называется небесное тело, которое (а) обращается по орбите вокруг Солнца, (б) обладает массой, достаточной для того, чтобы его гравитация преодолела жесткость вещества и привела его в гидростатическое равновесие, то есть придала ему шарообразную форму, и (в) расчистило окрестности своей орбиты.

2. «Карликовой планетой» (dwarf planet) называется небесное тело, которое (а) обращается по орбите вокруг Солнца, (б) обладает массой, достаточной для того, чтобы его гравитация преодолела жесткость вещества и привела его в гидростатическое равновесие, то есть придала ему шарообразную форму, но (в) не расчистило окрестности своей орбиты, и при этом оно (г) не является спутником.

3. Все остальные объекты, кроме спутников планет, обращающиеся вокруг Солнца, называются «малыми телами Солнечной системы» (small Solar System body).

В соответствии с этим определением, в Солнечной системе сейчас восемь планет, Плутон теперь считается карликовой планетой, а абсолютное большинство астероидов являются малыми телами Солнечной системы.

Хотя Земля и Луна находятся на одинаковом расстоянии от Солнца, Луна, имея меньшую массу, потеряла свою атмосферу. Меркурий, который тоже легче Земли, практически лишен атмосферы, поскольку из-за близости к Солнцу тепловое движение молекул у его поверхности происходит значительно интенсивнее, и они легко улетучиваются. Да и Земля не гарантирована от тепловой потери газов. Молекулы с небольшой массой, такие как гелий и водород, движутся быстрее других, поэтому даже на нашем расстоянии от Солнца планета не может их удержать. Атомы водорода очень важны для жизни, и сохраниться на Земле они могут только в составе более крупных молекул, таких как вода (рис. 31.1).

Рис. 31.1. Сравнительные размеры внутренних планет — Меркурия, Венеры, Земли и Марса. Их называют планетами земной группы, поскольку у всех твердая кора из горных пород. С разрешения NASA.

У Луны и Меркурия отсутствие атмосферы вкупе с медленным вращением приводят к высокой дневной и низкой ночной температуре поверхности. Атмосфера существенно сглаживает колебания температуры, подобно одеялу сохраняя тепло ночью, а днем отражая свет лучше, чем голые скалы. Мы знаем как важно наличие жидкой воды в качестве растворителя у всех известных форм жизни. Пла-нета, не имеющая атмосферного давления, особенно неблагоприятна для жизни, поскольку жидкая вода на ее поверхности быстро испарится. На такой планете жидкая вода может существовать только глубоко под почвой или под ледяным покровом. Следовательно, масса планеты и ее расстояние от своей звезды играют важную роль для удержания атмосферы и для того, чтобы планета оказалась пригодной для жизни. Наиболее массивные из внутренних планет — Венера, Марс и Земля — имеют атмосферы.

Другим связанным с массой фактором является внутренняя активность планеты. Мы уже обсуждали, что вулканические выходы или источники энергии могли быть местом зарождения жизни на Земле. У маломассивных объектов относительно большая площадь поверхности на единицу массы, чем у объектов большой массы. Луна и Меркурий уже потеряли большую часть своего внутреннего тепла, поэтому вулканическая активность у них практически нулевая. Их мертвые поверхности хранят память об эпохе столкновений, сыгравшей важную роль в истории жизни на Земле (рис. 31.2).

Рис 31.2. Усеянная кратерами поверхность Меркурия со следами древней геологической активности. Фото передано зондом «Мессенджер» в январе 2008 года. Диаметр большого кратера с двойным валом около 200 км. С разрешения NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington.

Астероиды и кометы располагаются в основном за орбитой Марса, иногда залетая во внутреннюю область Солнечной системы. Крупнейшие астероиды имеют в диаметре несколько сотен километров и порой бывают настолько массивны, что принимают округлую форму.

Такие, по решению МАС, причисляют к карликовым планетам. Эти и более мелкие астероиды, а также кометы не могут иметь постоянную атмосферу. Считается также, что у них нет внутренней вулканической активности.

Хотя они слишком малы, чтобы иметь постоянную атмосферу, маленькие астероиды и кометы представляют значительный интерес в связи с возникновением, эволюцией и возможными перспективами жизни.

Мы уже обсуждали влияние столкновений на древнюю атмосферу и массовые вымирания на Земле. Напомним также, что в некоторых примитивных, не подвергшихся изменению метеоритах были найдены строительные блоки биомолекул.

Вдали от Солнца вода, аммиак и метан (соединения водорода с кислородом, азотом или углеродом) оставались твердыми ледяными частицами в протопланетной туманности и объединялись в маленькие тела.

Хотя это и спорно, некоторые астробиологи полагают, что пред-биологическая химия могла протекать в газо-жидких областях ядер комет или же они могли служить транспортом для спор бактерий, перенося жизнь от планеты к планете. Эти вопросы заслуживают детального обсуждения.

Четыре внешние планеты — Юпитер, Сатурн, Уран и Нептун — гораздо больше и массивнее внутренних планет. Находясь далеко от Солнца и обладая большой скоростью убегания у поверхности, эти планеты имеют протяженные атмосферы, состоящие из водорода, гелия, метана и других относительно легких газов. Юпитер и Сатурн считаются газовыми гигантами, а Уран и Нептун можно назвать ледяными гигантами.

Все внешние планеты окружены кольцами и большим количеством спутников. Некоторые из спутников чрезвычайно интересны как возможные прибежища жизни. Ряд спутников планет-гигантов, таких как Юпитер, могут двигаться настолько близко к планете, что их недра разогреваются под приливным влиянием планеты (табл. 31.1).

Таблица 31,1. Физические свойства планет.

Солнечные сутки — среднее время от одного восхода Солнца до следующего (отметим длинные солнечные сутки на Меркурии и Венере, например, на Меркурии от восхода Солнца до заката проходит 88 земных суток!).

Марс, подающий надежды.

Марс всегда будоражил воображение людей. Когда в своем орбитальном движении Земля и Марс сближаются, Марс в этот момент находится в противостоянии с Солнцем и выглядит на ночном небе красноватым и весьма ярким. Даже в маленький телескоп «в противостоянии» он кажется довольно большим, и на его поверхности можно рассмотреть кое-какие детали. Марс обращается вокруг Солнца на расстоянии около 1,5 а. е. и совершает полный оборот примерно за два года. Его экватор наклонен к плоскости орбиты на 25°, и это означает, что на Марсе, как и на Земле, существует смена сезонов. Марс делает один оборот вокруг своей оси примерно за 25 часов, и это тоже напоминает нам Землю.

Обычно в противостоянии расстояние между Марсом и Землей около 60 млн км. На таком расстоянии одна секунда дуги соответствует 300 км. В хороших условиях это приблизительно соответствует пределу разрешения при наблюдениях с помощью наземных телескопов. В большинстве случаев разрешение хуже и детали поверхности размыты. При таком разрешении хорошо заметны полярные шапки Марса, увеличивающиеся зимой и уменьшающиеся летом. В период марсианской весны на краях тающих полярных шапок возникает темная кайма, постепенно расширяющаяся в сторону экватора. Некоторые наблюдатели предполагали, что так могла бы проявлять себя жизнь растений, просыпающихся после холодной зимы: при продвижении потоков воды к экватору большие области якобы покрывались растениями.

Если воздух над местом наблюдения необычно спокоен, то на очень короткое время могут возникнуть условия, когда разрешение резко улучшается. Рефрактор с объективом диаметром 22 см может дать угловое разрешение 0,63 секунды дуги, или 200 км на поверхности Марса (примерно 1/34 его размера). Такого разрешения иногда достигал директор Миланской обсерватории Джованни Скиапарелли (1835–1910). В эти моменты Скиапарелли запоминал детали поверхности Марса и быстро зарисовывал их. Наряду с большими образованиями, такими как полярные шапки, он увидел четкие узкие линии, которые назвал «каналами»; по-итальянски canale означает всего лишь узкую полоску между двумя точками. Ошибка возникла при переводе на английский, где слово «канал» (channel) означает искусственное сооружение. На Земле такое сооружение могло быть построено людьми, а на Марсе — марсианской цивилизацией!

Персиваль Ловелл (1855–1916), бизнесмен, дипломат и писатель, пишущий о восточной культуре, увлекся астрономией. Он совершенно серьезно заинтересовался марсианскими каналами и даже построил собственную обсерваторию во Флагстаффе (шт. Аризона) специально для исследования Марса и других планет. Ловелл составил карту темных и светлых областей Марса и даже сети каналов на его поверхности. Он предположил, что это ирригационная система, построенная марсианами для распределения воды из полярных областей в другие части сухой планеты. Сравнив разные места, он даже определил положение столицы. Воистину, миролюбивая цивилизация способна координировать усилия на грандиозных проектах!

Что тут скажешь… Иногда энтузиазм, упорно действующий в одном направлении, неожиданно приводит к результатам в других областях. Как мы уже знаем, такие важные явления, как вращение галактик и красное смещение, были обнаружены именно в обсерватории Ловелла; там же была открыта и (карликовая) планета Плутон.

Менее «романтические» астрономы отвергли гипотезу о каналах на основании тщательных наблюдений и теоретических вычислений. В 1909 году греческий асгроном Эжен Антониади наблюдал Марс в исключительно благоприятных условиях с помощью 83-см телескопа Парижской обсерватории. К своему удивлению, он увидел множество мелких деталей, но не заметил каких-либо следов каналов. Что же касается теории, то Альфред Уоллес (один из создателей теории эволюции, см. главу 28) предпринял вычисления температуры Марса. Он рассчитал интенсивность солнечного света на поверхности Марса, учитывая его расстояние от Солнца, принял во внимание вращение Марса и предположил, что поверхность планеты должна согреваться до такой степени, чтобы ее тепловое излучение оказалось в равновесии с падающей на нее энергией Солнца. Уоллес получил удручающий результат: в самое теплое время на Марсе холодно, как в Сибири, каналы должны были замерзнуть, так что марсианская цивилизация вряд ли могла бы создать ирригационную систему.

Теперь мы знаем, что на экваторе летом в дневное время температура поверхности Марса поднимается выше точки замерзания воды, вплоть до +15 °C, но вообще-то поверхность планеты весьма холодная. Вдобавок к тому, что из-за большего расстояния от Солнца на единицу поверхности Марса падает менее половины солнечного тепла по сравнению с Землей, суточные перепады температуры на нем очень велики, так как тонкая атмосфера Марса не задерживает тепло днем и не сохраняет его в результате парникового эффекта ночью. Даже сибирская температура покажется гораздо приятнее, когда представишь, что на Марсе зимней ночью столбик термометра опускается до -150 °C. Средняя температура поверхности Марса около -60 °C, но суточные колебания велики.

Несмотря на холод, Марс рассматривается как вероятное место, где когда-нибудь сможет поселиться человек. Но переселенцы, обнаружив схожесть марсианского светового цикла с земным, заметят и большие различия. Радиус Марса равен 3400 км, то есть чуть больше половины земного, а плотность Марса 3,9 г/см3 составляет 70 % плотности Земли. Два этих фактора вместе означают, что на Марсе вес переселенцев составит 39 % от их земного веса. Без защитной одежды вне марсианской базы они будут страдать от удушья, так как давление воздуха очень низкое, всего 0,1 % от земного. Кроме того, на 95 % он состоит из двуокиси углерода, непригодной для дыхания. Без скафандра землянин задохнется через пару минут. Незащищенный житель Марса получит и серьезные солнечные ожоги от сильных ультрафиолетовых лучей.

Марсианские каналы и гипотетическая планета Вулкан показывают, как воображение человека — само по себе очень важное для науки — может увести нас в ошибочное направление и как тщательные научные наблюдения могут исправить подобную ошибку. Урбен Леверье в 1859 году обнаружил, что движение Меркурия по эллиптической орбите отягощено аномалией, которую не удается объяснить гравитационным влиянием на него известных планет. Тогда он предположил, что виновником аномалии служит неизвестная планета, движущаяся внутри орбиты Меркурия. Это предположение подкрепил французский любитель астрономии Э. М. Лескарбо, который видел планетообразный объект, быстро двигавшийся на фоне солнечного диска. В следующие десятилетия подобные объекты несколько раз наблюдали перед Солнцем. Было предпринято несколько попыток обнаружить их во время солнечных затмений, но ничего такого не удалось заметить во время затмений 1901–1908 годов. Альберт Эйнштейн в 1915 году объяснил аномалию орбиты Меркурия с помощью теории относительности и тем самым закрыл вопрос о Вулкане.

Идею марсианских каналов подхватили писатели. В романе Герберта Уэллса «Война миров», опубликованном в 1898 году, марсиане атаковали землян. Через 40 лет радиопостановка романа вызвала панику у слушателей, воспринявших ее всерьез. В некоторых фантастических произведениях марсиане представлены мирными существами, например в книге Клайва Льюиса «За пределом безмолвной планеты». Фактически мысль о каналах теплилась до тех пор, пока первые космические зонды не передали нам четкое изображение Марса, не искаженное расстоянием и земной атмосферой.

Экспедиции на Марс.

Советские экспедиции к Марсу 1960–1962 годов начались с «Марса-1», но ни одна из них не достигла Красной планеты. Первый американский зонд «Маринер-3», запущенный в 1964 году, разделил их печальную участь. Представление о планете, покрытой растительностью и каналами, окончательно похоронили 22 черно-белые фотографии, переданные на Землю по радио «Маринером-4» 15 июля 1964 года. Первый большой блок изображений был получен в 1969 году при пролете мимо Марса зондов «Маринер-6 и -7»: на 198 снимках запечатлелось 20 % поверхности Марса. Пару лет спустя «Маринер-9», первый космический аппарат на орбите другой планеты, передал на Землю 7329 снимков, покрывших 80 % Красной планеты. Эти изображения, сыгравшие важную роль в подготовке следующих экспедиций, рассказали нам довольно печальную историю: Марс — это песчаная пустыня без признаков жизни. Он выглядит таким же сухим, как пустыни Сахара или Атакама. На этих снимках видны также сухие русла рек, метеоритные кратеры, потухшие вулканы и гигантские каньоны, такие как долины Маринера длиной в 4000 км.

До экспедиций «Викингов» состав атмосферы Марса оставался неизвестным. На пике популярности марсианских каналов, в 1909 году, в Ликской обсерватории Уильям Кэмпбелл провел спектральные наблюдения Марса и не обнаружил воду, что противоречило гипотезе о заполненных водой каналах: испарения с водной поверхности должны быть заметны в атмосфере. Вначале предполагали, что у Марса может быть довольно значительная атмосфера. В обсерватории Мак-Дональд (шт. Техас) Джерард Койпер (1905–1973) смог обнаружить двуокись углерода — первую составляющую марсианской атмосферы. Наличие относительно плотной атмосферы подтверждалось также разницей размеров между большим ультрафиолетовым изображением, показывающим твердую поверхность планеты вместе с атмосферой, и изображением меньшего размера в ближнем инфракрасном диапазоне, где была видна только твердая поверхность. В 1950-х годах наилучшим считался такой вывод Жерара де Вокулёра об атмосфере Марса: 98 % азота, 1 % аргона, 0,25 % двуокиси углерода и менее 0,1 % кислорода.

Первый точный анализ атмосферы Марса провели космические зонды «Викинг-1» и «Викинг-2», севшие на Марс в 1976 году. За несколько лет работы на Марсе они полностью изменили наши знания об этой планете. Сейчас известно, что атмосфера Марса содержит 95 % двуокиси углерода, около 3 % аргона и только 2 % азота. Кислорода очень мало, всего 0,15 %, а воды еще меньше (0,03 %). Среднее атмосферное давление у поверхности составляет только 8 миллибар, или 1/120 давления у поверхности Земли. А на вершине 25-км горы Олимп давление атмосферы даже меньше, чем 1 мбар (рис. 31.3). Атмосфера Марса настолько разреженная, что не может удерживать жидкую воду на поверхности. В течение марсианского года атмосферное давление существенно меняется, поскольку зимой значительная часть двуокиси углерода конденсируется на полюсе в виде инея. Изменение давления составляет ±12 % с некоторой асимметрией между северной и южной зимой.

Рис. 31.3. Это изображение марсианских вулканов построено по данным лазерного альтиметра орбитального аппарата «Марс Глобал Сервейер». Гора Олимп — крупнейшая гора в Солнечной системе. С разрешения NASA.

«Викинги» ищут жизнь.

«Викинги» были первыми и до сих пор единственными экспедициями, которые искали жизнь на Марсе. На каждом из аппаратов было проведено по три биологических теста. Кроме того, газовый хроматограф искал химические соединения в верхних слоях мар-сианского грунта и измерял состав атмосферы вблизи поверхности. Хотя это и не был чисто биологический тест, но все же выяснялась локальная концентрация кислорода, озона, метана, формальдегида и других газов, связанных с жизнью. Обнаружилось немного паров воды, но не было найдено ни одного из органических газов.

Три остальных теста предназначались для поисков жизни. Они проводились в закрытых камерах. В эксперименте по газовому обмену измерялось производство и поглощение CO2, N2, СН4, Н2 и O2.

Вначале из закрытого контейнера изгонялась начальная атмосфера Марса путем наполнения контейнера гелием, затем туда вводилась смесь Не, Кг и CO2. Питательные вещества добавлялись с неоном, который служил диагностическим газом. Газовый состав постоянно измерялся. Проверялось, дышит ли что-нибудь в исследуемом образце почвы. В эксперименте по выделению метки тоже проверялось наличие дыхания. Но в этом случае питательный раствор содержал радиоактивный углерод 14С. В эксперименте постоянно отслеживалось возможное выделение 14С из-за организмов, которые могли питаться раствором.

В эксперименте по пиролизу искали возможность фотосинтетической или химической связи изотопа 14С с молекулами СО или CO2. Выдержав образец почвы 5 дней в инкубаторе с газом, помеченным изотопом 14С, его сначала нагревали до 120 °C и «проветривали» инертным газом, чтобы изгнать непрореагировавшие СО и CO2. Затем его прокаливали до 650 °C, чтобы произошло термическое разложение гипотетических марсианских микроорганизмов, и выделившиеся органические вещества собирали в испарительную камеру. Наличие в этом газе радиоактивного изотопа 14С должно было доказать существование метаболизма.

В 1976 году, во время проведения экспериментов «Викингов», еще не был открыт один из трех основных доменов жизни. В 1977 году профессор микробиологии Карл Вёзе и специалист по биоинженерии Джордж Фокс открыли новый домен живого, скрывавшийся до этого в тени бактерий, — археи. Оказалось, что этот домен почти целиком состоит из экстремофильных организмов. Это микробы, выживающие и даже процветающие в условиях, которые мы бы назвали невыносимыми для эукариотических организмов, таких как люди и растения. Эти условия подразумевают сильную засуху, высокое содержание соли, сильное ультрафиолетовое излучение, экстремальные значения температуры, высокую кислотность или щелочность.

Сейчас считается вполне вероятным, что жизнь на Марсе существует в виде архей и бактерий. Учитывая обилие разных метаболических систем у этих организмов, результаты экспериментов «Викингов» по поиску жизни на Марсе уже выглядят не столь однозначно. Эти зонды могли бы в большинстве случаев найти жизнь на Земле, но неясно, смогли бы они сделать то же самое на Марсе. Кроме того, не исключено, что жизнь была уничтожена реактивной струей или водой еще до проведения экспериментов. К тому же микробы вряд ли могут выжить в верхнем слое грунта, собранном манипуляторами «Викингов» для экспериментов. Ультрафиолетовое излучение может быть для микробов смертельным. Если бы копнули поглубже, на 1–2 метра, было бы гораздо лучше. Эти области защищены от интенсивного ультрафиолета и по причине более высокого давления могут содержать полости с жидкой водой.

После экспедиций «Викингов» наступила пауза, продолжавшаяся 20 лет, прежде чем новые зонды отправились к Красной планете. Но после этого к Марсу устремилась целая армада, умножившая наши знания об этой планете. «Пасфайндер» сел на Марс 4 июля 1997 года. Этот самоходный аппарат исследовал Марс в течение двух месяцев. Почти одновременно с ним был запущен и вышел на орбиту вокруг Марса аппарат «Марс Глобал Сервейер», проработавший до 2006 года, когда его сигналы пропали. В 2001 году на орбите вокруг Марса появился «2001 Марс Одиссей». В июне 2003 года был запущен европейский «Марс Экспресс», который вышел на орбиту вокруг Марса в декабре 2003 года. С собой он привез спускаемый аппарат «Бигль-2», который разбился при посадке; а орбитальный аппарат успешно работает до сих пор. С начала 2004 года по поверхности Красной планеты бродят два марсохода — «Спирит» и «Оппортьюнити». С 2006 года вокруг Марса обращается «Марс Риконисенс Орбитер». В 2008 году посадочный аппарат «Феникс» искал воду и пригодные для жизни условия в почве Марса. Но ни одна из экспедиций после «Викингов» напрямую не искала на Марсе жизнь.

Уже составлена весьма подробная карта Марса. Бледное северное полушарие довольно плоское и низменное, с небольшим количеством кратеров. Более темное южное полушарие — это возвышенная область с большим количеством кратеров. Различие в цвете вызвано разным цветом пыли, покрывающим эти области. Наиболее заметной деталью Марса при наблюдении с Земли в телескоп является плато Большой Сирт — темный «полуостров» со множеством кратеров, протянувшийся к северному полушарию. Со спутников он не кажется чем-то особенным. Зато огромные марсианские вулканы и глубокие каньоны с Земли выглядят не очень впечатляюще. Огромный 200-км ударный кратер Эллада в южном полушарии очень заметен при наблюдениях как земными телескопами, так и со спутников.

Огромные марсианские вулканы демонстрируют разницу между Марсом и Землей. Наши вулканы, сформированные всплывающими мантийными плюмами, часто образуют вулканические цепи, поскольку кора над плюмами перемещается, будучи частью тектонической плиты. Известный пример этого — цепь Гавайских островов. Некоторые вулканы на Марсе гораздо крупнее и массивнее земных. Это означает, что кора Марса не испытывает активных тектонических движений плит, поэтому лава от вулканической активности собирается в одном месте, образуя гигантский вулкан. Пока неизвестно, существует ли на Марсе вулканическая активность в нашу эпоху. Долины Маринера на плато Фарсида — замечательный пример прошлой геологической активности (см. цветную вкладку). Этот каньон имеет ширину 200 км, длину 4500 км и глубину до 11 км; он мог бы протянуться «от берега до берега» США. В действительности, долины Маринера — это не каньон, сформированный водной эрозией. Скорее это рифтовая долина, образованная разрывом земной коры и похожая на Восточно-Африканскую рифтовую долину, которая включает в себя, например, самые большие озера Восточной Африки и Мертвое море. Рифтовые долины образуются, когда куски суши удаляются друг от друга, а маленькая часть между ними проваливается.

Возможности жизни на Марсе и признаки воды.

Сейчас вырисовывается интересная картина относительно возможности жизни на Марсе. Она основана на тех данных, которые уже собраны и продолжают поступать от марсианских экспедиций, а также на исследованиях микробов-экстремофилов на Земле. Совершенно очевидно, что одним из решающих факторов для жизни служит наличие жидкой воды. Земная жизнь имеет клеточное строение, а растворителем во всех клетках служит вода. Разумеется, в клетках содержатся и другие важные молекулы, но вода вездесуща. Правда, вирусы в неактивном состоянии, пока они не начали размножаться внутри клетки, не нуждаются в воде в качестве растворителя, но, с другой стороны, в этом состоянии их вообще не назовешь «живыми».

Современный Марс — совершенно сухая планета. Воды в его атмосфере очень мало: если бы вся она сконденсировалась в осадок, то получился бы слой менее 0,1 мм. Среднее давление марсианской атмосферы около 8 мбар, а летом или зимой может понижаться до 5 мбар, что ниже тройной точки воды (6,1 мбар, 0,01 °C). Это означает, что, если бы жидкая вода каким-то образом оказалась на поверхности Марса, она бы быстро закипела или замерзла.

Некоторые ученые считают, что Марс всегда был очень сухим, но не исключено, что в прошлом все было совсем иначе. Есть немало свидетельств того, что воды там имелось довольно много, в том числе и в жидкой форме. Сила тяжести на Марсе меньше, чем на Земле. Легкие газы из атмосферы постепенно улетучиваются в космос, причем с такой скоростью, что за 1 млрд лет атмосфера теряет в весе в 10 раз. С учетом этого обстоятельства 2–3 млрд лет назад Марс должен был иметь атмосферу примерно с таким же давлением, как у современной атмосферы Земли. Кроме того, со временем меняется и состав его атмосферы: в прошлом пропорции разных газов в ней не отличались от теперешних; возможно, она была более пригодной для жизни. При наличии большего количества воды и двуокиси углерода атмосфера должна была создавать более сильный парниковый эффект и повышать температуру поверхности.

Изучая в начале 1980-х годов изображения, переданные орбитальными аппаратами «Викинг», ученые высказали идею о большом Марсианском океане. Это бы могло объяснить, почему Северная низменность такая ровная и почти лишена кратеров. Были найдены две береговых линии, каждая длиной в тысячи километров. Похоже, что когда-то треть марсианской поверхности покрывал океан глубиной 2 км. Последние капли воды испарились из него или замерзли 1–2 млрд лет назад. Эта гигантская масса воды могла бы стать колыбелью жизни. Но в этой картине есть одна загадка: почему береговая линия этого единственного океана имеет неодинаковую высоту? Это возможно только в том случае, если ось вращения Марса блуждала в теле планеты, что, как показывает компьютерное моделирование, могло происходить с характерным временем в сотни миллионов лет.

В Исландии можно найти потрясающие примеры катастрофических наводнений. Многие из них образовали каньоны, давшие начало рекам. От некоторых сейчас остались широкие сухие русла, порою довольно глубокие. На Марсе тоже видны признаки катастрофических наводнений. В принципе, этой жидкостью могла быть и не вода, а, например, лава; но, судя по форме русел и картине эрозии, все же более вероятна вода. На Марсе есть два типа структур, создать которые могли потоки воды: это большие стоковые каналы (outflow channels) и менее крупные сети долин (valley networks). Стоковые каналы видны на молодых территориях северного полушария, а сети долин — на ограниченных площадях обычно старых территорий южного полушария.

Стоковые каналы достигают в длину 2000 км, а в ширину 100 км. Они начинаются с так называемых хаотических местностей, хаосов, и имеют обрывистые стенки, следы течения воды, эродированные кратеры и сухие речные русла. Считается, что они образовались при катастрофических наводнениях из подпочвенных резервуаров воды. Заканчиваются они в структурах, похожих на сухое дно больших озер или океанов. Примерами таких образований служат долина Тиу и долина Apec.

Сети долин иногда напоминают древовидные дренажные системы небольших рек. Порой они выглядят как одиночные структуры, похожие на реку с несколькими притоками. Примером служит долина Нергал. Она старая и не могла образоваться при катастрофическом наводнении. Если в этих сетях долин текла вода, то ее небольшое количество могло быть обеспечено дождем, или таяньем ледника, или грунтовой водой. Вероятно, там была река, но обычно русла рек не прослеживаются. Не исключено также, что грунтовая вода вызвала обрушение почвы, под которой она текла. Многие из этих долин заканчиваются внезапно.

Даже в более мелком масштабе — на стенках некоторых небольших кратеров и на склонах — видны следы течения воды. Впервые их обнаружили на изображениях, полученных с высоким разрешением зондом «Марс Глобал Сервейер». По виду они похожи на маленькие ливневые стоки, заметные на холмах и склонах гор в пустынях и полупустынях Земли. Некоторые из них можно найти в огромном кратере Ньютон и на склонах долин Нергал (рис. 31.4) и Дао. Найдены десятки тысяч ливневых стоков длиной от сотен метров до нескольких километров. Наблюдения «Марс Глобал Сервейера» показали, что эти ливневые стоки активны и сегодня. С января по май 2000 года у них были замечены некоторые изменения.

Рис. 31.4. Долина Нергал на фото, переданном аппаратом «Марс Глобал Сервейер». С разрешения NASA/JPL/Malin Space Science Systems.

Изображения с «Марс Глобал Сервейера» выявили слоистые формирования. Если эти слои осадочные, значит, они должны были сформироваться в воде. Марсоход «Оппортьюнити» нашел на земле Меридиана минерал серый гематит, частично в виде маленьких темных шариков, похожих на ягоды черники; и это тоже свидетельствует о наличии в прошлом грунтовых или поверхностных вод. На Земле карбонаты обычно формируются при сочетании процессов эрозии и отложения и в конце концов образуют белые карбонатные скальные формации. Но на Марсе не обнаружилось высокообогащенных карбонатных отложений. Однако выход из этого противоречия есть: если древние океаны обладали высокой кислотностью из-за обилия CO2 в атмосфере, то отложение могло происходить в виде сульфатов, богатых серой и магнием, высокую концентрацию которых действительно обнаружил марсоход «Спирит».

Похоже, что на Марсе было очень много воды, но где же она сейчас? Найдется ли вода на Марсе в нашу эпоху? Ответ может быть только утвердительным. Мы уже говорили о недавно открытых «живых» ливневых стоках, указывающих на наличие подпочвенных слоев жидкой воды. Полярные шапки образуются из водяного льда, что подтверждено измерением профилей ледяных полярных шапок. Северная полярная шапка имеет толщину з км и по площади равна половине ледяного щита Гренландии. Южная шапка немного больше: ее толщина до 3,8 км. Суммарного количества воды полярных льдов (3–4 млн км3) достаточно, чтобы покрыть Марс 20-метровым слоем воды. Но это всего лишь 20 % от того количества, которое требуется для объяснения катастрофических наводнений, зафиксированных в виде нескольких стоковых каналов и оцененных другими способами.

Полярные шапки из водяного льда мало меняются от сезона к сезону, так как температура и давление воздуха остаются низкими. Наблюдаемый с Земли сезонный рост полярных шапок обусловлен тонким слоем снега из двуокиси углерода, толщиной всего в пару сантиметров. Это заметил и сфотографировал «Викинг-2».

Нечто похожее на большое замерзшее озеро было замечено орбитальным зондом «Марс Экспресс» в южной части равнины Элизий, близ марсианского экватора. Размер озера 800 х 900 км, а глубина, вероятно, несколько десятков метров. Эта область выглядит как равнина с изломанными ледяными плитами по краям. Если это действительно замерзшее озеро, то в нем могла сохраниться жизнь той эпохи, когда жидкость замерзала.

Возможность существования больших запасов воды под грунтом обсуждается с того момента, как орбитальный зонд «Марс Одиссей» провел в 2002 году водородное картирование с помощью гамма-спектрометра. Было зарегистрировано высокое обилие водорода. Полагают, что это водород в составе воды — жидкой, замерзшей или связанной — в поверхностном слое толщиной несколько метров. Наконец, посадочный аппарат «Феникс» в августе 2008 года подтвердил наличие водяного льда на глубине всего нескольких сантиметров под поверхностью.

Можно также искать жизнь, изучая некоторые газы, имеющие короткое время жизни в атмосфере и поэтому требующие постоянного воспроизводства для поддержания их обнаружимого количества. Ими могли бы быть кислород и озон, но еще экспедиции «Викинг» показали, что их обилие крайне мало. Метан под действием солнечного света разрушается в марсианской атмосфере за время порядка 300 лет, так что если метан обнаружен, он должен воспроизводиться практически непрерывно. Метан может появляться в результате геологической активности. Но и жизнь может быть источником метана: на Земле это болота и трясина, а также пищеварительный тракт крупного рогатого скота. Этот биометан образуется исключительно микробами домена археев — метанопродуцентами. По данным специального спектрометра на зонде «Марс Экспресс», ученые объявили об открытии метана в отдельных областях Марса на уровне десять частиц на миллиард. Похоже, что современной геологической активности недостаточно для производства такого количества метана, так что, возможно, он является продуктом жизнедеятельности. Последующие наблюдения показали, что и воды в атмосфере в тех районах тоже больше, что может говорить об их общем источнике. Эти результаты согласуются с возможностью жизни, но не доказывают ее.

Более удивительным было заявление о наличии формальдегида в атмосфере Марса. Дело в том, что в марсианской атмосфере формальдегид живет всего 7,5 часа, так что он должен был бы образоваться в этот же день! В принципе, он может получаться из метана, поэтому его обнаружение не столь уж удивительно. Слабые признаки формальдегида, о которых заявили в 2005 году, нашли в тех же областях, где ранее заметили метан, но количество формальдегида составило 130 частиц на миллиард, а это значительно больше того, что можно было бы ожидать от наблюдаемого метана. Витторио Формизано (Итальянский институт физики и межпланетного пространства) предложил различные сценарии для объяснения происхождения формальдегида, например химические процессы на поверхности под действием солнечных лучей, химические реакции в результате гидро- или геотермальной активности или же процессы жизнедеятельности. И все же трудно объяснить происхождение метана в количестве, необходимом для образования формальдегида.

Фантазии о марсианской жизни.

Несмотря на нынешние суровые условия на Марсе, по-видимому, были времена, когда там существовал океан или большие озера, толстая атмосфера, высокая вулканическая активность, большее содержание воды, метана и двуокиси углерода в атмосфере и более сильный парниковый эффект, обеспечивающий более теплый климат. В таких условиях на Марсе могла развиваться жизнь. За последние миллиарды лет условия становились суровее, атмосфера тоньше, что привело к замерзанию воды. Куда же делась жизнь, если в это время она была?

Возможны два варианта. Некоторые марсиане могли превратиться в очень стойких микробов, способных выжить совсем близко от поверхности (обычные бактерии Bacillus subtilis на поверхности Марса могут жить всего лишь 20 минут, так что это должны быть микробы типа Deinococcus radiodurans). Более вероятный вариант, что жизнь нашла убежище под почвой или во льду. Хотя жидкая подпочвенная вода пока на Марсе не обнаружена, весьма возможно, что где-то под почвой в сыром месте процветает жизнь. Там нет солнечного света, поэтому первичные производители должны быть хемотрофными. Такие виды земной жизни известны в доменах бактерий и архей. Вторичные производители и хищники могли бы уже питаться этими организмами. Но если жизнь нашла убежище в карманах соленой воды или открытом водяном льду, то могли существовать и фототрофные первичные производители, но вряд ли что-то более сложное.

Рис. 31.5 Дыры на Марсе, обнаруженные орбитальным аппаратом «Марс Одиссей», расположены по бокам горы Арсия. С разрешения NASA/JPL–Caltech/ASU/USGS.

Недавно инфракрасная камера зонда «Марс Одиссей» сфотографировала 7 дыр в поверхности Марса (рис. 31.5). Диаметры этих дыр от 100 до 250 м; стены и дно не видны. Судя по темноте провала при известной высоте Солнца, глубина некоторых из них не менее 80 м; но они могут быть и глубже. Условия в таких пещерах могут быть весьма привлекательными для жизни. Если это мелкие колодцы, то давление воздуха в них не должно отличатся от давления на поверхности. Если же это входы в более глубокие подпочвенные системы, то давление может возрастать с глубиной, а состав газа — меняться. Вода из стен может сочиться вниз. Освещение на разной глубине пещеры должно быть разным, так что должно существовать место с походящим количеством рассеянного света, но со сниженным ультрафиолетовым фоном; при этом фотосинтезирующие организмы могли бы жить рядом с хемотрофными, что позволило бы развиться полной экосистеме. Именно эти темные пещеры могут быть такими местами на Марсе.

Венера — жарко и сухо.

Венера, третий по яркости объект на нашем небе, встречается уже в вавилонских текстах. О ней знали майя и другие коренные народы Центральной Америки. Их сложная календарная система могла сложиться под влиянием наблюдений Венеры. Годичный солнечный цикл смены сезонов был представлен у них 365-дневным годом «Хааб». Был также и 260-дневный год «Цолькин». После «календарного круга» из 52 Хаабов эти два календаря синхронизировались. Из текстов майя известно, что Венера, которую они связывали с войной, играла важную роль. Через каждый синодический период Венеры (584 сут) ее конфигурации на небе повторяются: скажем, она видна высоко над горизонтом, на максимальном удалении от Солнца в 47°. Пять синодических периодов Венеры равны 8 Хаабам, или около 2920 суток. Это облегчает предсказания событий, связанных с Венерой. Особенно важным считалось первое появление Венеры на утреннем небе после нескольких недель ее отсутствия в период прохождения по орбите между Землей и Солнцем. Загадочные 260 дней могли быть связаны с длительностью видимости Венеры в качестве «утренней» или «вечерней звезды». Народы Центральной Америки могли знать, что в обоих случаях это одна и та же звезда. В средиземноморских культурах открытие этого факта приписывают Пифагору.

Когда Галилей рассматривал Венеру в свой телескоп, он заметил, что из-за обращения вокруг Солнца у нее видны те же фазы, что и у Луны, но нет никаких деталей на поверхности. Даже в современный телескоп на Венере не видно четких деталей из-за плотного облачного покрова. Атмосферу Венеры открыл русский ученый Михаил Васильевич Ломоносов (1711–1765). Наблюдая в 1761 году прохождение Венеры по диску Солнца, он заметил преломление солнечного света в воздушной оболочке планеты и правильно заключил, что Венера окружена атмосферой, похожей на земную или даже более плотной (см. рис. 9.3). В 1932 году Уолтер Адамс и Теодор Данхем, используя в спектрографе новые фотопластинки фирмы «Кодак», чувствительные к красному свету, определили, что основным компонентом атмосферы Венеры является двуокись углерода, а кислорода и воды там нет. Близость Венеры к Солнцу, ее толстые облака и ошибочная идея о том, что она моложе Земли, заставили многих изображать Венеру как планету, покрытую жаркими джунглями, в которых, возможно, бродят динозавры. Те же, кто правильно интерпретировал спектр, понял, что атмосфера создает на Венере сильный парниковый эффект и что воды там нет. Так что ближе к реальности горячая сухая пустыня, а не жаркие джунгли.

Тепловое радиоизлучение с большой длиной волны может пройти от горячей поверхности Венеры сквозь ее толстую атмосферу. Зарегистрировав эти волны, К. X. Майер с коллегами в 1956 году определил температуру поверхности Венеры. Два измерения яркостной температуры Венеры на волне 3,15 см дали значения около 320 °C (620 ± 110 К и 560 ± 73 К). Столь высокие значения были восприняты скептически, но позже измерения космических зондов показали, что температура еще выше.

Плотный облачный покров затрудняет измерения вращения поверхности Венеры. В учебниках астрономии 1950-х годов было приведено несколько возможных периодов вращения: 225 сут (синхронно с орбитальным периодом), или 37 сут, или немного меньше 24 часов (по аналогии с Землей и Марсом). В 1962 году Ричард Гольдштейн и Р. Л. Карпентер из Лаборатории реактивного движения определили, что Венера медленно вращается в обратном направлении с периодом около 240 суток. Это было сделано методом радиолокации — посылкой радиоволн в сторону Венеры и приемом небольшой их части, отразившейся от ее поверхности. Край планеты, движущийся к нам, при отражении укорачивает длину волны, а противоположный край — удлиняет (эффект Доплера). Разность длин волн дает скорость вращения экватора, на которую нужно разделить длину окружности Венеры, чтобы получить период ее вращения.

Для получения карты поверхности Венеры тоже применяют радар, волны которого проникают сквозь облака. При этом использу-ются два радиотелескопа, эффект Доплера (вызванный вращением планеты) и разница в задержке сигнала, отраженного от ближних и далеких частей полушария планеты. Первые радарные карты Венеры составил в 1962 и 1964 годах Р. Карпентер. Он выявил некоторые области на поверхности с различными радиосвойствами. Первые радарные карты высокого разрешения, около 20 км, были получены в 1972 году с помощью 300-метрового радиотелескопа в Аресибо. Это сделали Д. Б. Кэмпбелл и Р. Б. Дис из Аресибо и Гордон X. Петтенгилл из Массачусетского технологического института.

Экспедиции к Венере

В 1961–1962 годах началась космическая гонка автоматических зондов к Венере. Первые запуски — «Венера-1» и пара «Спутников» (СССР), а также «Маринер-1» (США) — оказались неудачными. Первым аппаратом, передавшим данные из окрестностей Венеры, стал «Маринер-2». Он был запущен в 1962 году и, пройдя на расстоянии 35 000 км от Венеры, подтвердил высокую температуру ее поверхности, высокое давление атмосферы, состоящей из двуокиси углерода, и наличие постоянного облачного покрова на высоте 6о км. Гонка была захватывающей: несколько последующих запусков советских зондов закончились неудачей. В июне 1967 года Советский Союз запустил «Венеру-4», которая смогла, опускаясь на парашюте, передавать данные до высоты 25 км. Это был первый зонд, измерявший характеристики Венеры непосредственно в ее атмосфере. Через два дня был запущен «Маринер-5», пролетевший на высоте 4000 км над Венерой.

В 1969 году «Венера-5 и -6» детально измерили атмосферные характеристики. В следующем году «Венера-7» стала первым космическим зондом, передавшим на Землю данные с поверхности другой планеты. Следующие зонды серии «Венера» тоже работали успешно. «Венера-8» подтвердила высокую температуру и давление атмосферы у поверхности, определенные «Венерой-7». В 1975 году «Венера-9 и -10» измерили разные параметры атмосферы и передали на Землю первые телевизионные изображения поверхности Венеры. Следующие советские экспедиции «Венера-11 и -12», а затем и «Венера-13 и -14» обнаружили гром и молнии, а также измерили минеральный состав поверхности. Два последних зонда с названием «Венера» — 15 и 16, — запущенные в 1983 году, были выведены на орбиту вокруг Венеры и составили радарную карту части ее поверхности. Тем временем США послали к Венере два зонда «Пионер», которые повторили или предварили многие советские измерения. Две советские экспедиции к комете Галлея, «Вега-1 и -2», имели на борту посадочные аппараты с аэростатами для исследования атмосферы Венеры. В 1989 году США запустили зонд «Магеллан», который составил детальную радиокарту 84 % поверхности планеты. В 2005 году Европейское космическое агентство (ЕКА) запустило на полярную орбиту вокруг Венеры зонд «Венера Экспресс» для проведения детального исследования атмосферы планеты и ее взаимодействия с солнечным ветром. С периодом 24 часа зонд приближается к поверхности Венеры на 250 км, а затем удаляется на 66 000 км.

По результатам этих экспедиций можно сделать некоторые выводы. Размер Венеры почти такой же, как у Земли, — радиус 6052 км. Расстояние Венеры от Солнца равно 0,72 а. е. Учитывая только эту близость к Солнцу, можно было бы ожидать, что температура на планете будет на 18 % выше земной. Без парникового эффекта это были бы комфортные 33 °C. Однако измеренная несколькими зондами температура у поверхности в среднем равна 464 °C, выше точки плавления свинца (328 °C), причем она почти не меняется от места к месту. Среднее давление на поверхности равно 92 бара, в 90 раз больше, чем на Земле, и в 10 000 раз больше, чем на Марсе. Поскольку экватор лежит почти в плоскости орбиты, сезонов там нет. Толстая атмосфера сглаживает колебания температур между продолжительными днями и ночами, длящимися примерно по четверти орбитального периода.

Поверхность Венеры лишена значительных ударных кратеров, границ тектонических плит и горных цепей; то есть выглядит она сравнительно молодой. Тектоническая активность там проявляется в форме нескольких вулканов. Похоже, что кора Венеры гораздо тоньше земной, и вероятно, местами она время от времени плавится. У поверхности атмосфера содержит 97 % двуокиси углерода и 3 % азота. Воды очень мало: 20 частей на миллион. Кислород зарегистрирован только в верхних слоях атмосферы, где он, как полагают, образуется при фотодиссоциации CO2.

Может ли на Венере существовать жизнь? В 1950-е годы некоторые все еще представляли ее как влажный и покрытый облаками мир, служивший источником вдохновения для писателей-фантастов. Но наземные наблюдения и в особенности измерения с помощью первых космических зондов разрушили представления о «планете богини любви» как о весьма уютном для жизни месте.

Условия на поверхности, в особенности — температура, превышающая жар кухонной плиты, а также отсутствие воды, непреодолимы для любого вида жизни. Учитывая, что под поверхностью еще жарче, там тоже нет защиты для жизни.

Хотя у поверхности атмосферное давление очень высокое, с высотой давление и температура уменьшаются. Измерения с зондов «Пионер», «Венера» и «Магеллан» показали, что на высотах от 45 до 75 км существует облачный слой из мелких капель водного раствора серной кислоты с концентрацией 75-95 %- Внутри этих облаков, на высоте около 50 км, температура и давление вполне соответствуют условиям земной жизни (50-0 °C, 1,3–0,37 бар). Разумеется, высокая кислотность может создавать проблемы для жизни, но на Земле известны экстремофилы, способные жить при pH = 1. Время зависания аэрозолей там больше, чем в земных облаках. Наконец, высотный слой облаков защищает эту зону от жесткого ультрафиолетового излучения.

В прошлом Венера могла быть совершенно другой. Возможно, молодая Венера больше походила на Землю: у них почти одинаковый размер, и вполне вероятно, что схожими были атмосферы. При остывании молодой Венеры вода из атмосферы могла образовывать океаны. Когда светимость Солнца составляла 75 % от современной, на Венере мог поддерживаться умеренный парниковый эффект, создающий приемлемые условия для жизни. Но по сравнению с Землей что-то пошло не так. Возможно, не смогли образоваться континенты и тектонические плиты, и поэтому CO2 не смог связаться в виде минералов в циклах выветривания, как это случилось на Земле. А может быть, на Венере были континенты и океаны, но температура медленно повышалась и достигла критического значения только миллиард лет назад. Или же на Венеру упал астероид, испаривший океаны. Пока мы знаем лишь то, что в некоторый момент температура на поверхности выросла настолько, что океаны испарились. Из-за насыщения атмосферы водяным паром — мощным парниковым газом — температура стала повышаться, и Венера испытала катастрофический парниковый эффект.

Как это ни странно, но именно большое количество воды в атмосфере обусловило ее активную потерю Венерой. Под действием солнечного ультрафиолетового излучения водяной пар стал расщепляться на кислород и водород, легкие атомы которого быстро улетучивались в космос. В то время как океаны Земли имеют глубину несколько километров, вода в современной горячей атмосфере Венеры, если ее сконденсировать, покрыла бы планету слоем толщиной менее полуметра. Судя по ударным кратерам, возраст современной поверхности Венеры около 250 млн лет. Это означает, что если на Венере жизнь возникла до испарения океанов, то следы жизни той эпохи не могли сохраниться. Более того, парниковый эффект, хотя и сейчас он довольно сильный, мог быть еще сильнее, когда в атмосфере имелось много водяного пара. В ту пору поверхность могла расплавиться, уничтожив все окаменелости. И все же возможны по крайней мере два варианта поиска жизни на Венере. Можно осуществить сбор и доставку на Землю частиц из облаков серной кислоты. Кроме того, можно искать окаменевшие следы жизни в метеоритах, выброшенных с Венеры во время ранних столкновений. Поняв то, что произошло с Венерой, мы сможем точнее предсказать будущее парникового эффекта на Земле (табл. 31.2).

Таблица 31.2. Свойства атмосфер и поверхностей внутренних планет.

Взгляд на Землю.

Жизнь на Земле заполнила почти все исследованные ниши. Щелочные и кислотные озера, горячие источники, подповерхностные щели, дно глубоких морей — все это заселено. И все же, похоже, есть некоторые ограничения для земной жизни. Верхний предел температуры составляет около 122 °C. Жизнь искали, но не нашли, в вулканических источниках при 250 °C. Предел холода определить сложнее. Многие формы жизни могут выжить при глубоком замораживании жидким азотом. Жизненная активность обычно уменьшается, когда температура опускается ниже точки замерзания воды, но в некоторых случаях определенная активность, например процесс восстановления ДНК, отмечается при температуре -40 °C. Для жизни, основанной на воде, полное отсутствие воды, очевидно, неприемлемо. Для жизни, основанной на ДНК и РНК, ультрафиолетовое излучение смертельно, так как оно разрушает ДНК и РНК. Похоже, что жизнь способна адаптироваться ко многим другим неприятным явлениям, таким как длительное похолодание или засуха, а также появление кислородной атмосферы.

В будущем астрономы надеются изучить спектры планет, принадлежащих иным звездам. Как можно было бы найти жизнь на далекой планете типа Земли? Мы можем реально провести такой эксперимент, направив телескоп в небо и посмотрев, на что похожа наша Земля из космоса. Сразу после новолуния, когда светится лишь тонкий серп Луны, можно заметить слабое свечение остальной части ее диска — так называемый пепельный свет. Эта часть Луны освещена солнечным светом, отразившимся от Земли (см. рис. 4.2). Спектр пепельного света в ближнем ИК-диапазоне показывает, что в нашей атмосфере содержится двуокись углерода, вода, кислород и озон. Это и есть признаки планеты, на которой присутствует основанная на воде жизнь и происходит фотосинтез. Мощные линии воды, кислорода и озона отличают спектр Земли от спектров Марса и Венеры. Если фотосинтез на Земле остановится, кислород в атмосфере будет сохраняться не более 6000 лет; так что, когда жизнь на Земле погибнет, кислород исчезнет почти мгновенно. Его наличие служит верным признаком жизни.

Юпитер — газовый гигант.

Когда Галилео Галилей наблюдал в свой телескоп яркий Юпитер, он заметил четыре «звезды», обращающихся вокруг него. Тогда эти наблюдения имели особое значение, поскольку впервые во Все-ленной обнаружилось иное тело, вокруг которого что-то обращается: это был вызов утверждению о том, что Земля — центр Вселенной. Используя третий закон Кеплера, можно вычислить расстояние Юпитера от Солнца, а затем и от Земли. Тогда, измерив видимый размер планеты, можно определить ее истинный размер; это можно сделать для любой планеты. Диаметр Юпитера превышает диаметр Земли примерно в и раз.

В 1687 году Ньютон в своих «Началах» дал основы вычисления других физических характеристик Юпитера. Из орбитальных периодов спутников и известных размеров их орбит можно найти массу Юпитера. Эти простые вычисления показывают, что у Юпитера масса в 330 раз больше, чем у Земли. При этом его средняя плотность лишь в 1,34 раза выше плотности воды. Ясно, что эта планета содержит очень много легкого вещества: это оказались водород и гелий.

Юпитер — очень активная планета со сложными потоками в атмосфере. У него мощное и протяженное магнитное поле, и он источник сильного радиоизлучения. Период его вращения менее 10 часов. Погружаясь в недра планеты, мы заметим, что молекулярный газообразный водород постепенно превращается в жидкий молекулярный водород, а затем в жидкий металлический водород. Недра Юпитера нагреты до температуры десятки тысяч градусов. Вероятно, в центре находится расплавленное железо-каменное ядро с массой около 20 масс Земли. Генерация магнитного поля, по-видимому, происходит в электропроводящих внутренних слоях, конвективные движения вещества в которых приобретают некоторый порядок в результате быстрого вращения планеты. Некоторые теории даже связывают поверхностные ветры с движениями вещества глубоко в ядре.

У Юпитера богатая система спутников. Четыре внутренних, так называемых галилеевых спутника — Ио, Европа, Ганимед и Каллисто — сферические. Судя по их размеру и яркости, даже до космических экспедиций было ясно, что у Европы высокое альбедо (отражательная способность), а у Каллисто — низкое.

К Юпитеру было послано шесть космических зондов. «Пионер-10» стартовал в 1972 году и прошел мимо Юпитера в декабре 1973 года. «Пионер-11», запущенный в 1973 году, пролетел мимо Юпитера в 1974 году, передал на Землю много отличных фотографий и ушел к Сатурну и дальше. «Вояджер-1», отправленный в 1977 году, встретился с Юпитером в 1980 году и продолжил свой путь к Сатурну. Он передал на Землю фотографии Юпитера и его галилеевых спутников. «Вояджер-2», запуск которого состоялся на несколько дней раньше, прошел мимо Юпитера в 1981 году. После длительного периода затишья в 1989 году ЕКА и НАСА отправили аппарат «Галилео», который прибыл к Юпитеру 7 декабря 1995 года, и в тот же день его зонд проник в атмосферу Юпитера. Сам аппарат «Галилео» перешел на орбиту вокруг Юпитера и совершил около 10 пролетов мимо каждого из галилеевых спутников. Когда ресурсы «Галилео» истощились, он был направлен на Юпитер и 21 сентября 2003 года врезался в его атмосферу, чтобы избежать столкновения со спутниками, которое могло стать причиной их заражения земными бактериями. В 2000 году мимо Юпитера пролетел зонд «Кассини-Гюйгенс», передавший 26 000 фотографий Юпитера и его спутников. В результате этих космических экспедиций мы знаем состав и условия в верхних слоях атмосферы Юпитера. В отличие от Венеры, там, по-видимому, нет зон, где может существовать жизнь. Даже если в верхних слоях атмосферы «комнатная температура» и облака из капель жидкой воды, то все равно атмосферная циркуляция постоянно перемешивает эти области с гораздо более глубокими и горячими слоями. Одним словом, сам Юпитер не выглядит пригодным для жизни местом. А теперь обратимся к его спутникам.

У четырех галилеевых спутников приблизительно такие же радиусы, как у Луны. Температура поверхности у всех них около -160 °C. Их очень разреженные атмосферы обладают давлением у поверхности менее 1 микробара. В таких холодных и почти вакуумных условиях на поверхности может не быть жидкой воды. Эти спутники не защищены от ультрафиолетового излучения Солнца. Кроме того, внутренние спутники — Ио и Европа — постоянно бомбардируются высокоэнергичными частицами, ускоренными в магнитосфере Юпитера.

Активная Ио.

Ио — самый близкий к Юпитеру из галилеевых спутников и самое геологически активное тело в Солнечной системе. На нем несколько активных вулканов с выбросами, поднимающимися на 300 км. Выделение тепла под действием приливных сил Юпитера поддерживает нижние слои коры Ио в расплавленном состоянии. Приливы на твердой поверхности Ио достигают высоты 100 м. Похоже, что поверхность покрыта серой и ее соединениями или силикатными породами. Хотя маловероятно, что Ио может быть пригодной для жизни, на ней все же есть места, заслуживающие дальнейшего исследования: это горячие источники и их окружение. Там может быть температурный режим, пригодный для жизни, хотя прочие условия могут быть слишком жестокими, за исключением пористого подпочвенного пространства, где жизнь могла бы найти убежище. Впрочем, отсутствие воды и там может обернуться большой проблемой (рис. 31.6).

Рис. 31.6. Ближайший к Юпитеру галилеев спутник Ио на фоне турбулентной атмосферы планеты. Снимок получен «Вояджером». С разрешения NASA.

Европа — ледяной мир с перспективами для жизни.

Европа — второй по расстоянию от Юпитера галилеев спутник и самый маленький из них; его радиус 1570 км, что составляет 90 % радиуса Луны. Высокое альбедо Европы давно уже навело астрономов на мысль, что поверхность спутника покрыта чем-то, значительно лучше, чем лунная пыль, отражающим свет.

Космические экспедиции показали нам удивительный мир льда. Его белесая поверхность очень гладкая: на ней всего несколько кратеров размером более 5 км. На поверхности видны линии сдвига, и в целом она поразительно напоминает ледяное поле, которое неоднократно растрескивалось. Под этим льдом находится океан соленой воды. «Галилео» пролетал над Европой на высоте 315 км. Его магнитометры зафиксировали изменения, соответствующие токопроводящему слою, например океану соленой воды. Суммарная глубина льда и океана составляет 80-170 км. Толщина льда неизвестна. Теоретические оценки, основанные на таких свойствах поверхности, как трещины и крупные кратеры, дают толщину ледяного слоя в диапазоне от двух до нескольких десятков километров.

Европа вращается вокруг оси не совсем синхронно с ее орбитальным движением вокруг Юпитера: поверхность спутника медленно поворачивается относительно прямой Юпитер-Европа. Об этом удивительном ее поведении известно пока немного: один «несинхронный» оборот поверхность спутника совершает не менее чем за 12 000 лет. Каменное ядро Европы, скорее всего, вращается синхронно с орбитальным движением, а значит, поверхность и ядро отделены друг от друга, что отлично согласуется с гипотезой об океане между ядром и внешним ледяным слоем.

Похоже, что Европа — мир подледного океана. Может ли там существовать жизнь? Чтобы однозначно ответить на этот вопрос, необходимо послать туда зонд и пробурить лед. Даже при наличии финансирования трудно гарантировать успех такой экспедиции. Удастся ли искать жизнь, не повлияв на эту среду и не загрязнив ее земными формами жизни? Нужно учесть и технические трудности, такие как бурение льда толщиной в километры или даже десятки километров. С научной точки зрения, важнейший вопрос в связи с жизнью — каковы источники ее энергии. Многие из этих проблем можно изучить, если удастся найти на Земле условия, близкие к тем, какие мы ожидаем встретить на Европе (см. врезку 31.2).

Под километровыми толщами льда практически нет света, поэтому, если жизнь там существует, ей нужны альтернативные источники энергии. Поскольку Европа довольно близка к Юпитеру, их приливное взаимодействие приводит к нагреву ядра спутника. Вполне возможно, что на дне океана есть гидротермальные жерла. На Земле подобные места обнаружены на Срединно-Атлантическом хребте. Они полны жизнью. Там много восстановленных соединений, которые служат источником энергии для жизни, отрезанной от Солнца.

Врезка 31.2. Озеро Восток в Антарктиде: испытательный полигон для Европы

В Антарктиде более сотни озер покрыты льдом круглый год. Одно из них считается наилучшим испытательным полигоном для будущих исследователей Европы. Это озеро Восток размером 250 x 50 км. Озеро названо в честь российской станции «Восток»; толщина льда над ним около 4 км. Возраст нижнего ледяного слоя около 420 000 лет. Под твердым льдом простирается 200-метровая зона шуги, а затем и само озеро со средней глубиной 344 м. На дне есть две области максимальной глубины — Южное углубление (400 м) и Северное (800 м). Возраст воды в этом озере, наверное, около миллиона лет. Ее температура около -3 °C, но вода остается жидкой из-за высокого давления. Здесь мы имеем пример экосистемы — или даже двух, в каждом из углублений, — куда свет не поступает с поверхности. Там холодно, а толстый слой льда защищает эту систему от враждебного внешнего мира. В 1990-х годах проводился эксперимент по бурению для получения образцов шуги и воды из озера. Но он был остановлен на расстоянии 130 м от нижней границы льда. Проблема этой скважины в том, что она заполнена тоннами керосина и антифриза, которые могут серьезно загрязнить озеро.

Отмечается, что озеро должно быть неблагоприятным для жизни из-за высокого содержания растворенного кислорода. Когда будут получены образцы, мы либо увидим первое стерильное озеро на Земле, либо, если жизнь там будет найдена, откроем новый тип экстремальной среды, где микробы смогли адаптироваться к высокому уровню кислорода. В любом случае результат будет интересным. Для получения незагрязненных образцов из этого озера в Лаборатории реактивного движения создают маленький зонд-робот, который сможет пробиться сквозь лед, а скважина за ним будет замерзать. Это может стать единственным средством для получения чистых образцов из озера Восток, а в будущем — из покрытого льдом океана Европы.

Температура там очень сильно меняется на расстоянии всего нескольких десятков метров: от 200–400 °C у самого жерла до +3 °C на окружающем морском дне. Высказывалось предположение, что такого типа термальные источники послужили колыбелью жизни на Земле; но подобные системы могут существовать и на Европе. В нашей Солнечной системе, помимо Марса, Европу можно считать наиболее подходящим местом для поиска жизни.

Наконец, несколько слов о Ганимеде и Каллисто. Ганимед — крупнейший спутник в Солнечной системе, он в полтора раза больше Луны. Каллисто немного меньше Ганимеда. Их поверхности, по сравнению с Европой, выглядят довольно темными, но модели этих тел показывают, что у них есть толстая ледяная кора, под которой море или, что вероятнее, слой воды, смешанной с ледяной шугой. Поскольку они дальше от Юпитера, приливный нагрев недр у них не так велик. Эти спутники не обладают большим потенциалом для жизни.

Сатурн: газовый гигант с великолепными кольцами.

Сатурн — самая далекая планета, видимая невооруженным глазом. Когда Галилей навел на нее телескоп, он удивился, что Сатурн виден как «три звезды». Через два года маленькие «звездочки» по бокам исчезли, и еще через четыре года, в 1616 году, он зарисовал кольца как половинки эллипса. Возможно, он был несколько обескуражен, наблюдая столь сильные изменения во внешности «звезды». В 1655 году Христиан Гюйгенс предположил, что Сатурн окружен сплошным кольцом. Внешний вид, исчезновение и появление кольца объяснялись его наклоном относительно плоскости земной орбиты: повернувшись ребром к Земле, кольца исчезают. В том же году Гюйгенс открыл и крупнейший спутник Сатурна — Титан. После Гюйгенса кольца часто наблюдали и другие астрономы, причем многие из них полагали, что это твердые тела. Джованни Кассини и Жан Шаплен считали, что кольца состоят из множества маленьких твердых тел; потребовалось 200 лет, чтобы эта идея стала общепризнанной.

Известно, что у Сатурна самая низкая средняя плотность среди всех планет Солнечной системы — около 0,7 плотности воды. Эта газовая планета в основном состоит из водорода и гелия; этим она очень похожа на Юпитер. Ее масса примерно в 100 раз больше массы Земли. Ее великолепный ряд колец более заметен, чем кольца других трех планет-гигантов. Система из шести десятков ее спутников непохожа на систему спутников Юпитера. У Сатурна лишь один крупный спутник — Титан. Диаметры еще четырех лежат в интервале от 1000 до 1500 км, а остальные значительно мельче.

Четыре космических зонда побывали в системе Сатурна. По пути к нему все они посетили систему Юпитера. «Пионер-11» пролетел мимо Сатурна в 1979 году, «Вояджер-1» в 1980 году и «Вояджер-2» в 1981 году. Прошло двадцать лет, и в октябре 1997 года был запущен зонд «Кассини-Гюйгенс». Посадочный аппарат «Гюйгенс» отделился от него на Рождество 2004 года и опустился на поверхность Титана 14 января 2005 года. Ожидается, что орбитальный аппарат «Кассини» сможет работать до 2017 года.

Титан — спутник с атмосферой.

В 1944 году Джерард Койпер спектроскопически открыл атмосферу Титана. Он заключил, что атмосфера состоит из метана. Так и считалось вплоть до полета «Вояджера-1», который в 1980 году показал, что основной компонент атмосферы Титана — азот, а давление у его поверхности превышает земное примерно в 1,5 раза. «Вояджер-2» в своем полете к Сатурну не приближался к Титану. Важную роль в исследованиях Титана сыграл космический телескоп «Хаббл» благодаря высокой четкости изображений.

Прорыв в исследованиях Титана совершили орбитальный аппарат «Кассини» и его посадочный зонд «Гюйгенс». Вначале сведений о поверхностной температуре или климате было очень мало. Атмосфера оказалась азотной с 1 % метана в стратосфере и 5 % у поверхности. Остальные газы обнаружены в мизерных количествах. Температура на поверхности около -180 °C. Это на 10 градусов меньше, чем ожидалось по теоретическим расчетам; виноват туман в атмосфере Титана, эффективно поглощающий свет, но прозрачный в инфракрасном диапазоне. Во время своего 2,5-часового спуска в атмосфере «Гюйгенс» наблюдал довольно однородный туман от высоты 150 км вплоть до поверхности, но не заметил облаков. Ветер у поверхности был очень слабым (<1 м/с), но на высоте 120 км он дул со скоростью 120 м/с.

После посадки «Гюйгенс» передавал данные более часа. Он сел на мягкую поверхность, напоминающую мокрую глину, слегка утоптанный снег или же влажный или сухой песок. Быстрое изменение газового состава в месте посадки показывает, что почва под аппаратом была увлажнена метаном. Бортовые камеры передали изображение камней вокруг аппарата, которые могут быть силикатными, но больше похожи на водяной лед, покрытый углеводородами. Снимки, сделанные «Гюйгенсом» при спуске, показывают, что внешне поверхность Титана похожа на земную. Ветвящиеся структуры очень напоминают русла рек с притоками. По форме и структуре это типичная дренажная система дождевых стоков. Они более темные по сравнению с окружающим ледяным ландшафтом.

В 2006 году «Кассини» получил радарные изображения 75 озер. Они находятся в полярных областях, где метан и этан стабильно пребывают в жидкой форме. На радарных изображениях эти озера выглядят темными (как мокрая дорога в свете фар), поскольку их гладкая поверхность отражает радиоволны зеркально, так что при их падении под углом к поверхности они не возвращаются к радару. Озера располагаются в топографических депрессиях, и в них впадают русла, похожие на те, которые видел «Гюйгенс». В 2007 году при пролете вблизи Титана «Кассини» заметил такое большое озеро, что его следовало бы назвать «морем». Его площадь 100 000 км2, то есть 0,12 % поверхности Титана (к примеру, Черное море занимает 0,085 % земной поверхности). Поданным «Кассини» можно предположить, что есть и второе озеро в несколько раз большего размера. Их было бы достаточно для поддержания круговорота метана в атмосфере (рис. 31.7). В 2008 году спектральные наблюдения показали, что жидкость в озерах — это метан с некоторым количеством этана и, возможно, азота. До сих пор не совсем ясно, как образуются облака в атмосфере Титана, почему они быстро исчезают и идут проливные метановые дожди (~ 100 кг/м2). Но очевидно, что на Титане есть круговорот жидкости, в каком-то смысле похожий на круговорот воды на Земле, с той лишь разницей, что вместо воды — метан.

А что можно сказать о жизни в таком мире? Поверхность Титана холодная, поэтому химические процессы протекают там очень медленно. Более того, у Титана никогда не было теплого прошлого (но его ожидает теплое будущее, когда Солнце превратится в красный гигант). Сейчас на поверхности Титана нет жидкой воды, а в атмосфере нет водяных паров. Но средняя плотность Титана говорит о том, что он наполовину состоит из каменистых пород, а наполовину — из водяного льда. Расчеты показывают, что под толстой ледяной корой может быть океан из смеси воды и аммиака. При высоком давлении могут существовать углеводородные клатраты, под слоем которых, вплоть до каменистого ядра, должны располагаться льды высокого давления. В некотором смысле это напоминает Землю, с той лишь разницей, что роль земных силикатов на Титане играет вода. Вероятно, на Титане действуют вулканы, извергающие воду, метан и аммиак. Озера «водяной лавы» могут сохраняться в жидкой форме сотни лет, становясь потенциальными оазисами для развития жизни.

Рис. 31.7 Озера и их берега на Титане. Радарное изображение подучено орбитальным аппаратом «Кассини». С разрешения NASA/JPL.

Холодные области за пределом вулканов и тектонических областей Титана непригодны для знакомых нам форм жизни. Если там и есть жизнь, то она совершенно иная. В любом случае, Титан может оказаться наилучшим полигоном предбиологической химии. В атмосфере, на высоте 200–300 км от поверхности, есть зона фото-активного тумана. В этой зоне, простирающейся до высоты 1000 км, метан и азот ионизуются под действием солнечного ультрафиолета и энергичных частиц. Ионы весьма активны: они стимулируют формирование сложных молекул различного состава и длины. Они объединяются в дегтеобразные вещества под названием толины; возможно также, что там могут формироваться различные аминокислоты и длинные углеводородные цепи. Когда толины становятся достаточно тяжелыми, они начинают осаждаться на поверхность Титана. Все это напоминает процессы, происходившие в атмосфере Земли, когда на ней зарождалась жизнь.

Другие спутники Сатурна, например Энцелад, Тефия и Диона, значительно меньше Титана. 14 июля 2005 года «Кассини» пролетел мимо Энцелада и обнаружил, что в районе южного полюса наблюдаются огромные выбросы водяного пара и кристаллов льда. Расчеты показывают, что эти гейзеры извергаются из теплого моря, возможно, богатого органикой. Согласно некоторым моделям, это море глубиной 50 км лежит под 10-км слоем льда. Близость теплого и холодного может играть важную роль для формирования компонентов жизни. Это также нужно иметь в виду, изучая Европу и Титан. Измерение параметров плазмы вокруг Сатурна показывает, что Тефия и Диона выбрасывают в пространство частицы. Возможно, эти ледяные спутники тоже геологически активны.

Внешние области Солнечной системы — холод и одиночество.

Во внешней части нашей планетной системы холодно. Уран и Нептун — уменьшенные версии Юпитера и Сатурна. Они недостаточно велики, чтобы в их недрах мог образоваться металлический водород. Вероятно, в их составе большую долю занимают соединения водорода с другими элементами. По тем же причинам, что и в случае Юпитера и Сатурна, они считаются непригодными для жизни.

На таком большом расстоянии от Солнца вода принимает твердую форму. Метан и азот превращаются в жидкость, а затем — в снег. На Тритоне, крупнейшем спутнике Нептуна, видны своеобразные вулканы, извергающие, по-видимому, жидкий азот или метан. Но эти вулканы не дают тепла, необходимого для жизни.

Некоторые объекты, движущиеся за Нептуном, — Плутон и еще полдюжины тел радиусом 400 км и более, — достаточно велики, чтобы иметь почти сферическую форму. Сейчас их, а также Цереру из Главного пояса астероидов называют карликовыми планетами (врезка 31.1). Мы мало знаем об этих далеких мирах. Первые оценки массы Плутона были косвенными и лежали в широком диапазоне, вплоть до значения, почти равного массе Земли. В 1978 году был открыт спутник Плутона Харон, движение которого позволило измерить массу Плутона: она оказалась очень маленькой, всего лишь пятая часть массы Луны, то есть около 1/1400 массы Земли (рис. 31.8).

Поверхность Плутона в основном покрыта азотным льдом. Любопытно, что, продвигаясь к периферии Солнечной системы, мы обнаруживаем, что газы наподобие азота, составляющие основу атмосферы таких внутренних объектов, как Земля, в далеких системах принимают форму твердого льда. У Плутона разреженная атмосфера. Недра его, по-видимому, холодные. Если в коре есть жидкие зоны, то в них жизнь или даже продвинутая предбиологическая химия с трудом могла бы развиваться со сколько-либо значительной скоростью. Другие крупные объекты за орбитой Нептуна удалены еще дальше, чем Плутон, поэтому условия на них или внутри них оценить трудно. Если бы в той области обнаружился объект размером с Землю, то под поверхностью у него мог бы быть жидкий океан, но эти рассуждения лучше оставить фантастам.

Рис. 31.8 Карликовая планета Плутон кроме крупного спутника Харон, открытого в 1978 году, имеет два маленьких спутника — Никта и Гидра, обнаруженных космическим телескопом «Хаббл».

Кометы и астероиды.

С далекой периферии Солнечной системы в ее внутренние области регулярно прилетают гости. Это кометы, довольно маленькие, состоящие изо льда и пыли. Они приходят по сильно вытянутым эллиптическим орбитам. Самая удаленная часть такой орбиты — афелий — может находиться в сотнях и тысячах астрономических единиц от Солнца, тогда как в наиболее близкой к Солнцу точке орбиты — перигелии — комета может почти касаться поверхности Солнца. Некоторые кометы буквально ныряют в атмосферу Солнца, а другие не подходят к нему ближе орбиты Юпитера.

На своих вытянутых орбитах кометы большую часть времени проводят в области афелия. Их визиты вглубь Солнечной системы очень коротки и драматичны. Приближаясь к Солнцу, комета начинает согреваться в его лучах. Примерно на расстоянии Юпитера тепла становится достаточно, чтобы «разбудить» комету. Из нее начинают сублимироваться летучие газы. Твердое ядро окутывается довольно яркой газовой комой, и начинает вытягиваться хвост. Возрастающий поток солнечного излучения все сильнее нагревает комету, а давление солнечного ветра на газ и частицы пыли создает один или два хвоста. После прохождения перигелия все идет в обратном порядке, и комета удаляется в своем одиночестве в пустоту космоса. Когда-нибудь она может вернуться.

На пути вглубь Солнечной системы комета испытывает притяжение планет-гигантов. Обычно это немного меняет ее орбиту. Если она пройдет близко от планеты, то может быть захвачена на орбиту меньшего размера. Иногда комета даже может столкнуться с планетой, как это случилось 16–22 июля 1994 года, когда разрушающаяся комета Шумейкеров-Леви врезалась в Юпитер (см. цветную вкладку).

Кометы интересны с многих точек зрения. Как было сказано, именно они в эпоху молодости Солнечной системы доставили на поверхность планет много важных химических соединений. Радиоастрономическая спектроскопия выявила в кометах десятки разных молекул, в основном тех же, которые наблюдаются в холодных межзвездных облаках. В кометах найдены молекулы воды, синильной кислоты (HCN), формальдегида (Н2CO), считающиеся первыми строительными блоками жизни. Несколько космических зондов было направлено к кометам и собрало много данных. Успешными были экспедиции Stardust (комета Вилд 2), Deep Impact (Темпель 1), Deep Space-i (Борелли), ISEE-3 (Джакобини-Циннер) и пять экспедиций к комете Галлея. Stardust стала первой экспедицией, доставившей на Землю образцы вещества из объекта, находящегося дальше Луны.

А теперь забудем о хвосте и коме и рассмотрим саму комету. Среди исследованных зондами комет ни одна не похожа на другую. Комета Вилд 2 почти сферическая, кометы Борелли и Галлея довольно вытянуты и напоминают батат или земляной орех. Рассмотрим подробнее комету Темпель 1. В момент прибытия к ней зонда она была на расстоянии 1,5 а. е. от Солнца. Ее размер 8 х 5 км типичен для ядер комет. Перед наибольшим сближением от аппарата Deep Impact отделился массивный «ударник» и с большой скоро-стью врезался в комету. В результате столкновения и вызванного им взрыва стало ясно, что на поверхности ядра лежит пылевой слой толщиной десятки метров и есть признаки слоистой структуры в глубине. Низменные области ядра довольно плотно покрыты кратерами, а возвышенные выглядят более молодыми. Очевидно, что недра весьма пористые, поскольку средняя плотность составляет всего 0,6 г/см3. На стороне, обращенной к Солнцу, температура около 70 °C, а на теневой стороне -3 °C. Ясно, что поверхность слишком теплая для льда. В выбросе, наблюдавшемся после столкновения, инфракрасный телескоп «Спитцер» увидел следы глин и карбонатов. Это может означать, что где-то в глубине ядра есть или хотя бы иногда бывает жидкая вода. Это важно для предбиологической химии, а может быть, и для зарождения жизни, так как делает возможным в кометах наличие цикла «концентрации-разведения». Более того, химические процессы на поверхности с участием минералов, глин, льдов, солнечного излучения и высокоэнергичных частиц делают принципиально возможным формирование сложных молекул. Там может синтезироваться нечто похожее на толины. Доставленные на Землю образцы кометы Вилд 2 говорят о том, что в минералогических процессах вода там не играла заметной роли. С другой стороны, эти образцы содержат множество довольно сложных молекул.

Различие между кометами и астероидами не всегда однозначное. В наибольшей степени они различаются своей «пушистостью». На поверхности астероидов и у метеоритов тоже могут быть подобные, хотя и не тождественные, химические соединения. Это доказал метеорит Мурчисон, упавший в 1969 году в Австралии. В нем было обнаружено несколько десятков аминокислот и других сложных органических молекул.

Похоже, что при ударе о планету кометы не выживают. Астероид же, ударившись о планету, может расколоться, и какая-то часть вещества может быть выброшена обратно в космос. В выброшенном веществе может содержаться жизнь, скажем, в форме бактерий. Если кусок вещества имеет размер порядка 1 м, он может служить переносчиком жизни между планетами в Солнечной системе. Вполне вероятно, что такой перенос происходил неоднократно. Любопытно к тому же, что это может дать единственную возможность для обнаружения ископаемой жизни древней Венеры, если столкновение случилось очень давно.

В результате развития наших знаний о жизни на Земле и новых открытий об условиях на Марсе и других телах Солнечной системы постоянно расширяется список мест, пригодных для жизни или, по крайней мере, для предбиологической химической эволюции. А уж если наша планетная система имеет несколько мест, где могли бы существовать определенные формы жизни, то число потенциальных прибежищ жизни во всей нашей Галактике может значительно возрасти. Но часто ли у других звезд существуют планетные системы? И пригодны ли они для жизни? Мы обсудим это в следующей главе.

Глава 32 Внесолнечные планетные системы и жизнь на экзопланетах

Впервые за всю историю человечества прибавление в семье планет произошло в 1781 году, когда Вильям Гершель открыл Уран, который сначала он принял за комету (см. главу и). А раз была найдена новая планета, хотя бы и случайно, то вероятность обнаружения следующих планет возросла. В конце XVIII века эти надежды усилились благодаря открытию эмпирического закона Тициуса-Боде, который, как тогда считали, точно предсказывает расстояния всех известных планет, включая Уран, но при этом говорит о несуществующей планете, которая должна находиться на расстоянии 2,8 а. е. от Солнца (см. врезку 11.1).

Рост числа планет.

В 1801 году итальянский астроном Джузеппе Пиацци (1746–1826) обнаружил объект, названный им Церерой, почти точно на расстоянии 2,8 а. е. от Солнца. Но Церера оказалась намного меньше других планет: ее размер не превысил 1000 км. Это открытие и последовавшие за ним открытиями других, еще более мелких, объектов между Марсом и Юпитером, в конечном счете привели к объединению этих «планеток» в новый класс — астероидов (поскольку в те годы при наблюдении в телескоп они напоминали звезды). Сейчас известны многие тысячи астероидов; некоторые из них движутся по орбитам во внутренней части Солнечной системы. За орбитой Нептуна обитают ледяные астероиды. Один из них — бывшая планета Плутон — недавно был понижен в звании, тогда как крупнейший из астероидов — Церера — получил повышение: оба они стали карликовыми планетами. Силой собственного тяготения они придали себе шарообразную форму, но при этом не могут оказать существенного гравитационного влияния на объекты, движущиеся по соседним орбитам.

На фоне доминирующего тяготения Солнца планеты тоже гравитационно влияют друг на друга, в разной степени, в зависимости от их масс и взаимных расстояний. Но даже с учетом влияния планет, вплоть до Юпитера и Сатурна, расчетная орбита Урана не вполне согласовывалась с его истинным положением. Эти небольшие расхождения позволили астрономам вычислить положение неизвестной планеты, возмущающей движение Урана. Вскоре вблизи предсказанного места действительно был обнаружен Нептун. В главе и мы рассказывали захватывающую историю этого открытия. Тот же метод возмущений астрономы пытались использовать и при поиске девятой планеты. Но открытие Плутона в ходе этого поиска, в общем-то, произошло случайно, так как масса Плутона слишком мала, чтобы заметно влиять на Нептун, который движется по своей орбите под управлением Солнца и подчиняясь небольшим возмущениям со стороны других массивных планет внутри его орбиты.

История открытия новых планет не была такой уж ровной. Начавшись тысячелетия назад, их список надолго ограничился планетами, видимыми невооруженным глазом, включая Сатурн. Затем случился взрыв энтузиазма и удачи, вызванный случайным открытием Урана, методичным поиском и открытием астероидов и Нептуна и, наконец, обнаружением Плутона благодаря упорству и счастливой случайности.

Попытки обнаружить экзопланеты путем измерения положения и скорости звезд.

В результате обнаружения новых планет в Солнечной системе мысль о возможности поиска планет вблизи других звезд перестала быть крамольной. Астрономы ожидали, что могут существовать иные планетные системы, вероятно, похожие на нашу, но понимали, что найти такие планеты — внесолнечные планеты, или экзопланеты — будет очень трудно. Четыре ближайшие к Солнцу планеты (Меркурий, Венера, Земля и Марс) — очень маленькие каменистые тела, причем масса наиболее крупной из них — Земли — составляет всего 1/300 000 массы Солнца. Четыре внешние планеты (Юпитер, Сатурн, Уран и Нептун) — газовые гиганты, но масса даже самого массивного из них — Юпитера — равна всего лишь 1/1000 массы Солнца.

Согласно третьему закону Ньютона, действие равно противодействию, а это означает, что если Солнце вынуждает планеты обращаться вокруг него, то и планеты в свою очередь заставляют Солнце двигаться. Сильнее других планет на Солнце действует Юпитер. Если смотреть на Солнечную систему извне (рис. 32.1), то его влияние проявляется в том, что Солнце то приближается к внешнему наблюдателю, то удаляется от него со скоростью 13 м/с. По сравнению с орбитальной скоростью Юпитера (13 км/с) это мизерная, но все же измеримая величина. Если же говорить о наблюдаемом положении на небе, то, пока Юпитер делает оборот по своей орбите радиусом 5 а. е., Солнце обращается по гораздо меньшему (5/1000 а. е.) кругу вокруг их общего центра масс. Эти два небольших эффекта — скорости и положения — дают нам способы обнаружения планет вблизи других звезд. Отметим, что эффект скорости становится заметным только в том случае, если орбита экзопланеты ориентирована к нам почти ребром.

Рис. 32.1. Схема движения Солнца и Юпитера вокруг их общего центра масс. Наблюдатель справа видит, как Солнце обращается по малому кругу, покачиваясь вверх и вниз по положению на небе и двигаясь вперед и назад относительно наблюдателя (прямая и пунктирная стрелки). При этом Юпитер находится в противоположном положении на своей гораздо большей орбите и движется в обратную сторону (прямая и пунктирная стрелки). Размер орбиты Солнца на рисунке по сравнению с орбитой Юпитера сильно преувеличен: в действительности отношение радиусов этих орбит соответствует отношению их масс (1000:1).

Считалось, что из-за слабости эффектов для их измерения придется наблюдать звезду в течение многих орбитальных оборотов планеты. Практически это было невозможно до появления компьютеров и новых технологий. Однако первые заявления об открытии экзопланет были сделаны еще в XIX веке. Тогда применяли астрометрический метод: пытались точно и многократно определять положение звезды в надежде заметить небольшие изменения в ее положении вследствие взаимного орбитального движения звезды и планеты. Особенно популярной в этом смысле оказалась двойная звезда 70 Змееносца. В 1855 году капитан У. С. Джекоб (W. S. Jacob) из обсерватории Ост-Индской компании в Мадрасе сообщил, что аномалии в орбитальном движении пары звезд делают «очень вероятным» наличие планеты в этой системе. В 1890-х годах уже знакомый нам Томас Си из Морской обсерватории США утверждал, что орбитальные аномалии указывают на присутствие темного тела, обращающегося вокруг одной из звезд 70 Змееносца с периодом 36 лет. Сейчас все это признано ошибкой наблюдателей.

Как мы уже знаем, планета типа Юпитера, обращаясь вокруг звезды типа Солнце на расстоянии 5 а. е., должна сдвигать звезду примерно на 0,005 а. е. Если наблюдать с расстояния 2 пк (около 413 000 а. е.), то такое движение будет соответствовать угловому покачиванию звезды на 0,0025" (менее одной миллионной доли градуса) с 11-летним орбитальным периодом планеты. Это соответствует примерно одной тысячной размера изображения звезды, размытого атмосферной неоднородностью при наблюдении с наземной обсерватории. Звезды какого типа желательно наблюдать, чтобы заметить столь малые колебания? Ясно, что звезда должна находиться как можно ближе Солнцу, чтобы наблюдаемый угол покачиваний был максимальным. Шанс обнаружить планету возрастает при наблюдении красных звезд главной последовательности, масса которых меньше, чем у Солнца, а значит, амплитуда колебаний больше. Низкая яркость такой звезды дает дополнительное преимущество, так как ее изображение меньше размывается, а значит, точнее можно измерить его положение.

Астрономы исследовали две таких близких звезды, пытаясь обнаружить их возможные колебания. Хорошим кандидатом считалась Звезда Барнарда — красная звезда главной последовательности, находящаяся на расстоянии всего 1,83 пк, то есть вторая по удаленности от Солнца (после системы альфа Кентавра). В 1963 году Питер ван де Камп (1901–1995) впервые объявил, что обнаружил планету у Звезды Барнарда; а позже, в 1980-х, заявил, что там две планеты. Он измерял положения звезд на фотопластинках, полученных в обсерватории Спрул (шт. Пенсильвания) с 1938 по 1981 год. Прошло несколько десятилетий, пока астрономы пришли к единому мнению, что это ошибочное заключение ван де Кампа было вызвано изменениями телескопа, после того как объектив был снят для промывки, а затем поставлен на место.

Вторым кандидатом для поиска колебаний положения стала звезда Лаланд 21185, еще одно красное светило главной последовательности на расстоянии 2,54 пк, четвертое по расстоянию от Солнца. Впервые о существовании планеты у этой звезды заявила в 1960 году Сузан Липпинкот из обсерватории Спрул. В 1996 году Джордж Гейтвуд из Обсерватории Аллегени (шт. Пенсильвания) сообщил об обнаружении спутников этой звезды, значительно менее массивных, чем планета Липпинкот. Кроме того, ван де Камп утверждал, что обнаружил планету с массой впятеро больше, чем у Юпитера, у звезды солнечного типа эпсилон Эридана. Но до сих пор ни одно из этих заявлений не подтверждено. Заподозренные звезды, как и другие ближайшие светила, стоят в списке на исследование космическими телескопами. Все старые наблюдения из-за сложностей их анализа, вызванных техническими ограничениями прежних наземных приборов, были выброшены в корзину.

В конце концов более успешным для обнаружения экзопланет оказался метод измерения колебаний скорости. Первое опубликованное сообщение об открытии, требующем последующего подтверждения, появилось в 1988 году. Его авторами были канадцы Брюс Кэмпбелл, Г. Уокер и С. Янг. Их наблюдения лучевых скоростей показали, что вокруг звезды гамма Цефея обращается планета. В 2003 году это открытие было подтверждено.

Экзопланетная астрономия реально началась в 1992 году, когда Александр Волыцан и Дейл Фрейл объявили об открытии двух или даже трех планет, обращающихся вокруг пульсара PRS В1257+12. Астрономов это крайне удивило, поскольку пульсары были последними в списке звезд, у которых ожидались планеты. Ведь считалось, что это остатки звезд, переживших вспышку сверхновой, которая должна была разрушить любые планеты. Посылаемые пульсаром равномерные радиоимпульсы позволяют очень точно следить за его положением, выявлять возмущения со стороны планет и таким образом обнаруживать их. Пульсар посылает сигналы как точные часы, и если планета движется вокруг пульсара, то мы замечаем, что эти «часы» то спешат, то отстают. Этот метод похож на метод лучевых скоростей, использующий эффект Доплера, с той лишь разницей, что вместо вычисления скорости звезды здесь измеряются и суммируются интервалы времени между последовательно приходящими импульсами. По существу, это позволяет определять изменение расстояния до пульсара. Этот метод обеспечивает точность хронометража до десятков миллисекунд, позволяя установить сдвиг в положении пульсара примерно на 0,00002 а. е.

Планеты вокруг пульсара, вероятно, сильно пострадали от взрыва сверхновой. Это могут быть выжившие ядра планет-гигантов, некогда похожих на Юпитер. Звезды, которые взрываются как сверхновые, живут недолго по сравнению с продолжительностью эволюции жизни на Земле. После взрыва от них остается нейтронная звезда, которая продолжает угрожать жизни на любой соседней планете. По-видимому, все три планеты движутся вокруг упомянутого пульсара почти в одной орбитальной плоскости (как в Солнечной системе), но размеры их орбит меньше, чем у Меркурия.

Вернемся к планетам у обычных звезд. Поскольку ожидаемые вариации скорости звезды были очень малы, удивлению астрономов не было предела, когда в 1995 году методом скоростей была открыта первая планета у звезды солнечного типа. Мишель Майор из Женевской обсерватории и его студент Дидье Келос объявили об открытии планеты, обращающейся вокруг звезды 51 Пегаса с периодом 4,23 суток. Масса этой планеты не менее 0,47 массы Юпитера, а ее орбита удалена всего на 0,05 а. е. от звезды (около 1 % расстояния Юпитера от Солнца и в 8 раз ближе Меркурия к Солнцу). Именно благодаря своей близости к звезде планета вызывает у нее вариации скорости с амплитудой 6о м/с, что заметно превышает 13 м/с, вызываемых Юпитером у Солнца. Поэтому изменения скорости 51 Пегаса удалось обнаружить в значительно более короткой серии наблюдений, чем ожидалось.

В нашей Солнечной системе газовые планеты-гиганты расположены на периферии, а каменистые планеты — во внутренней области. Но первая же экзопланета, обнаруженная у звезды солнечного типа, оказалась гигантом, расположенным очень близко от светила. Это не согласуется с картиной Солнечной системы, но это именно то, что должен был дать метод лучевых скоростей. Уже обнаружены сотни экзопланет, причем большинство — методом лучевых скоростей. Похоже, что для таких систем типичны близкие к звезде планеты-гиганты. Эти гиганты вызывают настолько сильный возмущающий эффект, что планеты типа Земли не смогли бы там двигаться по устойчивым орбитам на расстоянии от звезды, пригодном для жизни. Означает ли это, что наша Солнечная система — исключение из правил? Есть ли надежда найти планеты типа Земли у других звезд?

Современные оптические спектрографы могут зафиксировать малейший сдвиг спектральных линий. В результате одного наблюдения они способны измерить скорость звезды с потрясающей точностью 0,6 м/с. Как мы знаем, под влиянием Юпитера Солнце колеблется относительно стороннего наблюдателя со скоростью 13 м/с. Для обнаружения объекта типа Юпитера на расстоянии 5 а. е. от звезды типа Солнца понадобится много независимых наблюдений в течение нескольких орбитальных периодов планеты. Для орбиты с периодом 12 лет потребовалось бы наблюдать весьма длительное время. С другой стороны, у планет типа Земли довольно короткий орбитальный период — всего год, но современная наблюдательная техника не позволит заметить вызванные такой планетой вариации скорости звезды, поскольку их амплитуда всего 0,1 м/с.

Рост массы планеты или уменьшение ее расстояния от звезды увеличивают вариации скорости, и, следовательно, повышаются шансы открытия планеты. Значит, этот метод нацелен на поиск планет-гигантов, близких к звезде. Более того, необходимо пронаблюдать влияние планеты в течение нескольких орбитальных периодов, прежде чем заявлять об открытии, а значит, и здесь предпочтение на стороне близких планет с коротким орбитальным периодом. К тому же этот метод не годится для обнаружения планет, орбитальная плоскость которых перпендикулярна лучу зрения. А поскольку большинство экзопланет найдено именно этим методом, то можно ожидать, что существует немало планетных систем, похожих на нашу, но недоступных для обнаружения этим наиболее успешным из современных методов. Разумеется, в астрономии мы часто сталкиваемся с эффектами селекции, поскольку проводим наблюдения издалека и не можем путешествовать среди звезд. Мы уже сталкивались с этим на примере эффекта Малмквиста (см. главу 21): на больших расстояниях удается увидеть только ярчайшие звезды и галактики — так сказать, вершину айсберга.

Другие методы поиска.

Для обнаружения экзопланет сейчас используется несколько методов. Каждый из них имеет свои ограничения, и все вместе они удачно дополняют друг друга. Например, метод прохождений, состоящий в поиске затмения звезды планетой, очень чувствителен к ориентации орбиты. Его преимущество состоит в том, что можно искать эпизоды прохождения планеты перед своей звездой одновременно у огромного количества звезд, фактически — у всех звезд в поле зрения камеры. Как показано на рис. 32.2, прохождение планеты размером с Юпитер перед Солнцем вызовет для удаленного наблюдателя ослабление блеска светила на 1 %, и это затмение с плоским минимумом продлится около 30 часов. Чтобы убедиться, что это явление вызвано именно планетой, нужно пронаблюдать по меньшей мере три затмения, которые будут происходить в точно рассчитанный день с периодом, например в случае Юпитера, около 12 лет. Этот метод очень удобен для короткопериодических орбит. А если привлечь еще и данные метода лучевых скоростей, то можно точно измерить не только размер, но и массу, а значит — и плотность планеты. Большинство экзопланет, изученных таким способом, имеют плотности, сравнимые с плотностью воды, но встречаются и очень рыхлые, с плотностью всего лишь в четверть плотности воды.

Рис. 32.2. Обнаружение экзопланеты по затмению. Планета (черный кружок) проходит перед диском звезды (большой белый кружок), приводя к ослаблению ее наблюдаемого блеска (см. график зависимости блеска от времени). Когда планета (пунктирный кружок) находится за звездой, она не оказывает влияния на блеск звезды (верхняя горизонтальная линия на графике).

Ранее мы уже рассказывали о гравитационном линзировании. Рассмотрим лучи света далекой звезды, идущие в сторону нашего телескопа. Если между телескопом и далекой звездой находится некоторый объект, например более близкая к нам звезда, то свет далекой звезды будет немного отклоняться ее тяготением и может сфокусироваться на нашем телескопе. При этом далекая звезда станет выглядеть ярче. Если же в роли гравитационной линзы окажется звезда с планетой, то явление будет двойным: на фоне пика яркости, вызванного звездой, появится пик яркости, вызванный планетой.

Для каждой планеты явление гравитационного линзирования уникально. Вероятность того, что его можно будет наблюдать еще раз, очень мала. Если орбитальная плоскость обнаруженной планеты ориентирована к нам ребром, то в принципе ее можно исследовать и в будущем, используя затмение. Этим методом можно находить далекие планеты, и это может быть лучшим способом обнаружить планеты земного размера.

А почему мы просто не смотрим на звезду в телескоп и не ищем рядом с ней планеты? Этот метод прямого изображения кажется простым, но на самом деле его очень трудно использовать из-за огромной разницы в яркости звезды и планеты. Для далекого наблюдателя наше Солнце ярче Юпитера примерно в миллиард раз. Чтобы снизить эффект ослепляющего света звезды, были разработаны изящные методы. Один из уже доказавших свою эффективность — вынос телескопа на орбиту, выше воздушного слоя, размывающего изображение. Способность космического телескопа разрешать малые углы ограничена в основном дифракцией световых волн. У космического телескопа «Хаббл» этот так называемый предел Рэлея для видимого света составляет 0,055". При таком разрешении, в принципе, можно увидеть раздельно Юпитер и Солнце с расстояния 95 пк (310 световых лет). Но на практике яркий свет звезды создает серьезные проблемы, поскольку он превосходит яркость планеты в 1 000 000 раз даже в первом дифракционном минимуме — наиболее выгодном положении планеты для ее обнаружения. В этом случае, чтобы зарегистрировать изображение планеты, потребовалась бы неделя драгоценного наблюдательного времени телескопа «Хаббл». Если основываться только на разрешении телескопа «Хаббл», то планету на такой орбите, как у Земли, можно было бы обнаружить с расстояния 18 пк. Но близкие к звезде планеты надежно прячутся в ее блеске. Планеты, далекие от звезды, легче увидеть, особенно если они большие и хорошо отражают свет. В тех немногих случаях, когда планеты обнаруживались непосредственно по их изображению, они располагались довольно далеко от своей звезды.

Европейская южная обсерватория (ESO) представила в 2007 году новый прибор для охоты за планетами — интегральный полевой спектрограф, разработанный под руководством Нираяна Тхатте. Он получает быструю последовательность изображений на разных длинах волн. В таких изображениях различные возмущающие эффекты меняются с изменением длины волны, но звезда и планета должны оставаться на одном и том же месте независимо от длины волны. Этот прибор будет использован на Очень Большом Телескопе (VLT ESO) в Чили. Сейчас VLT является самым передовым наземным телескопом: он имеет четыре 8,2-м инструмента, которые можно использовать как раздельно, так и вместе.

Рис. 32.3. Первое изображение экзопланеты было получено в 2004 году группой под руководством Гаёля Шови, использовавшей 8,2-м телескоп VLT Yepun (ESO) с системой адаптивной оптики в инфракрасном диапазоне (см. рис. 1 на цветной вкладке). Центральная звезда 2М1207 — это тусклый коричневый карлик в созвездии Кентавр, невидимый невооруженным глазом. Слева от него планета, которая примерно в пять раз массивнее Юпитера. С разрешения ESO.

До сих пор большинство экзопланет было обнаружено с помощью наземных телескопов (рис. 32.3). Позже открытие некоторых из них подтвердил космический телескоп «Хаббл». Но в будущем ситуация изменится. В 2006 году был запущен космический телескоп COROT, созданный Французским космическим агентством (CNES) совместно с Европейским космическим агентством (ESA). Одной из его главных задач является поиск экзопланет методом покрытий — по уменьшению блеска звезды в момент прохождении перед ней планеты. Несколько новых планет он уже обнаружил.

С этой же целью в 2009 году запущен космический телескоп «Кеплер» (NASA), который также нашел уже несколько новых планет. Планируется еще ряд космических обсерваторий для поиска экзопланет (например, New Worlds Imager, Darwin, Space Interferometiy Mission, Terrestrial Planet Finder, PEGASE).

И наконец, косвенным методом для обнаружения экзопланет могут стать наблюдения пылевых дисков вокруг молодых звезд. В таких дисках иногда заметны кольцевые области, свободные от вещества. Вероятно, это те области, где формирующиеся или новорожденные планеты вычищают окрестности своей орбиты.

Параметры экзопланет.

Из-за сильного влияния наблюдательной селекции большая часть открытых до сих пор экзопланет — это газовые гиганты на довольно маленьких орбитах (почти у 40 % орбит размер большой полуоси <0,4 а. е.). Можно лишь удивляться, что первые открытые в массовом количестве планеты оказались именно того типа, который меньше всего ожидался по теоретическим соображениям.

Орбиты планет в Солнечной системе почти круговые, а очень вытянутые орбиты наблюдаются лишь у комет. Экзопланеты и в этом смысле вызывают недоумение: у большинства из них орбиты довольно вытянутые, и только 10 % среди них имеют почти круговые орбиты. Более того, лишь около 10 % из обнаруженных планетных систем имеют более одной зарегистрированной планеты. Впрочем, это число непременно увеличится: наверняка будут открыты и другие планеты в тех системах, где сейчас известна лишь одна.

Планетные системы, в которых наблюдались затмения и измерялись скорости, служат богатыми источниками информации. По доплеровскому смещению линий мы можем вычислить орбитальные параметры, оценить массу планеты и определить ее скорость в тот момент, когда она проходит перед диском звезды, вызывая небольшое затмение. По четырем моментам контактов дисков планеты и звезды можно вычислить размер планеты и определить нижний предел размера звезды. Зная массу и размер планеты, легко вычислить ее плотность. Она уже измерена у дюжины из них: все они оказались газовыми гигантами.

С развитием методов наблюдения и по мере накопления данных обнаруживаются все менее массивные планеты. В 2000 году была открыта планета с массой Сатурна, а затем нашли планеты типа Урана и Нептуна. Первые указания на существование скалистой планеты появились в 2007 году. Стефан Удри с коллегами из Женевской обсерватории сообщили об открытии двух маломассивных планет, обращающихся вокруг звезды Глизе 581 (Gliese 581). Более крупная из планет в 7 раз массивнее Земли и движется по орбите радиусом 0,22 а. е. Вторая планета с массой 5 масс Земли обращается на расстоянии всего 0,07 а. е. от звезды; ее орбитальный период равен 13 суткам. Эта планета представляет особый интерес, поскольку на таком расстоянии от звезды вода может быть жидкой. Так что ледяная планета практически исключается; газовая планета маловероятна из-за небольшой массы; остается только планета из горных пород, которая может иметь жидкую воду (или вообще не иметь воды).

Заметим, что прохождения планеты перед диском звезды дают и другую важную информацию. Сравнивая спектр звезды во время прохождения со спектром, полученным между прохождениями, можно заметить два различия. Во-первых, небольшое уменьшение полного потока. Во-вторых, если часть света поглощается в атмосфере планеты, то при этом могут появиться некоторые дополнительные спектральные линии. Этот эффект очень мал. Но если он будет обнаружен, то расскажет нам о составе, температуре и плотности атмосферы планеты.

Дебра Фишер (Государственный университет, Сан-Франциско) и Джеф Валенти (Институт космического телескопа) в 2005 году обнаружили, что наличие у звезды планет сильно зависит от металличности (обилия железа относительно водорода) самой звезды. С ростом обилия железа возрастает и доля звезд с планетами. При обилии железа, равном половине солнечного, лишь 2 % исследованных звезд имеют планеты. А у звезд с обилием железа вдвое большим, чем на Солнце, планеты обнаруживаются в 10 % случаев. Это вполне объяснимо в рамках наших представлений о формировании планет. Чтобы газовая планета набрала массу, в аккреционном диске должны быть льды. Для образования льдов нужен кислород, содержание которого возрастает вместе с металличностью.

С другой стороны, низкая металличность не исключает существования планет. Их обнаружили и у звезд, бедных металлами. Крайние примеры — звезда-гигант НD 47536 и звезда главной последовательности НD 155358. Обилие металлов у них впятеро ниже солнечного, но обе они имеют по две планеты.

Двойные звезды и планеты.

Если третье тело, скажем, планету, поместить на случайную орбиту в двойной звездной системе, то весьма вероятно, что рано или поздно она будет выброшена из этой системы. Однако существуют некоторые семейства динамически устойчивых орбит, на которых планеты могут находиться очень дол го. Тесные двойные могут иметь общую планетную систему, где планеты обращаются по орбитам, воспринимая двойную звезду как единое «ядро». В очень широких двойных каждая из звезд может иметь собственную планетную систему. Но вообще в двойной системе возможны и совершенно особенные типы планетных орбит. Некоторым из них требуются определенные пределы для масс компонентов. Например, если легкий компонент двойной звезды в 26 или более раз уступает по массе более тяжелому компоненту, то возможны орбиты троянского типа. Такие орбиты известны в Солнечной системе и связаны с каждой из планет-гигантов. Астероиды-троянцы движутся вблизи точек равновесия, образующих равносторонний треугольник с двумя более массивными компонентами — Солнцем и планетой-гигантом. Существуют и другие типы стабильных орбит, но мы не станем сейчас углубляться в детали.

Как формируются планеты.

Стандартный сценарий формирования планет (см. главу 29) объясняет особенности Солнечной системы и вообще претендует на универсальность. Деление планет на внутренние каменистые и внешние газовые отражает распределение температуры в прото-планетном диске, а именно — где она выше или ниже необходимой для образования водяного льда. Но в этом сценарии невозможно объяснить формирование гигантских газо-жидких планет близко от звезды. Поэтому экзопланеты с орбитальным радиусом а < 0,4 а. е. представляют серьезную проблему. Еще большей проблемой являются «горячие юпитеры» с а < 0,05 а. е., которые составляют 10 % всех известных экзопланет. Решение этой загадки еще в 1980 году предложили Питер Голдрайх и Скотт Тремейн. Они предположили, что планета, сформировавшись в протопланетном диске, затем могла бы мигрировать в результате обмена моментом импульса между самой планетой и газовым диском. Компьютерное моделирование показало, что такая миграция может происходить быстро. Планета перемещается внутрь, потому что действующий на нее со стороны внешних частей диска тормозящий момент больше, чем ускоряющий момент со стороны его внутренних частей. Эта быстрая миграция (I типа) происходит за время не более одной десятой времени жизни аккреционного диска. Миграция другого рода (II типа) случается, если планета стала настолько массивной, что расчистила пространство вдоль своей орбиты в аккреционном диске. После этого планета перемещается медленно; при низкой вязкости диска ее движение по радиусу может вообще остановиться. Этими процессами можно объяснить, как горячие юпитеры подобрались близко к звездам солнечного типа. Разумеется, должен существовать и механизм остановки миграции, например приливный или магнитный момент сил звезды, создающий внутренний край аккреционного диска, или же полная диссипация самого диска (рис. 32.4).

Рис. 32.4. Пылевой диск вокруг молодой звезды, находящейся на расстоянии 320 световых лет в созвездии Весы. В этом диске могут формироваться планеты, но на его структуру влияют также и две соседние звезды этой тройной системы. Темное пятно — это область, где свет звезды был закрыт маской коронографа космического телескопа «Хаббл». С разрешения NASA, М. Clampin (STScI), И. Ford (JHU), G. Illingworth (UCO/Lick), J. Krist (STScI), D. Ardila (JHU), D. Golimowski (JHU), ACS Science Team и ESA.

Сценарий планетной миграции, как и стандартный аккреционный сценарий, предсказывают практически круговые орбиты пла-нет, как в Солнечной системе. Однако в экзопланетных системах мы видим вытянутые орбиты. Проще всего это можно было бы объяснить сильным гравитационным взаимодействием двух планет, попавших на резонансные орбиты. В этом случае эффект может возрастать нелинейно и в некоторый момент приводить к изменению орбит. Такие изменения могут быть умеренными, что, вероятно, и случилось с планетами-гигантами Солнечной системы. Но могут произойти и драматические изменения: одна из планет может быть выброшена из системы или же переведена на очень вытянутую орбиту.

Итак, мы видим, что исследования экзопланет сейчас развиваются очень активно. Пока еще мы не можем с полной уверенностью судить о том, какого типа планеты в каких условиях формируются. К августу 2010 года число экзопланет превзошло 475. Большинство из них — гиганты.

На каких планетах возможна жизнь? Зоны жизни

Чаще других открываемые газовые гиганты, близкие к своей звезде, кажутся совершенно непригодными для жизни. Если даже в их атмосферах обнаружатся вода, кислород или другие важные атомы или простые молекулы, то все равно для жизни там нет места. Однако не так давно были найдены две планеты, которые впервые могут оказаться, хотя бы в принципе, пригодными для жизни, пусть и с узкой зоной комфорта.

В 2005 году сообщалось о планете, обращающейся вокруг Gliese 581. Это была планета с массой Урана и орбитальным периодом около 5,3 суток. Как мы уже говорили, в 2007 году в этой же системе открыли еще две планеты с массами 5 и 7 масс Земли. Самое интересное заключается в том, что обе новые планеты расположены в зоне жизни красного карлика Gliese 581. Первая из них, вероятно, синхронно вращается в результате приливного захвата, а вторая находится вблизи границы зоны жизни.

Когда мы говорим о жизни, удобно ограничиться некоторыми простыми требованиями. В частности, условия на планете должны быть такими, чтобы вода оставалась в жидком состоянии какое-то разумное время. Она может замерзать зимой, и мы знаем, что для жизни это не так уж страшно, но она никогда не должна закипать. При нормальном атмосферном давлении температурный диапа-зон для жидкой воды составляет от о до 100 °C. Точка замерзания почти нечувствительна к изменению давления, а вот точка кипения весьма чувствительна. Если бы давление воздуха удвоилось, температура кипения стала бы равной 121 °C. Температурный диапазон от о до 50 °C выглядит наиболее подходящим не только для жизни, но и для стабильного водного мира.

Если мы знаем светимость звезды и расстояние от нее до планеты, мы можем оценить температуру планеты в состоянии теплового равновесия. При этом нужно учитывать альбедо (отражательную способность) и вращение планеты. Немалую роль при оценке температуры на поверхности играет и парниковый эффект, но его трудно определить без дополнительной информации о планете. В Солнечной системе, приняв для альбедо значение 0,5 (среднее между значениями Венеры и Земли), предположив медленное вращение планеты (как у Земли и Марса) и нулевой парниковый эффект, получим зону жизни от 0,75 до 1,05 а. е. Если альбедо равно 0,2, как у Марса, то зона жизни лежит между 0,95 и 1,32 а. е. Расстояние Земли от Солнца находится как раз в этих пределах. Увеличив альбедо, мы можем приблизить зону жизни к Солнцу, а уменьшив — отдалить ее. Однако нужно помнить и о парниковом эффекте.

В процессе эволюции звезды ее светимость меняется. За время жизни Солнечной системы светимость Солнца возросла примерно на 30 %. Когда в прошлом Солнце грело слабее, зона жизни была ближе к нему (на корень квадратный из светимости). При альбедо 0,5 ближняя граница передвинется на 0,66 а. е., а при альбедо 0,2 верхняя граница будет равна 1,6 а. е.; но Земля все равно остается в пределах зоны. Интересно отметить, что молодая Венера была хорошим местом для жизни; а Марсу, чтобы оказаться в зоне жизни, нужно было всегда иметь сильный парниковый эффект. В будущем, когда светимость Солнца возрастет, зона жизни сдвинется наружу, постепенно захватывая Юпитер и Сатурн. Для новых экзопланет оценки зон жизни можно сделать, опираясь на приведенные выше числа, масштабируя их пропорционально квадратному корню из светимости звезды. Что это означает? Если светимость звезды больше, то зона жизни будет на большем расстоянии. Для звезды, светимость которой в 9 раз превышает светимость Солнца, зона жизни будет на расстоянии около 3 а. е.

Такое определение зоны жизни кажется очевидным, но оно исключает некоторые потенциально возможные для жизни места в Солнечной системе, такие как спутник Юпитера Европа и спутники Сатурна Титан и Энцелад. Там могут быть водные океаны с пригодными для жизни областями типа «черных курильщиков», которые не зависят от Солнца, пока существуют внутренние источники тепла. Кроме того, на холодной периферии планетной системы, за пределом классической зоны жизни, возможно наличие полностью хемотрофных форм жизни, получающих энергию от химических реакций, а не от солнечного излучения. При рассмотрении вопроса о жизни в других планетных системах нужно помнить о таких возможностях.

Второе, что необходимо для жизни, это защита от космического вакуума и от потоков высокоэнергичных частиц и космических лучей. Защитой для жизни может стать твердая оболочка, например слой льда (как на Европе), или же атмосфера и магнитосфера (как на Земле). В связи с этим возникают интересные проблемы для планет у звезд-карликов спектрального класса М. Например, светимость красного карлика Gliese 581 настолько мала, что планета, чтобы оказаться в его зоне жизни, должна располагаться чрезвычайно близко от звезды. При столь малом расстоянии под влиянием приливного эффекта суточное вращение планеты синхронизируется с ее орбитальным движением, и поэтому она всегда окажется повернута к звезде одной своей стороной (как Луна к Земле). На противоположной стороне планеты будет вечная ночь. На этой холодной стороне не слишком массивная атмосфера просто осядет в виде снега. Только толстая атмосфера с эффективной циркуляцией может спасти планету от гибели.

Спектральный тип звезды тоже имеет большое значение для развития жизни. Особенно важны три характеристики. Первая — это время пребывания звезды на главной последовательности. Звезды спектральных классов от О до А, проводящие на ней менее 2 млрд лет, не оставляют планете времени для того, чтобы жизнь смогла развиться до фотосинтеза. Вторая важная характеристика — ультрафиолетовый поток, губительный для жизни. Он особенно силен у звезд тех же спектральных классов. С другой стороны, планеты у карлика спектрального класса М имеют в своем распоряжении достаточно времени. Но если жизнь родилась на такой планете, то наряду с проблемой синхронизации вращения из-за прилива может возникнуть и третья проблема, связанная с переменностью звезды. Карлики спектрального класса М, как правило, имеют активные хромосферы и демонстрируют частые вспышки. Поэтому приемлемыми для жизни остаются только звезды спектральных классов F, G и К.

В нашей Галактике не все области одинаково хороши для жизни. В звездном гало и во внешних областях диска обилие металлов низкое, а значит, условия для формирования планет и появления жизни на них неблагоприятные. Во внутренней части Галактики много молодых высокоэнергичных звезд. Там чаще происходят вспышки сверхновых и другие катастрофические явления. Это не препятствует формированию планет, но частые эпизоды частичного или полного вымирания биосферы могут помешать нормальному развитию жизни.

Резюмируя, можно перечислить астрономические условия, которые, как мы полагаем, необходимы для жизни: температура, при которой может существовать жидкая вода; защита от вакуума и вредного излучения, а также звезда приемлемого спектрального класса, расположенная в том месте своей галактики, где достаточно много металлов и минимум катастрофических явлений.

Жизнеспособность планет типа Земли. Как найти планету с биосферой.

Как может выжить маленькая каменистая планета в бурном круговороте эпохи формирования планетной системы? Гигантская планета, довольно медленно перемещаясь по радиусу в процессе миграции II типа, с большой вероятностью должна «смести» все маленькие планеты. Гигант может поглотить их или выбросить на новые орбиты на ранней стадии формирования. Тем не менее некоторые маленькие планеты все же могут пережить эту эпоху. И, разумеется, вовсе не очевидно, что в каждой планетной системе есть планета-гигант.

Однако гигантские планеты на очень вытянутых орбитах действительно опасны для планет типа Земли, поскольку весьма вероятно, что все планеты, движущиеся между крайними точками орбиты гиганта, рано или поздно испытают тесное гравитационное взаимодействие с ними. В этом случае планета типа Земли либо перейдет на другую орбиту, либо вообще будет выброшена из планетной системы. Такое изменение орбиты вредно для жизни на любой ее стадии, поэтому маловероятно обнаружение «живой» планеты в системе, где планета-гигант движется по вытянутой орбите.

Даже если сами газовые гиганты непригодны для жизни, следует учитывать вероятность того, что спутники этих гигантов могут быть по размеру близки к Земле и иметь пригодные для жизни условия, разумеется, если планета и ее спутники находятся в зоне жизни звезды.

Планеты с биосферами будут иметь некоторые общие свойства. Вероятно, на них окажутся существа с ДНК и белками. Жизнь будет основана на воде и т. д. Впрочем, возможны и некоторые исключения. Но если на планете есть жизнь, то непременно должны быть признаки неравновесного состояния атмосферы. На Земле это означает кислород и озон. В другом месте это может быть другая комбинация газов, но если мы не знаем, какая именно, то лучше искать кислород и озон. Следующее вещество, которое требует внимания, — это вода. Все перечисленные индикаторы есть в нашей атмосфере, но их нет, например, у Марса и Венеры.

Кислород, озон и воду можно выявить с помощью инфракрасной спектроскопии. Так же можно искать и признаки хлорофилла. В его спектре есть характерная «красная граница»: на интервале между 700 и 750 нм отражательная способность хлорофилла резко возрастает, поэтому в ближнем инфракрасном диапазоне растения кажутся очень яркими. Так что нужно искать резкий скачок в спектре отражения. Точная длина волны этого скачка может зависеть от параметров звезды и свойств пигментов, используемых для поглощения ее света.

Недавно появились новые перспективы для исследования атмосфер экзопланет: С. Бердюгина и Д. Флури (Цюрихский астрономический институт) и А. Бердюгин и В. Пиирола (Обсерватория Туорла, Финляндия) впервые зафиксировали свет, отраженный атмосферой экзопланеты. Для этого они следили за изменением поляризации света, приходящего от звезды и обращающейся вокруг нее планеты. Свет поляризуется, когда рассеивается атомами или молекулами атмосферы; этот же процесс окрашивает наше небо в голубой цвет. Изменение поляризации есть следствие движения по орбите планеты, через каждые двое суток проходящей перед диском звезды. По этим изменениям можно определить размер и некоторые другие характеристики атмосферы. Интересно, что это первое наземное поляриметрическое исследование «горячего юпитера», удаленного на 60 световых лет, было проведено с помощью небольшого 60-см телескопа KVA, установленного на острове Ла-Пальма и дистанционно управляемого учеными, находящимися за тысячи километров.

Мы здесь!

Для двусторонней связи разумно было бы использовать только нашу Галактику. Соседняя крупная галактика, в Андромеде, так далека, что ответа на вопрос пришлось бы ждать 5 млн лет.

Уже было предпринято несколько попыток информировать «других» о нашей цивилизации. Самым старым и наиболее эффективным является наш «призыв», которого мы даже не замечаем: последние 60 лет у нас существует мощное радиовещание, сигналы которого удаляются в космическое пространство каждый год на расстояние в 1 световой год. Сейчас «пузырь» земных радиосигналов имеет радиус 60 световых лет (18 пк). Уже тысячи звезд, попавшие внутрь этого «пузыря», могут слушать наши радиопередачи.

2 марта 1972 года был запущен космический зонд «Пионер-ю», а примерно через год в космос улетел и «Пионер-11»; и оба они унесли на борту небольшие алюминиевые пластины. На них изображена информация о нашем месте расположения в Галактике относительно нескольких радиопульсаров, положение нашей планеты в Солнечной системе, силуэты мужчины и женщины и их рост относительно размера самого зонда. А в в 1977 году на двух «Вояджерах» к звездам отправились «золотые диски». На них записаны изображения и звуки Земли, информация о человеческой культуре. На крышке коробки с пластинкой указано положение Земли в Галактике и дана инструкция для чтения дисков. К июлю 2006 года «Вояджер-i» преодолел расстояние в 100 а. е. и стал самым далеким изделием, созданным руками человека. Возможно, к 2020 году он выйдет в межзвездное пространство. Еще три космических зонда по своим траекториям уходят из Солнечной системы. Но пройдут десятки тысяч лет, пока они приблизятся к другим звездам (рис. 32.5).

В 1974 году с помощью 300-метрового радиотелескопа в Аресибо были отправлены специальные радиосигналы в сторону шарового скопления М13. Послание состояло из 1679 битов, то есть 0 или 1. Если этот однобитовый поток изобразить в виде прямоугольника размером 73 строки по 23 символа и все «1» закрасить одним цветом, а «0» другим, то получится картинка с информацией о том, кто мы, из чего состоим и где нас найти. Она расскажет и о нашей системе счисления, а также перечислит наиболее важные для нас химические элементы. Это послание дойдет до М13 примерно через 25 000 лет. Впрочем, вещество этого шарового скопления содержит мало тяжелых элементов, поэтому вероятность формирования там твердой планеты типа Земли мала, а значит, вряд ли какая-либо цивилизация примет нашу информацию.

Рис. 32.5. Крышка коробки с «золотым диском Вояджера». Изображенная па ней инструкция поможет инопланетянам прочитать наше послание. С разрешения NASA.

Поиски внеземных цивилизаций

Поиск внеземных цивилизаций (Search for ExtraTerrestrial Intelligence, SETI), впервые предпринял Фрэнк Дрейк, попытавшись в 1960 году принять микроволновые сигналы из других звездных систем. Годом раньше независимо от Дрейка два физика из Корнельского университета, Джузеппе Коккони и Филипп Моррисон, теоретически доказали, что можно использовать микроволны для межзвездной связи. В начале 1960-х годов ученые Советского Союза очень активно занимались проблемой SETI. С тех пор эта работа ведется с разной степенью энтузиазма. На начальном этапе поиска сигналов из космоса потребовался непростой выбор нескольких важных параметров: длина волны, ширина диапазона, время накопления, метод модуляции и, наконец, — на какие звезды смотреть.

Многие проблемы удалось решить с помощью современных приемников, способных регистрировать одновременно десятки миллионов частот с высоким временным разрешением, а затем комбинировать и анализировать их разными способами. Чрезвычайно продуктивной для этого оказалась идея виртуального суперкомпьютера seti@home.

Проект SERENDIP (Search for Extraterrestrial Radio Emissions from Nearby Developed Intelligent Populations — Поиск внеземного радиоизлучения от соседних развитых интеллектуальных сообществ) проводится как попутная программа на радиотелескопе в Аресибо Калифорнийским университетом в Беркли. Такой же проект реализуется на радиотелескопе в Парксе Австралийским центром SETI Университета Западного Сиднея. В дальнейшем предполагается использовать маленькие радиотелескопы в режиме интерферометра, когда данные с каждого телескопа объединяются и коррелируют. Это позволит проводить исследования на больших участках неба и в широком диапазоне частот. Такая методика будет применена на строящемся сейчас Массиве телескопов Аллена (Allen telescope Аггау) в Калифорнии. Когда строительство завершится, эта система будет содержать 350 параболоидов диаметром 6,1 м.

Для межпланетного и межзвездного обмена данными еще лучше подошел бы узконаправленный лазерный луч с наносекундными импульсами. Природные источники не обладают такой высокой частотой пульсаций. В рамках проекта «Оптическое SETI» Калифорнийского университета в Беркли и Гарвардского университета ищут именно такие импульсы. Уже исследовано несколько тысяч звезд.

Уравнение Дрейка, или «Есть ли там кто-нибудь?»

Глядя темной ночью на звездное небо, дайте волю воображению и представьте, что некое существо на планете вон той звезды смотрит сейчас на наше Солнце и спрашивает себя: «А нет ли там кого-то, кто смотрит сейчас на мою звезду?» В 1961 году в Западной Виржинии Фрэнк Дрейк провел совещание по SETI. Готовясь к нему, он составил программу поэтапного вычисления количества цивилизаций в нашей Галактике. Так было сформулировано «уравнение Дрейка». В этой формуле перемножаются несколько чисел, чтобы получить предполагаемое число цивилизаций. Среди сомножителей присутствуют:

• число звезд в нашей Галактике или средняя частота их формирования;

• частота встречаемости звезд с планетами;

• число планет в таких системах;

• вероятность того, что планета пригодна для жизни. Разные вероятности — от зарождения жизни до возникновения цивилизации;

• длительность этапа обладания техническими средствами коммуникации.

Большинство из этих чисел, связанных с астрономией, известны сейчас довольно точно, но последние несколько «биологических» и «технологических» цифр пока еще весьма приблизительны. Но, хотя это уравнение не дает нам точного ответа, оно позволяет делать некоторые оценки. Разные ученые по-разному оценивают число цивилизаций в Галактике: от одной до миллиарда. Фактически можно говорить о «пессимистах» и «оптимистах» и использовать следующие предельные значения для формулы Дрейка.

Оптимист считает, что вероятность возникновения цивилизации на планете, пригодной для жизни (которая также возникает с высокой вероятностью), велика и близка к 1. Тогда их количество сейчас в Галактике приблизительно равно времени жизни цивилизации, выраженному в годах. Таким образом, если цивилизация существует один миллион лет, то оптимист не сильно удивится, если обнаружит в нашей Галактике миллион цивилизаций! С другой стороны, по мнению пессимиста, самопроизвольное зарождение жизни и ее последующее развитие до уровня цивилизации на просторах Галактики маловероятно. Поэтому количество цивилизаций гораздо меньше их времени жизни; практически, мы вообще можем быть здесь единственными, не считая некоторого количества мертвых остатков древних культур на планетах, рассеянных по необитаемой Галактике.

Парадокс Ферми

Физик Энрико Ферми, а еще до него «отец космонавтики» Константин Циолковский указывали на такое обстоятельство: учитывая стремление людей расселяться по всем уголкам Земли и принимая во внимание чрезвычайно долгую историю нашей Галактики, было бы естественно ожидать, что такую типичную планету, как наша Земля, уже посещали разумные существа. Неудачи в поисках радиосообщений из космоса только усиливают эту загадку. «Парадокс Ферми» становится особенно явным на фоне противоречия между «оптимистической» оценкой числа внеземных цивилизаций и отсутствием каких-либо признаков этих цивилизаций. Возможно, «пессимисты» правы — вокруг нас никого нет, и мы единственная технически развитая цивилизация в Галактике. Но возможно, мы просто не то ищем. Быть может, эпоха радиосвязи в истории цивилизации длится недолго, как это уже можно заметить на примере Земли: вся связь сейчас стремится уйти в оптические кабели, и даже спутники становятся все менее и менее мощными. Похоже, что на Землю понемногу возвращается радиотишина. Существует около десятка возможных ответов на вопрос Ферми: «Где же они?» Всё это может долго оставаться для нас загадкой: мы не узнаем правильного ответа, если не свяжемся с другой цивилизацией. Но если контакт состоится, то парадокс исчезнет, и у нас появятся к «ним» увлекательные вопросы о космической жизни и культуре.

Если мы единственная цивилизация в нашей Галактике, то маловероятно, что нам удастся когда-нибудь связаться с иной цивилизацией в другой галактике. Если мы придем к саморазрушению любым из многих возможных способов, то поймем, почему технически развитая цивилизация не живет достаточно долго даже для вопроса «По ком звонит колокол?». С другой стороны, если цивилизации существуют достаточно долго, то можно было бы вступить в контакт с одной из них. Такой контакт (или хотя бы знание о том, что другая цивилизация есть) имел бы очень глубокие последствия для человечества. Нужно помнить, что с точки зрения статистики иная цивилизация, скорее всего, окажется гораздо более развитой, чем мы с нашей 70-летней историей радиосвязи. И остается только гадать, возможен ли обмен информацией при столь разном уровне развития — и это тоже источник вдохновения для ученых, философов и научных фантастов.

Глава 33 Роль человека во Вселенной

Мы уже обсуждали, как знания о структуре Вселенной, ее размере, возрасте и эволюции изменили наше представление о космической роли человека. Открытие астрономических циклов и предсказание грядущих небесных явлений были очень важной частью деятельности людей на пути к рождению науки. Вначале этими циклами пользовались для определения сезонов сельхозработ и пытались применить для других целей, которые тогда представлялись важными, но порою оказывались в тупике (таком, например, как астрология). Наблюдения, доступные в ту эпоху, приводили к естественному заключению, что Земля — центр Вселенной и что звездное небо вместе с движущимися по нему Солнцем, Луной и планетами совершает один оборот вокруг Земли в сутки. Постепенно пришло понимание, что небесные тела — это материальные объекты, возможно, созданные Богом, но сами они богами не являются. Попытки понять законы их движения на небе привели к современной науке.

Необъятное пространство, пучина времени и вездесущая жизнь.

Несмотря на гипотезы древнегреческих философов, например Анаксагора, о том, что небесные тела состоят из тех же элементов, что и Земля, или Аристарха о том, что Земля обращается вокруг Солнца, представление о Земле как центре Вселенной сохранилось до эпохи Средневековья. Вселенную воспринимали как конечную, постижимую, ограниченного размера вращающуюся небесную сферу. Движущей силой небесных объектов в этом совершенном и неизменном мире считался Бог. Он же был и творцом всех живых существ, среди которых человек считал себя венцом творения, наиболее совершенным из земным созданий, ибо был наделен разумом.

Эта великая концепция начала разрушаться, когда Коперник предложил свою гелиоцентрическую модель Вселенной, в которой Земля оказалась лишь одной из планет, обращающихся вокруг Солнца. Осознание в XVII веке того факта, что звезды — это тоже небесные тела, такие же, как Солнце, но значительно более удаленные, полностью изменило представление о месте нашего Солнца и нас самих во Вселенной. Солнце стало всего лишь одной из множества звезд, одиноко совершающей свой бесконечный путь в пространстве. Начавшись с оценки расстояния от Земли до Солнца в 150 млн км и с выяснения того, что даже ближайшие звезды еще в 200 000 раз дальше, измеренные расстояния до наблюдаемых объектов Вселенной продолжали возрастать и достигли невероятных значений.

В конце XIX и начале XX столетия астрономы выяснили, что Солнце — член огромной звездной системы, Галактики. В согласии с принципом Коперника Солнце оказалось вдалеке от центра Галактики. Развитие методов измерения расстояний за пределами нашей Галактики показало, что эта огромная система размером 100 000 световых лет всего лишь одна из многих ей подобных и что ближайшая такая галактика в Андромеде удалена более чем на 2 млн световых лет. В современной космологии принцип Коперника стал всеобъемлющим: наше положение во Вселенной ни в каком смысле не считается особенным.

Кроме этой бесконечности в пространстве мы подробно описали открытия, свидетельствующие об огромной продолжительности существования Вселенной и полностью перечеркивающие библейский возраст мира около 6000 лет. Эволюция биосферы и отложения геологических осадков огромной толщины требуют гораздо больших промежутков времени; а после открытия радиоактивного распада было надежно установлено, что Земля существует уже 4,6 млрд лет. Такой длительный промежуток времени сам по себе говорит о большом возрасте Вселенной. Однако «парадокс» темного ночного неба и открытие удаления галактик друг от друга указывают на то, что Вселенная не может быть бесконечной во времени или пространстве. Наконец, обнаружение остывшего космического фонового излучения заставило вернуться к основной идее многих мифов о творении, повествующих о рождении Вселенной. Однако это рождение отодвинулось на 14 млрд лет в прошлое.

Учитывая, что наблюдаемая Вселенная имеет размер миллиарды световых лет, что ее возраст составляет миллиарды лет и что она содержит сотни миллиардов галактик, во многих из которых сотни миллиардов звезд, мы ясно представляем себе ничтожность нашей роли в развитии этого огромного мира. Так что, на первый взгляд, может показаться, что человечество и даже вся жизнь на Земле ничего не значат для Вселенной.

Начав со старых представлений о божественном происхождении жизни, которые оставляли без ответа многие вопросы, мы рассказали, как современные биологи представляют себе зарождение и эволюцию жизни в специфическом, но естественном процессе, происходившем здесь, на Земле. Мы описали современные взгляды на то, как в подходящих условиях жизнь могла самопроизвольно возникнуть благодаря химическим реакциям между некоторыми распространенными элементами и их соединениями. Пока мы не знаем точно, как это может происходить, и происходит ли это просто или требует особых условий. В любом случае, космос так велик и он имел столько времени для осуществления различных химических процессов в совершенно разных местах, что вполне возможно, что «химия жизни» зарождалась много раз в различных уголках Вселенной. Вполне вероятно, что если жизнь где-либо зародилась и условия долго оставались благоприятными, то эволюция смогла создать там сложные живые организмы (рис. 33.1).

Рис. 33.1. В нашей Галактике может существовать великое разнообразие живых существ, а может быть, мы одиноки — пока мы этого не знаем. На встрече инопланетян, придуманной Жоржем Патурелем, с равным успехом эти слова можно было бы вложишь в уста представителя нашего вида (всё относительно…), но нам интересно, найдется ли где-нибудь кто-то, хотя бы отдаленно напоминающий нас.

С другой стороны: тонко настроенная Вселенная с уникальной жизнью.

Множество факторов определяют результат эволюции: мы не знаем, чрезвычайно ли сложен процесс зарождения жизни или же крайне редко встречаются необходимые для него условия. В зависимости от этих факторов мы либо можем быть рядовыми представителями огромного разнообразия биосфер на планетах, рассыпанных по Галактике и Вселенной, либо мы единственные и являемся уникальным продуктом космической химии. Поэтому, даже если мы знаем, что земная жизнь — малозаметный фактор в космическом масштабе, мы все еще не представляем себе роль и возможности жизни в целом.

Тем не менее существует один аспект, придающий разумной жизни космическое значение. Только сознательное, разумное существо может изучить Вселенную и понять ее естественные законы. Вероятно, через мыслительный процесс разумных существ Вселенная начинает познавать себя.

Разумные существа могут выявить связь между физическими законами и своим существованием, то есть определить те первичные условия, которые привели к их появлению во Вселенной. С этой точки зрения мы осознали, что наш тип жизни критически зависит от многих физических параметров — как в космическом масштабе, так и в локальном масштабе нашей планетной системы. Даже если жизнь есть результат космической химии, то эта химия и физика работают именно так, что способствуют возникновению и развитию жизни. Почти очевидно, что жизнь есть особый продукт космической эволюции Вселенной, а не локальное и случайное событие.

Если наряду с нашей Вселенной существуют и другие вселенные, с другими космическими постоянными и параметрами, то в них не должна возникать жизнь, или уж, по крайней мере, жизнь в них должна быть совершенно непохожа на нашу, земную. Мы не знаем, может ли жизнь в этих недоступных мирах быть разумной. Становится все более и более очевидным: раз мы такие, какие есть, то мы должны жить именно в такой Вселенной, как наша. Любой другой, хотя бы чуть-чуть отличающийся от нашего мир не дал бы нам ни малейшего шанса к существованию. Но означает ли это, что наша Вселенная именно такая, потому что у нее была цель сотворить такую разумную жизнь, как мы? Это было бы слишком эгоцентрично для нас, научившихся в результате коперниканской революции смотреть на себя как на пылинку в огромном космосе. Если законы и структура Вселенной отражают наше существование, то только лишь потому, что, будь они другими, нас бы здесь не было и некому было бы рассуждать об этом предмете. Этот так называемый антропный принцип довольно популярен среди ученых.

Так каковы же свойства нашей Вселенной, делающие возможной жизнь, и что особого потребовалось для появления разумной жизни? Когда мы знакомились с Солнечной системой, мы с интересом узнали, что Венера — «сестра Земли», — расположившись немного ближе к Солнцу, оказалась совершенно непригодной для жизни. То же и с Марсом: хотя, возможно, в прошлом он был пригоден для жизни, но сейчас это весьма недружелюбное для жизни место. С другой стороны, изучая земную жизнь, мы обнаружили «черные курильщики» на дне океана и даже области, расположенные глубоко под землей, где процветают архаичные микроорганизмы. Эти находки расширяют границы пригодных для жизни условий, особенно там, где существуют источники энергии и жидкая вода, например на спутниках планет-гигантов.

Огромный возраст Земли доказывает, что потребовался длительный срок, чтобы здесь возникла разумная, технологически развитая форма жизни. Одним словом, чтобы на планете появился разум, ей требуется достаточно долго обращаться вокруг своей звезды по стабильной орбите, давая возможность эволюции медленно двигаться вперед. Хотя уже обнаружено множество других планетных систем, ближайшие к звезде планеты-гиганты препятствуют существованию планет земного типа на стабильных орбитах на нужном расстоянии от звезды. Впрочем, пока еще планеты с массами много меньше, чем у Юпитера, расположенные не очень близко от звезды, обнаруживаются с большим трудом, поэтому вполне вероятно, что многие или даже большинство планетных систем похожи на нашу Солнечную систему, то есть содержат планеты типа Земли.

Обсуждая размерность пространства (см. главу 18), мы уже говорили, что стабильные планетные орбиты не могут существовать во вселенной, имеющей более трех пространственных измерений. Точно так же и орбиты электронов в атомах были бы нестабильными, что сделало бы невозможными химические связи, необходимые для формирования сложных органических молекул — основы жизни. В некоторых теориях предполагается, что сначала Вселенная имела больше измерений, но большинство из них свернулось еще на ранней стадии эволюции Вселенной, оставив нам три пространственных и одно временное измерение. Мы можем себе представить другие вселенные, имеющие четыре, пять или больше пространственных измерений, но жизнь, как мы ее представляем, была бы невозможна в таких экзотических мирах.

Естественные законы и универсальные постоянные.

Не только размерность пространства, но также и законы природы и значения физических постоянных оказались как раз такими, какие позволили совершиться химической эволюции от Большого взрыва до Человека. Например, если бы во время Большого взрыва весь водород превратился в гелий, то сейчас во Вселенной не было бы ни воды, ни жизни. А это случилось бы, если бы ядерная сила, связывающая протоны и нейтроны, оказалась немного сильнее, чем она есть. В нашей реальной Вселенной ядерная сила достаточно велика, чтобы связать протон и нейтрон в ядро дейтерия, но недостаточно сильна, чтобы удержать рядом два протона, превысив их электростатическое отталкивание. Но можно представить себе вселенную, в которой ядерное взаимодействие всего на 3,4 % сильнее: это стабилизировало бы систему из двух протонов, то есть позволило бы образоваться ядру 2Не. Такие легкие ядра гелия без труда рождались бы во время Большого взрыва, и почти весь водород превратился бы в гелий. В этой гипотетической вселенной не было бы соединений водорода и долгоживущих звезд, которые используют водород как топливо.

С другой стороны, если бы ядерная сила была всего на 9 % слабее, она не могла бы удержать частицы в ядре дейтерия — главном звене в цепи превращения водорода в более тяжелые элементы. Без дейтерия у нас не оказалось бы углерода, а значит, и таких соединений, как белки и нуклеиновые кислоты. Как видим, сила ядерного взаимодействия с точностью до нескольких процентов должна быть именно такой как есть, чтобы возникла жизнь.

Важность точного значения ядерной силы первым понял Фред Хойл. В 1950-х годах он показал, что реакция ядерного синтеза углерода (из трех ядер гелия) происходит эффективно только в том случае, если ядерная сила имеет вполне определенное значение. Основываясь на том, что наша форма жизни базируется на углероде, Хойл теоретически вычислил значение константы ядерного взаимодействия. Через несколько лет физики-ядерщики на основе экспериментов подтвердили, что Хойл прав: образование углерода в звездах действительно строго зависит от значения ядерной силы. Хойл продемонстрировал и другое счастливое совпадение: превращение углерода в кислород в звездах происходит не так эффективно, как образование самого углерода, что и приводит к накоплению углерода в природе. Жизни трудно было бы процветать в том в мире, где кислорода больше, чем углерода. Если существует много вселенных, то эти уникальные параметры делают нашу Вселенную более благоприятным для жизни местом, чем большинство других.

Мы уже знаем, что один из самых распространенных элементов, углерод, имеет как раз такие химические свойства, чтобы образовать четыре ковалентные связи и формировать длинные молекулы. К тому же оказалось, что самое распространенное соединение во Вселенной, Н2O, действует как оптимальный растворитель для обеспечения биохимических реакций. Похоже, что основные возможности для полного химического арсенала жизни аккумулированы в особых свойствах углерода и воды. В принципе, эти вещества должны быть на планетах по всей Галактике.

Одним из физических факторов, важных для образования первых звезд, было слегка неоднородное распределение плотности первичного излучения и ядерной плазмы, сформировавшихся в процессе Большого взрыва. Это привело к неоднородному распределению первичных водородно-гелиевых облаков, которое затем перешло в сжатие, создавшее первые звезды — «фабрики» по производству первых тяжелых элементов, необходимых для жизни.

Кроме субатомных параметров, важных для процессов, протекающих в недрах звезд, есть еще и слабая сила гравитации — строитель космических структур. Если бы эта сила была немного слабее или немного сильнее, то формирование звезд происходило бы иначе, чем сейчас. Будь эта сила слабее, не появились бы тяжелые элементы, а будь она сильнее, звезды эволюционировали бы так быстро, что у их планетных систем не имелось бы достаточно времени, чтобы на них могла возникнуть жизнь. И вновь мы видим, что иные вселенные, с иной гравитационной постоянной, были бы непригодны для жизни.

Критическое значение для существования жизни имеет возраст Вселенной и звезд. Если бы эволюция Вселенной протекала скоротечно (скажем, за миллион лет), то жизнь не успела бы даже за-родиться. Элементы жизни — углерод и другие — сформировались в ходе ядерных реакций внутри звезд и были выброшены в межзвездные облака при взрывах звезд. И для образования следующего поколения звезд и их планет тоже требуется время. Ведь планеты типа Земли не могут появиться у звезд, протопланетные диски вокруг которых лишены сложных химических элементов. Первое поколение звезд нашей Галактики не могло иметь планет, пригодных для жизни. Накопление необходимых элементов в газовых облаках, из которых позже образовались звезды и планеты, должно было происходить достаточно быстро, но сколько именно времени это заняло — не ясно.

Затем, после синтеза тяжелых элементов и формирования нового поколения звезд и их планетных систем, вобравших эти элементы, на некоторых из планет могла возникнуть жизнь. После этого началась эволюция ко все более сложным формам жизни, которая могла занять миллиарды лет, как это было в случае Земли. Мы знает, что это происходило постепенно, что долгий процесс предшествовал нашему появлению (рис. 33.2).

Рис. 33.2. Физические константы и законы природы таковы, что звезда типа Солнца светит около 10 млрд лет, позволяя жизни возникнуть и эволюционировать на подходящих планетах, обращающихся вокруг этой звезды. На этом фото Солнце предстает в необычном пейзаже: оно заходит за край марсианского кратера в 2005 году, когда это увидел марсоход «Спирит».

Приглядимся к Солнечной системе

Но если эволюция жизни — от ее начальных элементов до клетки и сложной биохимии — происходит так долго, то для нее требовались особые условия. Вероятно, наша голубая планета как раз и была тем особым местом, где нашлись все условия для зарождения и развития жизни. Как в сказке про трех медведей, где Маша всегда выбирала все самое уютное. Действительно, Земля расположена на очень выгодном расстоянии от Солнца, которое, совместно с парниковым эффектом атмосферы, обеспечивает на ней такую температуру, что вода, по крайней мере большую часть времени, остается в жидком виде. Правда, эти благоприятные эпохи иногда прерывались, когда парниковые газы исчезали из атмосферы и температура на миллионы лет опускалась ниже точки замерзания. В эти ледниковые периоды температура долго оставалась настолько низкой, что вся планета покрывалась льдом. И эта «Заснеженная Земля» могла бы остаться такой навечно, если бы теплые недра нашей планеты не испускали газ CO2 в количестве, достаточном для восстановления парникового эффекта, способного нагреть атмосферу. Мы уже говорили, что плотность воды, к счастью, больше плотности льда. Поэтому замерзает только поверхность океанов, и жизнь имеет возможность продолжаться подо льдом в жидкой воде, защищенная от замерзания и высыхания, как мы это видим в озерах Антарктиды. Наконец, горячее расплавленное внешнее ядро и твердое железное внутреннее ядро Земли обеспечили нас магнитным полем, защищающим все живое от вредного космического излучения, угрожающего слабым росткам жизни на любой планете.

Падение комет и астероидов в раннюю эпоху тоже способствовало тому, чтобы Земля стала обитаемой: они принесли с собой большую часть той воды и газов, которыми мы сейчас пользуемся. Кроме того, чрезвычайно сильный удар по молодой планете на раннем этапе ее формирования наградил нас небесным спутником — Луной. Эти столкновения и сама Луна оказались для нас очень полезными. Они наклонили земную ось так, что оба полушария — северное и южное — поочередно поворачиваются к Солнцу, вызывая смену сезонов и способствуя выравниванию температур в разных частях планеты. Мощное столкновение определило вращение Земли. Раньше Земля вращалась еще быстрее, но постепенно она замедлилась до современного значения — один оборот за 24 часа, — создав нам суточный ритм смены дня и ночи. Присутствие Луны продолжает стабилизировать ось нашей планеты, поэтому общий климат не меняется случайным образом. Эти факторы, конечно, очень важны для условий жизни здесь, на Земле, но мы не знаем точно, насколько решающим является наличие крупного спутника для зарождения и длительного сохранения жизни. Не исключено, что это может ограничивать число пригодных для жизни мест даже среди планет, во всем остальном похожих на Землю.

Столкновения с кометами и астероидами имели как физические, так и биологические последствия. Они могли быть весьма благоприятными для жизни на молодой Земле, перенося семена жизни с одной планеты на другую в пределах внутренней области Солнечной системы (скажем, с Марса на Землю или наоборот). Они могли иметь большое значение и на более поздних этапах эволюции жизни, вызывая в биосфере неоднократные массовые вымирания и давая этим шанс для появления новых видов. Хотя это было катастрофой для вымерших видов (например, динозавров), оно оказывалось полезно для видов, получивших возможность развиваться (например, млекопитающих). Но слишком частые столкновения с кометами могут сделать существование любого сложного вида чересчур кратковременным. Возможностью нашей спокойной эволюции и безопасного (до сих пор) существования на Земле мы во многом обязаны планете-гиганту Юпитеру, сумевшему удалить большинство каменных тел, которые в эпоху молодости Солнечной системы являлись здесь частыми гостями. Столкновения с ними были как полезными, так и вредными; нам пока трудно оценить, каков оказался результирующий эффект.

Жизнь влияет на себя и свою планету.

Сама биосфера сильно изменила условия на нашей планете. Очевидно, это произошло в результате сложного взаимодействия между физическими и биологическими системами и, естественно, усложнило поиски ответа на сравнительно простой вопрос — насколько жизнь распространена во Вселенной. Например, появление производивших кислород фотосинтезирующих организмов привело к насыщению воздуха кислородом, что сильно повлияло на условия жизни всех видов. Кислородная атмосфера способствовала возникновению озонного слоя, задерживающего ультрафиолет и более жесткое излучение. Эта защита от губительных лучей позволила жизни выйти из воды на сушу. Кислородно-азотная атмосфера наиболее прозрачна для видимого света, и это весьма удачно, так как совпадает с максимумом в спектре излучения Солнца и позволяет большей части солнечных лучей проникать к поверхности Земли. Это как раз то излучение, которое использует фотосинтезирующая биота как источник энергии для фиксации углерода, и это как раз тот диапазон спектра, в котором видит подавляющая часть животных.

Долгое временя эволюцией и появлением новых видов управлял дарвиновский процесс — генетические изменения в результате мутаций и частичное сохранение потомства вследствие естественного отбора. Принято считать, что отбор происходит путем простого «выживания самого приспособленного», но на самом деле критерий «приспособленности» не так прост. Выжившие виды и отдельные особи приспосабливаются к своей индивидуальной среде. Во многих случаях это должны быть такие виды, которые могут взаимодействовать со средой для поддержания жизни, а не те, которые эксплуатируют эту среду сверх нормы. Кроме простой борьбы за выживание эволюция идет за счет выгодного взаимодействия с другими видами, например в разных симбиотических микробиологических матах, где питательные вещества переходят из одного слоя к другому, или в пищевых цепочках и экосистемах, сформированных высшими организмами. Эта борьба приводит к специализации и дифференциации борющихся групп и обеспечивает разнообразие новых видов. Усложнение экосистем, очевидно, создает все больше и больше ниш разнообразия, поддерживающих свое существование более сложными и гибкими стратегиями, разнообразием видов и более сложными формами жизни.

Кроме того, на эволюцию видов сильное влияние оказывали как местные, так и глобальные явления. Долговременные геологические изменения, такие как перемещение континентов, изменяли климат на долгое время, и сама биосфера влияла на атмосферу. Совместно эти процессы приводили к долговременному изменению климата, когда ледниковые периоды перемежались периодами умеренной температуры. Крупнейшие естественные катастрофы, вызванные космическими столкновениями, неоднократно приводили к массовому вымиранию, уничтожавшему большую часть биосферы. Эти случайные катастрофы часто становились причиной разрушения возникающих экосистем, уничтожая большую часть биоты и вычищая новое пространство для колонизации. В эти эпохи обновленные условия увеличивали биологическое разнообразие и количество новых экосистем, осуществляя поворот в эволюции биосферы. Но в промежутках между катастрофами биосфера обычно развивалась устойчиво с мелкими изменениями и адаптацией. Палеонтолог Стивен Голд (1941–2002) называл такие смены спокойных и бурных фаз «перемежающимся равновесием».

На фоне этой бурной эволюции биосферы для развития разумного, технически оснащенного вида требуются довольно стабильные условия. Из опыта Земли видно, что для создания технической культуры необходима суша. Первым шагом на пути технической эксплуатации природных источников энергии является эффективное производство продуктов питания. С момента изобретения сельскохозяйственной деятельности около 10 000 лет назад мы, к счастью, живем при стабильном климате, без ледниковых периодов.

Вопрос времени

Трудно представит себе 14-миллиардный возраст Вселенной, 4,6-миллиардный возраст Земли и 3,9-миллиардный возраст биосферы. Трудно представить даже продолжительность разных геологических периодов. Чтобы легче было окинуть мысленным взором эти геологические интервалы времени, представим себе всю историю Земли на шкале времени в один год; в этом масштабе возраст Вселенной составит три года. Если предположить, что Земля образовалась 1 января 3-его года, то самые старые известные породы сформировались и, вероятно, жизнь зародилась около 10 февраля. Затем всю весну, лето и осень был долгий период эволюции. Первые примитивные животные появились в середине ноября, первые растения выросли на суше 10 декабря, а эра динозавров закончилась катастрофой вечером 26 декабря. Человек появился как отдельный вид 31 декабря в 6 часов вечера, а последнее оледенение отступило от Скандинавии за минуту до полуночи. Наше западноевропейское летосчисление началось за 14 секунд до полуночи, то есть до нынешнего момента.

Как видим, техническая цивилизация пока существует на протяжении всего лишь крошечной доли возраста нашей планеты. В ее дальнейшем длительном существовании некоторые сомневаются. Имея в виду столь малый промежуток времени, было бы невероятной удачей, если бы на одной из соседних звезд сейчас существовала иная цивилизация, способная посещать нас или связываться с нами. Быть может, именно этим и объясняется парадокс Ферми, который мы обсуждали в главе 32, хотя возможны и другие объяснения.

Учитывая огромное число звезд во Вселенной, мы надеемся на присутствие жизни где-либо еще, однако наличие сложных форм жизни, разума или технической цивилизации обладает значительно меньшей вероятностью. Чрезвычайная сложность жизни, тем более существование разумной, интеллектуальной жизни, способной постигать окружающий мир, свидетельствуют о медленной эволюции, длящейся очень долго. Большие масштабы времени и сложный синтез элементов возможны лишь в космосе зрелого возраста. Поэтому только в долгоживущей и медленно развивающейся Вселенной может возникнуть сложная жизнь. Но в огромной, холодной и старой Вселенной, управляемой темной материей и темной энергией, должны быть теплые и безопасные ниши из обычной материи, способные служить прибежищем для жизни. Маша Земля — одно из таких мест (рис. 33.3).

Рис. 33.3. В декабре 1968 года три человека — Фрэнк Борман, Джеймс Ловелл и Уильям Андерс — десять раз облетели Луну на космическом корабле «Аполлон-8». Спустя три века после создания Ньютоном его «Начал» эта картина восхода Земли над лунным горизонтом стала символом достижений науки и техники по преодолению и использованию гравитации для космических полетов. С разрешения NASA.

Мы начали эту книгу словами биолога Хаксли, выражающими то, как мы, ныне живущие на Земле, а также и все люди, когда-либо жившие до нас, относимся к тайнам Вселенной. Другая цитата суммирует результат нашего долгого путешествия по страницам этой книги. Мы увидели, как расширялись наши знания о Вселенной и как представление о центральном месте в ней человека постепенно сходило на нет. Но мы также узнали, что Вселенная, ее история и даже значения ее физических констант тесно связаны с возникновением жизни на Земле, с нашим собственным существованием и с возможностью того, что подобные миры встречаются и в других местах. Это вселяет в нас надежду, что даже если ближайший очаг внеземной жизни находится очень далеко от нас или даже если мы совершенно одиноки, то все равно мы сможем до конца понять феномен жизни во Вселенной, а значит — понять себя.

Мы будем скитаться мыслью

И в конце скитаний придем

Туда, откуда мы вышли,

И увидим свой край впервые.

Т. С. Элиот «Четыре квартета» Квартет № 4: «Литтл Гиддинг»

Перевод А. Сергеева.

Рис. 1. Очень Большой Телескоп (VLT) Европейской южной обсерватории (ESO) в Чили, в настоящее время крупнейший составной наземный телескоп. Он состоит из четырех телескопов; зеркало каждого из них имеет диаметр 8,2 м. Эти инструменты могут работать совместно или по отдельности. С разрешения ESO.

Рис. 2. Радиотелескоп в Нансэ (Франция) работает в дециметровом диапазоне, изучая всевозможные объекты — от комет и пульсаров до галактик и квазаров. Например, он может измерять излучение нейтрального водорода в линии длиной 21 см, которого очень много в нашей и других галактиках. С разрешения I. Cognard, CNRS.

Рис. 3. Орбита космического телескопа «Хаббл» проходит на высоте 600 км, за пределами атмосферы Земли, полному он может получать более четкие изображения небесных объектов. чем наземные телескопы. С разрешения NASA.

Рис. 4. Внеатмосферная обсерватория WMAP очень точно измерила космическое фоновое излучение, позволив космологам исследила геометрию и состав нашей Вселенной. Обсерватория «Планк» Европейского космического агентства дополнит и улучшит эти наблюдения. На этом рисунке художник показал обсерваторию WMAP, удаленную на миллионы километров от Земли в направлении, противоположном Солнцу. С разрешения NASA.

Рис. 5. Ультрафиолетовое изображение Солнца получено в 1999 году космической обсерваторией SOHO. Наше Солнце — обычная звезда возрастом около 5 млрд лет. Несмотря на спорадическую активность, например в форме выброса протуберанцев (виден на фото), длительная стабильная эволюция Солнца позволила жизни существовать на Земле в течение почти всей ее истории. Гигантская масса Солнца более 300 000 масс Земли) заставляет планеты обращаться вокруг него. С разрешения SOHO-EIT Consortium, ESA, NASA.

Рис. 6. Долины Маринер (Valles Marineris) на плато Фарсида (Марс). Этот огромный каньон — 200 км в ширину и 4 5000 км в длину — демонстрирует нам потрясающий результат древней геологической активности. С разрешения NASA.

Рис. 7. Это изображение марсианского ландшафта передал марсоход «Спирит». Темный вулканический валун на переднем плане в высоту около 40 см. С разрешения NASA/JPLCaltech/Cornell/NMMNH.

Рис. 8. В 1993 году на пути к Юпитеру зонд «Галилео» сфотографировал астероид 243 Ида, обращающийся вокруг Солнца на расстоянии 440 млн км. Длина астероида всего 50 км; его слабая сила тяготения неспособна придать ему круглую форму. поэтому его называют астероидом, а не карликовой планетой. На этом фото виден и маленький спутник Иды — Дактиль. С разрешения NASA/JPL.

Рис. 9. В 1994 году комета Шумейкеров-Леви-9 раздробилась на 20 частей еще до того. как врезаться в Юпитер. На изображении, полученном космическим телескопом «Хаббл», видны темные пятна в тех местах, где четыре куска кометы влетели в атмосферу. Подобные падения на Землю могли изменить условия жизни в эпоху молодости пашей планеты, а сейчас они могли бы угрожать жизни на ней. С разрешения HST Comet Team & NASA.

Рис. 10. Изображения двух разных спутников Юпитера, полученные зондом «Галилео», показывают: (а) горы и вулканические кальдеры на геологически активной Ио; (б) ледяной мир Европы, где жидкий океан воды подо льдом может дать приют жизни. С разрешения NASA/JPL.

Рис. 11. Полярное сияние в районе южного полюса Сатурна ясно видно на комбинированном ультрафиолетовом и визуальном изображении, полученном космическим телескопом «Хаббл» и 2004 году. С разрешения NASA, ESA, J. Clarke (Boston University) & Z. Levay (STScI).

Puc. 12. Этот снимок звездного облака в созвездии Стрелец демонстрирует огромное количество звезд, населяющих нашу Галактику. Не все звезды похожи на Солнце; многие сильно отличаются от него, например по массе, температуре и светимости. На этом (фото вы можете заметить красные (холодные), желтые (похожие на Солнце) и голубоватые (горячие) звезды. С разрешения Hubble Heritage Team (AUFLA/STScI/NASA/ESA)

Рис. 13. Область туманности Орел в созвездии Змея, на расстоянии 7000 световых лет. В этом облаке холодного газа и пыли активно рождаются звезды нашей Галактики. Энергия массивных, молодых и горячих звезд работает как скульптор, создающий призрачные формы из межзвездного вещества. Высота этой «башни» около 9.5 светового года, почти в миллион раз больше радиуса орбиты Земли вокруг Солнца. С разрешения NASA, ESA, & The Hubble Heritage Team STScI/AURA.

Рис. 14. Эта великолепная планетарная туманности (NGC 6751) в созвездии Орел представляет собой газовую оболочку, сброшенную тысячи лет назад горячей звездой, которая видна в центре. Появление такой туманности говорит о скорой смерти звезды типа Солнца. Хотя туманность «планетарная», она не имеет ничего общего с планетами. Диаметр этой туманности около 1 светового года, в 700 раз больше размера Солнечной системы. С разрешения NASA. The Hubble Heritage Team STScl/AURA.

Рис. 15. Планетная система звезды 55 Рака, нарисованная на основе наблюдений, в сравнении с Солнечной системой. Она состоит как минимум из пяти планет, обращающихся вокруг звезды типа Солнца. С разрешения NASA.

Рис. 16. Представление художника о множестве планет типа Земли, ожидаемых в нашей Галактике. Каждая из них имеет свою особую структуру поверхности, воду и атмосферу. Трудный вопрос для астробиологии: какая доля из этих планет обладает хоть какой-нибудь жизнью? С разрешения NASA.

Рис. 17. Соседний с нами большой «остров» во Вселенной — галактика в Андромеде, М31. и ее маленькие спутники — галактики М32 и М110. Эта спиральная галактика, с трудом различимая невооруженным глазом, удалена от нас на 2,5 млн световых лет. С разрешения John Lanoue www.hedfordnights.com.

Рис. 18. Структура Местной группы: наша Галактика и галактика и галактика в Андромеде окружены своими меньшими спутниками. С разрешения Rami Recola.

Рис. 19. Спиральная галактика M81 — член близкой группы галактик в созвездии Большая Медведица. До нее примерно впятеро дальше, чем до галактики в Андромеде. На таком расстоянии она удаляется от нас со скоростью около 250 км/с за счет расширения вселенной. С разрешения NASA. USA & The Hubble Heritage Team STScI/AURA.

Рис. 20. У многих спиральных галактик сеть перемычка, бар, от концов которого тянутся спиральные рукава. Эта красивая спираль с баром называется NGC 1300. Впечатляет мысль о том. что вещество, которое мы видим в сиянии звезд и горячего газа. составляет лишь малую часть огромной массы невидимого и загадочного темного вещества. С разрешения NASA, ESA. & The Hubble Heritage Team STScl/AURA.

Рис. 21. Эта редкая система, обозначенная как IRAS 19115-2124 и получившая прозвище «Птица» или даже «Фея», состоит из двух больших спиральных галактик и одной неправильной галактики, сливающихся в единую систему. Наблюдения с системой адаптивной оптики на телескопе VLT ESO в ближнем ИК-диапазоне выявили это драматическое космическое столкновение. В этом составном изображении использовано также оптическое фото, полученное космическим телескопом «Хаббл». С разрешения ESO & Henri Boffin and Petri V?is?nen & Seppo Mattila.

Рис. 22. Сверхновая, взорвавшаяся в 1604 году (ее наблюдал Кеплер), оставила после себя газовую оболочку, расширяющуюся со скоростью 2000 км/с. В этом составном изображении оболочки использованы снимки, полученные в разных диапазонах спектра — от инфракрасного до рентгеновского. Расположенная на расстоянии 13 000 световых лет в созвездии Змееносец, она была последней сверхновой из наблюдавшихся в нашей Галактике. С разрешения NASA, ESA /J PL Caltech/R.Sankrit &W. Blair (John Hopkins University).

Рис. 23. Вспышка сверхновой во внешней области галактики NGC 4526. В обычной галактике сверхновые вспыхивают примерно раз в столетие. Некоторые типы сверхновых служат «стандартными свечами». Их наблюдения на больших расстояниях показали, что расширение Вселенной ускоряется благодаря загадочной антигравитирующей «темной энергии». С разрешения NASA/ESA, The Iiubble Key Project Team, and The High-Z Supernova Search Team.

Примечания

1

Зная длину окружности, можно вычислить ее радиус, разделив длину на 2?. Взяв окружность в 40 000 км, получим радиус 6366 км. Архимед (которого знал Эратосфен) показал, что отношение длины окружности к диаметру равно примерно 3,14.

(обратно)

2

Большие числа были слабым местом неуклюжей греческой системы, использующей буквы для обозначения чисел. В этой традиционной системе вычисления были просты до числа 10 000 (обозначим его буквой М), а при некоторых усилиях — даже до М2 = 100 миллионов, но после этого все усложнялось. Архимед принял за новую единицу число 100 миллионов, а следующими единицами стали квадрат, куб и т. д. этого числа. Самым большим числом в новой системе стало М2, возведенное в степень М4. В наших обозначениях это соответствует 80 000 000 миллиардам нулей после единицы!

(обратно)

3

В нелинейных системах изменение в состоянии системы зависит от ее текущего состояния. Например, y = kx + b является линейным детерминистическим уравнением, у которого производная dy/dx не зависит от x. Но простое квадратное уравнение у = kx2 + b нелинейно: его производная (dy/dx зависит от значения x.

(обратно)

4

Здесь игра слов. Английскую фразу «Physics may expand your mind» можно понимать как «Физика способна развить ваш ум, расширить ваш кругозор», так и «Физика способна довести вас до галлюцинаций; от физики можно и свихнуться». — Примеч. пер.

(обратно)

5

Речь идет о наблюдениях над тремя состояниями вещества: газообразным, жидким и твердым. — Примеч. пер.

(обратно)

6

В научно-популярной литературе на английском языке Млечным Путем (Milky Way) часто называют не только видимую на небе светлую полосу, но и саму звездную систему, в которую входит Солнце и которая видна невооруженным глазом как светлая полоса. В русском языке для этих понятий строго используются разные термины: видимую на небе светлую полосу мы называем Млечным Путем, а звездную систему, включающую наше Солнце, называем Галактикой и пишем обязательно с большой буквы, чтобы не путать с другими звездными системами — галактиками. Далее в книге мы будем следовать этой традиции. — Примеч. пер.

(обратно)

7

Тит Лукреций Кар. О природе вещей. Пер. с лат. Ф. А. Петровского. М.: Художественная литература, 1983. Стихи 1001–1007.

(обратно)

8

Генрих Ольберс (1758–1840) был немецким физиком и астрономом. Этот парадокс, сформулированный им в 1823 году, отмечали еще раньше некоторые другие астрономы (Кеплер, Галлей, Шезо).

(обратно)

9

В главе 15 мы уже объясняли, что трехмерная сферическая Вселенная звезд имеет двумерный аналог в виде поверхности сферы, усеянной звездами. Не путайте это с реальной сферой, содержащей звезды внутри себя.

(обратно)

Оглавление

  • Эволюция Вселенной и происхождение жизни Предисловие
  • ЧАСТЬ I РАСШИРЯЯ ГРАНИЦЫ ПОЗНАНИЯ Глава 1 Рождение науки
  • Глава 2 Наука в Афинах
  • Глава 3 Сферы планет и размер Вселенной
  • Глава 4 Средневековая космология
  • Глава 5 Корни коперниканской революции
  • Глава 6 Открытие истинных законов движения планет
  • Глава 7 Галилео Галилей и его последователи
  • Глава 8 Далеко ли до звезд?
  • Глава 9 Масштаб Солнечной системы
  • ЧАСТЬ II ФИЗИЧЕСКИЕ ЗАКОНЫ ПРИРОДЫ Глава 10 Ньютон
  • Глава 11 Небесная механика
  • Глава 12 Природа света
  • Глава 13 Электричество и магнетизм
  • Глава 14 Время и пространство
  • Глава 15 Искривление пространства и времени
  • Глава 16 Атомы и ядра
  • Глава 17 Странности микромира
  • Глава 18 Элементарные частицы
  • Врезка 18.1 Поколения частиц
  • ЧАСТЬ III ВСЕЛЕННАЯ Глава 19 Звезды: космические термоядерные реакторы
  • Глава 20 Тайна Млечного Пути
  • Глава 21 Вступая во Вселенную галактик
  • Глава 22 Крупномасштабная структура Вселенной
  • Глава 23 Вселенная конечная или бесконечная: космологические модели
  • Глава 24 Когда все началось: Большой взрыв
  • Глава 25 Темная сторона Вселенной
  • Глава 26 Активные галактики: послание на радиоволне
  • Глава 27 Происхождение галактик
  • ЧАСТЬ IV ЖИЗНЬ ВО ВСЕЛЕННОЙ Глава 28 Что такое жизнь?
  • Глава 29 Происхождение Земли и Луны
  • Глава 30 Возникновение и эволюция жизни
  • Глава 31 Жизнь и наша Солнечная система
  • Глава 32 Внесолнечные планетные системы и жизнь на экзопланетах
  • Глава 33 Роль человека во Вселенной

  • Наш сайт является помещением библиотеки. На основании Федерального закона Российской федерации "Об авторском и смежных правах" (в ред. Федеральных законов от 19.07.1995 N 110-ФЗ, от 20.07.2004 N 72-ФЗ) копирование, сохранение на жестком диске или иной способ сохранения произведений размещенных на данной библиотеке категорически запрешен. Все материалы представлены исключительно в ознакомительных целях.

    Copyright © читать книги бесплатно