Электронная библиотека
Форум - Здоровый образ жизни
Акупунктура, Аюрведа Ароматерапия и эфирные масла,
Консультации специалистов:
Рэйки; Гомеопатия; Народная медицина; Йога; Лекарственные травы; Нетрадиционная медицина; Дыхательные практики; Гороскоп; Правильное питание Эзотерика


Часть I. Теории и дискуссии о законах наследственности: от античности до XIX века

1.1. Античные авторы о наследственности: первые попытки объяснить и обосновать

Генетика как наука, изучающая вопросы наследственности и изменчивости, существует всего около сотни лет, и последние десятилетия ее развития были весьма плодотворны. Уже в эпоху Древнего мира люди пытались объяснить появление новых видов в животном и растительном мире, разобраться в правилах наследования различных признаков – как желательных, так и нежелательных.

Почему у членов одной семьи могут быть глаза разного цвета? Какие процессы в организме родителей влияют на пол будущего ребенка? Можно ли повысить урожайность съедобных злаков? Можно ли добиться того, чтобы потомки лошадей, на которых мы ездим сейчас, были более быстрыми и выносливыми, чем их родители? Вначале человек стремился хотя бы объяснить природные явления. Попытки подкрепить сложившиеся теории практически (например, выводить новые породы домашних животных) начались несколько позже.

Большой вклад в рассмотрение вопросов наследственности внесли философы Древней Греции. Но эта область знания не выделялась в отдельную отрасль, как, впрочем, и все остальные. В то время философия считалась матерью всех наук, и большинство ученых параллельно занимались исчислениями, астрономией, лингвистикой… Само слово «генетика» происходит от греческого «генезис» – порождающий, происходящий. Правда, термин был предложен лишь в начале XX в. английским биологом Уильямом Бэтсоном (1861–1926 гг.).

Итак, какую основу для современной генетики заложили мыслители древности?

Один из самых популярных тогда вопросов: от чего зависит пол будущего младенца? Алкмеон Кротонский, живший в VI–V вв. до н. э., высказывал предположение, что рождение девочек либо мальчиков зависит от пропорций смешения «мужского» и «женского» семени – существование последнего тогда не вызывало особых сомнений. Соответственно, если при зачатии преобладало семя отца, рождался мальчик, если семя матери – девочка. Функцию производства семени многие древние ученые отводили головному и спинному мозгу.

Сходную теорию защищал последователь Алкмеона – Гиппон, правда, он считал, что определяющую роль в рождении мальчика либо девочки играет качество мужского семени – для зачатия мальчика оно должно быть «густым» и «сильным»; если же оно не отвечает этим требованиям, будет девочка. «Женское» же семя – лишь питательная среда для будущего ребенка.

Философ Эмпедокл (V в. до н. э.) поставил на первое место условия созревания плода: если матка «теплая», на свет появится мальчик, если «холодная» – девочка. Температурой «семени отца» он объяснял возможное сходство или несходство ребенка с родителями.

Уже в древности существовали предположения, пусть и весьма наивные, о наследовании различных признаков от обоих родителей.

Современники Эмпедокла Парменид и Анаксагор считали, что пол младенца и его сходство с матерью либо отцом зависят от того, с какой стороны в матке развивается зародыш: испокон веков правая сторона считалась мужской, а левая – женской. Впоследствии Анаксагор пошел дальше и задался вопросом: ведь не просто так организмы одного вида в целом схожи? Например, у людей – по две руки, две ноги и так далее. Да еще и дети в большинстве случаев рождаются похожими на отца с матерью. Все это означает, что, во-первых, у природы (или у богов) должен быть какой-то образец, универсальный шаблон. Во-вторых, должен существовать некий механизм, позволяющий передавать детям внешние признаки родителей: цвет волос, форму носа… Он высказал предположение, что мельчайшие частицы, создающие новую жизнь, уже несут в себе миниатюрный образ будущего организма. Правда, как именно это происходит – оставалось тайной.

Теорию Анаксагора развил Демокрит, автор атомистической теории: он считал, что все сущее состоит из мельчайших частиц, причем однородные частицы соединяются друг с другом и образуют тела и предметы. Следовательно, рассуждал ученый, семя содержит в себе некое подобие «экстрактов» из всех систем и органов – этим и обусловлено появление сходство новой особи с родителями. А пол этой особи зависит от того, как поведут себя частицы, отвечающие за половые признаки. Если «победят» частицы отца – на свет появится младенец (детеныш) мужского пола.

«Отец медицины» Гиппократ высказал предположение, что признаки, которые хранит семя отца и матери, комбинируются после зачатия достаточно свободно и результат во многом случаен. Надо уточнить, что половая система человека тогда была еще практически не изучена. Более или менее стройные ее описания будут сделаны только в III–II вв. до н. э. медиками Александрии и Рима.

Множество интересных идей высказал Аристотель. Семя он считал продуктом, отделяющимся от крови в процессе жизнедеятельности. Будучи увлечен вопросом соотношения материи и духа, философ предположил, что материальную основу будущего зародыша обеспечивает женский организм, а семя мужчины вдыхает в него душу – и только после этого начинается развитие. Соответственно, все характерные признаки эмбрион получает от отца. Но почему тогда на свет появляются не только мужские особи? Здесь Аристотель соглашается со своими предшественниками: в этом вопросе все зависит от исхода «борьбы» между мужским и женским началами. Да, не слишком последовательно. Но все же великий ученый несколько расширил рамки вопроса и предположил, что большое значение имеет возраст родителей (если будущий отец – преклонного возраста, то скорее всего он произведет на свет девочку), пропорции тела (чем сильнее выражена маскулинность отца, тем выше вероятность рождения сына) и даже направление ветра в день зачатия!

Но от раскрытия законов генетики и рассмотрения биохимических процессов все это было еще очень далеко…

1.2. Интуитивная генетика. Селекция растений и животных человеком

Благодаря широкому распространению скотоводства и охоты ученые древности имели обширную базу для исследований. Для всех была очевидна возможность получения потомства от волка и собаки, от ослицы и жеребца… Но механизм формирования гибрида представлялся чем-то загадочным. Не было ясности и в вопросе о том, какие виды животных в принципе способны произвести на свет смешанное потомство: например, если возможно скрестить собаку и волка, то можно ли сделать это с пантерой и гепардом? В основном мыслители ограничивались тем, что констатировали большую или меньшую выраженность признаков одного из родителей гибрида и старались объяснить ее. Так, популярна была точка зрения, согласно которой плоды скрещивания будут более схожи с матерью, так как во время внутриутробного развития они получают питание только благодаря ей.

Так как теория о наличии мужского и женского семени не сдавала позиций, некоторые ученые считали, что внешний вид потомства будет зависеть от того, чье семя – отца или матери – оказалось сильнее. Но уже в античном мире высказывались предположения, что внешние признаки потомство может наследовать не только от родителей, но и от более отдаленных предков. Стремясь получать потомство от наиболее сильных и красивых домашних животных, животноводы отбирали в нескольких поколениях самых выносливых лошадей, самых удойных коров и самых быстрых охотничьих собак, то есть сомнений в существовании определенной наследственности у них не было. Правда, дальше констатации факта дело не шло.

Ситуация осложнялась тем, что в то время еще не были полностью изучены и не всегда разделялись такие явления, как, например, половой диморфизм (внешние различия между самцами и самками одного вида) и процесс метаморфозы (например, когда плавающая личинка стрекозы превращается в летающее насекомое). Поэтому у древних авторов можно найти множество фантастических предположений о том, что один вид растения или животного может под влиянием внешних условий превратиться в другой, заметно от него отличающийся.

А что же растения? Согласитесь, что процесс их размножения и внешние признаки наследственности не так очевидны, как у человека или животных.

В древнейших государствах, например, в Вавилонии, практиковали искусственное опыление растений для повышения урожайности: сохранились изображения подобного процесса.

Судя по всему, земледельцы знали, что получение обильного урожая каким-то образом связано с наличием насекомых, перелетающих с цветка на цветок. Но суть процесса опыления тогда не была исследована. Четкого представления о мужских и женских цветах или о мужских и женских растениях не существовало, хотя отдельные ученые обращали внимание на разную форму цветков и на то, что не все они превращаются впоследствии в плоды или ягоды. Поэтому мы и говорим об интуитивной генетике древнего мира, признавая, что никакой научной базой селекционеры того времени попросту не обладали.

Уже во времена Аристотеля греческие ученые выяснили, что для разных видов растений предпочтительнее разные способы размножения: семенами, черенками, делением клубня. Семена во многих древних источниках названы «зачатками», то есть в общих чертах жизненный цикл большинства растений был понятен человечеству. Но при этом на протяжении еще многих столетий – не только в эпоху Древнего мира – существовало представление о том, что некоторые виды (причем не только растений, но и насекомых, и животных) могут самозарождаться – в земле, навозе, кучах мусора…

Эпоха Средневековья с ее отторжением языческих представлений, в том числе и наук Древней Греции и Древнего Востока, также не внесла большого вклада в систему знаний о наследственности в среде растений и животных.

Лишь на рубеже XVII–XVIII вв. было доказано: растения обладают подобием половых органов, а процесс опыления – не что иное, как аналог зачатия у животных и человека. В 1694 г. была издана книга De Sexu Plantarum Epistola («О поле у растений»), написанная немецким врачом и ботаником Рудольфом Камерариусом (1665–1721 гг.). Исследуя размножение растений, он изолировал в период цветения женские растения от мужских, а у тех, которые обладали «разнополыми» цветками, удалял мужские. В итоге плоды и семена не развивались. Именно Камерариус обозначил пестики цветков как мужские половые органы, а тычинки – как женские и во главу угла в вопросе размножения растений поставил опыление. Правда, он не особо продвинулся в изучении взаимного опыления как в рамках одного вида, так и межвидового. Развивать идеи немецкого биолога было суждено другим исследователям.

Многие открытия Нового времени в области наследственности были бы невозможны, если бы англичанин Роберт Гук в 1665 г. не ввел понятие «клетка» (именно он первым рассмотрел в микроскоп клетки пробкового дерева), а голландец Антоний ван Левенгук в 1674 г. не заявил о существовании одноклеточных микроорганизмов, а также не описал половые клетки – сперматозоиды. Интуитивная селекция доживала последние дни.

1.3. Зародыш – готовый организм или сгусток тканей? Борьба гипотез в XVII–XVIII веках

Достаточно ли признать наличие половых клеток у разнообразных организмов для того, чтобы раскрыть все тайны воспроизведения и наследственности? Конечно, нет. В любой сфере науки существует множество пересекающихся вопросов и проблем, и далеко не всегда решение одного из них способствует раскрытию всех остальных…

В XVII–XVIII вв. параллельно с изучением гибридизации и наследственности разгорался очередной спор о том, как, собственно, происходит развитие нового организма – не только у гибридов, но и при размножении в рамках одного вида или породы. На «поле боя» сошлись две теории – эпигенетическая и преформистская.

Термин «эпигенез» (от греч. epi – после, genesis – развитие, возникновение) появился благодаря англичанину Уильяму Гарвею (1578–1657 гг.), который известен, прежде всего, как автор исследований о работе сердца и движении крови. Гарвей является также основоположником эмбриологии. Согласно его теории, изложенной в труде Exercitationes de generatione animalium («Исследование о зарождении животных», 1651 г.), зародыш претерпевает ряд последовательных изменений, в ходе которых формируется новый организм – возникает из некоей «первоосновы» путем многих трансформаций.


Антоний ван Левенгук (художник Ян Верколье, ок. 1680 г.)


В отличие от эпигенетической, теория преформизма (от лат. ргае – перед, до; forma – вид; то есть заранее образованное, заранее сформированное) утверждает, что все структуры, характерные для полностью развитого организма, имеются в зародыше. То есть любое живое существо на всех стадиях развития обладает полным набором органов, характерных для взрослой сформированной особи. И процесс развития зародыша – человеческого, животного, растительного – это всего лишь увеличение его размеров. Не правда ли, можно сделать вывод, что отчасти идеи, схожие с теорией преформизма, имели место еще в античности? Вспомним хотя бы рассуждения Анаксагора.

С легкой руки Антония ван Левенгука, предположившего, что головка сперматозоида представляет собой уменьшенную копию исходного организма, спермин человека и животных в трудах того времени часто изображали в виде крошечных свернувшихся калачиком собачек, лошадок, человечков. Но не все ученые считали сперматозоид «местом преформирования» зародыша. Например, Ренье де Грааф (1641–1673 гг.), изучавший строение женских яичников, и Марчелло Мальпиги (1628–1694 гг.), основывавший свои выводы на препарировании куриных яиц, считали таковым женскую половую клетку.

Преформисты, правда, не могли объяснить, почему гибрид зачастую имеет сходство и с отцовским, и с материнским организмом, а также почему иногда на свет появляются слабые, нежизнеспособные или уродливые особи. Ведь если внешний вид и внутреннее строение предопределены заранее, чем объяснить подобные капризы природы? Наиболее популярным объяснением появления уродств тогда было травмирующее воздействие: например, повреждение растения во время формирования плодов или травма, перенесенная беременной женщиной.

Иногда все объясняли простой случайностью и, конечно же, происками нечистой силы!

Исследователей также сбивал с толку тот факт, что какой-либо признак, унаследованный потомством от одного из родителей, может в последующих поколениях то угасать, то проявляться более явно – закономерности таких явлений все еще оставались тайной.

Сложность заключалась и в том, что вплоть до 30-х гг. XVIII в., когда вышла в свет книга Линнея «Система природы», не существовало четкого разграничения понятий «род» и «вид», не были сформулированы основные их признаки и определения. Именно Карл Линней систематизировал доступные ему на тот момент знания о разнообразии животного и растительного мира, объединив сходные виды в роды, роды – в отряды, отряды – в классы и так далее. Но окончательно понятие «вид» сложилось лишь через два с лишним столетия.

Линней очень интересовался вопросами гибридизации. Проведя ряд опытов по скрещиванию растений и пронаблюдав за появлением гибридного потомства у животных, он пришел к выводу, что сочетание отцовских и материнских признаков подчиняется довольно простому правилу: внутреннее строение «помеси» наследуется от матери, а наружное – покровы, внешний вид, качество и цвет шерсти у животных – от отца. Конечно, такой взгляд сейчас представляется крайне упрощенным.

К концу XVII в. преобладало учение о преформации. Новые и, как тогда казалось, бесспорные подтверждения, оно получило после подробного изучения и описания живых существ, которым для размножения не требовался половой контакт между двумя особями, например, гидры или некоторых видов червей.

Новый виток в развитии теорий о формировании новых организмов произошел благодаря изысканиям французов Пьера Луи Моро де Мопертюи (1698–1759 гг.) и Жоржа-Луи де Бюффона (1707–1788 гг.). Первый, рассуждая о вопросах размножения и критикуя преформизм, утверждал, что в женском и мужском семени содержатся неисчислимые крошечные частицы, которые при оплодотворении перемешиваются и формируют эмбрион. Следовательно, он унаследует признаки обоих исходных организмов. Мопертюи предвосхитил многие вопросы будущей научной генетики: так, он писал о доминировании одних внешних признаков над другими, признавал возможными спонтанные изменения во внешнем или внутреннем строении растения либо организма – через много лет они будут называться мутациями.

Что же касается Бюффона, то он, подобно Мопертюи, был уверен в существовании «семенных жидкостей», имеющихся как у мужских, так и у женских организмов животных и человека. Сходство детей с родителями, по его мнению, объяснялось тем, что семенная жидкость содержит некие органические частицы, являющиеся как бы уменьшенными копиями органов и систем взрослого организма. При формировании плода они «взаимно притягиваются» и создают новое маленькое существо.

Как видим, выводы исследователей XVII–XVIII вв. были во многом интуитивны и умозрительны. Это не их вина, ответить на значительную часть вопросов попросту не позволял уровень развития лабораторной техники…

1.4. Йозеф Кёльрейтер: успехи искусственного скрещивания

Вернемся к истории изучения гибридизации растений. Как мы помним, еще в государствах древнего Востока для повышения урожая применяли дополнительное искусственное опыление, хотя научно это никак обосновано не было и получением гибридов, вероятнее всего, никто не занимался. Земледельцев интересовало лишь увеличение урожайности.

В более поздние времена, на рубеже XVII–XVIII вв., в странах с развитым земледелием и растениеводством естествоиспытатели описывали случаи появления гибридных растений. В частности, если на соседних полях выращивали кукурузу с цветами разных оттенков, то потом констатировали, что на поле с белой кукурузой появляются растения, например, с розовыми или голубыми бутонами. Но исчерпывающего объяснения этот факт тогда не получил. Высказывались предположения, что смешение окраски происходит через почву и корни.

Некоторые исследователи все еще полагали, что появление растений с новыми формами цветов и листьев или животных с необычной окраской – всего лишь случайность, никак не связанная со скрещиванием.

В 1717 г. в Британии, в деревне Хокстон на окраине Лондона, садовод Томас Фэйрчайлд (1667–1729 гг.) получил гибрид двух растений, популярных у любителей цветов: красной садовой гвоздики и гвоздики турецкой. Мы сейчас не знаем точно, был ли этот опыт спланирован или опыление произошло случайно, но в дальнейшем Фэйрчайлд уже целенаправленно создавал подобные гибриды при помощи искусственного опыления. Его «цветочный мул» наглядно подтверждал описанные выше выводы Рудольфа Камерариуса и весьма заинтересовал современников-ботаников. Аналогичными изысканиями, подтверждавшими наличие полов у растений, занимались Иоганн Готтлиб Гледич (1714–1786 гг.), Жан Маршан (1650–1738 гг.), Иоганн Георг Гмелин (1709–1755 гг.), Мишель Адансон (1727–1806 гг.) (последний, кстати, внес большой вклад в систематизацию растений по степени близости разных групп и семейств). Но механизм оплодотворения и закономерности наследственности все еще не были изучены.

Пожалуй, ближе других к решению вопросов наследования подошел немецкий ботаник Иозеф Готлиб Кёльрейтер (1733–1806 гг.), предваривший блестящие открытия Грегора Менделя. Огромное количество поставленных им опытов по искусственному опылению растений (около 50 видов и 10 родов) позволило сделать выводы, изложенные им в научном труде «Предварительное сообщение о некоторых опытах и наблюдениях, касающихся пола растений», который многократно дополнялся и переиздавался в 1761–1766 гг.

Наблюдая за тем, как гибрид наследует черты обоих исходных растений, Кёльрейтер подверг сомнению теорию преформации. Он первым обратил внимание на явление гетерозиса (от греч. heteroiosis – изменение, превращение) – большую жизнеспособность гибридов, их крупные размеры и бурный рост (правда, в причинах он не разобрался). Кёльрейтер, хорошо знавший, что гибриды в большинстве случаев не способны к размножению «между собой», опылял их пыльцой, полученной от исходных растений (сейчас этот метод называют анализирующим скрещиванием). Он констатировал, что в итоге каждое последующее поколение становится все ближе по внешним признакам к тому из «родителей», от которого брали пыльцу, но не уделил должного внимания статистике. Повторяемость конкретных признаков – цвета, формы листьев и лепестков – не особенно его интересовала. Ботаник лишь вскользь признал, что «части» растений, видимо, смешиваются в какой-то определенной пропорции, но четкую закономерность не отследил. Также он обратил внимание на то, что некоторые признаки передаются по наследству чаще, чем другие, но явление доминантности, которое вскоре станет одним из основополагающих в изучении наследственности, описано им не было. Поэтому мы и говорим о том, что немецкий ботаник предвосхитил открытие многих законов генетики, но остановился на полпути – впрочем, его заслуг как ученого-экспериментатора это ничуть не умаляет.

1.5. Эксперименты с горохом

В Англии практически одновременно с исследованиями Кёльрейтера ставил опыты талантливый селекционер, основатель Лондонского общества садоводства – Томас Эндрю Найт (1759–1838 гг.). Он известен в первую очередь как исследователь явления гравитропности, объясняющего, почему корень растения всегда направлен вниз, а стебель – вверх. Помимо связи земного притяжения с ростом растений, Найт интересовался способами повышения урожайности и возможностью влиять на различные свойства даров природы.

В качестве материала для экспериментов англичанин избрал обычный горох. Такие особенности растения, как разнообразие окрасок, крупные семена, быстрый рост, делали его весьма удобным объектом исследования. Но в своих исследованиях Найт зачастую ограничивался обычным описанием хода эксперимента. Так, он обращал внимание на то, что при опылении цветков обычного гороха пыльцой, взятой от сорта с яркими семенами и цветами, в стручке сформировались обычные по виду семена. Будучи посеяны в землю, они уже породили яркие, схожие с «отцовскими» растения.

Но никаких внятных однозначных объяснений этому исследователь не дает. Тот факт, что при скрещивании двух сортов гороха – низкорослого кустовидного и обладающего длинными плетями – гибридное растение получилось огромным, Найт истолковал как положительное воздействие скрещивания. Хотя современные исследователи просто признали бы размер одного из исходных растений доминантным признаком. Правда, британский садовод обратил внимание на то, что отдельные характерные черты того или иного растения устойчиво сохраняются у гибридных потомков, внеся тем самым свой вклад в формулирование понятия наследуемых признаков.

Томас Эндрю Найт долгое время был уверен в том, что представители разных видов не могут производить гибриды, хотя впоследствии он пересмотрел эту точку зрения. Надо сказать, что в XIX в. не было единого мнения по этому вопросу. Соотечественник Найта, ботаник Уильям Герберт (1778–1847 гг.), заявил, что имеющееся на данном этапе разнообразие видов, скорее всего, формировалось постепенно, значит, выделение новых видов под влиянием природных условий и скрещивание между видами вполне вероятно. В этом вопросе Герберт стал предшественником Чарлза Дарвина.

Не лишним будет вспомнить соотношение между понятиями «род», «вид», «семейство».

Все живые существа и растения – как существующие, так и вымершие – занимают определенное место в биологической систематике. Не будем подробно рассматривать все ее ранги, ограничимся в упрощенном виде пятью низшими: класс (например, насекомые); порядок, или отряд (чешуекрылые); семейство (белянки); род (огородные белянки); вид (капустница). Как видим, основной единицей систематики является вид. Представителей одного вида объединяет схожесть физических признаков, биохимических процессов, поведения, а также способность воспроизводить плодовитое потомство в рамках внутривидового скрещивания. Но, как видим, скрещивание возможно не только в пределах вида. А вот способность или неспособность различных гибридов к размножению зависит от очень многих условий…

Современное определение вида сложилось далеко не сразу. Много лет ученые спорили о том, каковы вообще критерии в этом вопросе. Карл Линней считал, что вид – это группа сходных по строению особей, способных дать плодовитое потомство. Бюффон также ставил плодовитость во главу угла: с его точки зрения, только схожие особи, дающие способное к размножению потомство, могут быть отнесены к одному виду. Жан Батист Ламарк (1744–1829 гг.) полагал, что виды непрерывно изменяются (так что Дарвин не был революционером в этом вопросе), следовательно, в реальности видов как таковых нет и быть не может. Современное понятие вида было дано только к середине XX в. В настоящее время для описания того или иного вида используются несколько критериев, которые нельзя рассматривать отдельно друг от друга. Так, морфологический критерий важен, но не является определяющим: согласно ему, представители одного вида должны быть схожи по своему внешнему и внутреннему строению. Но как быть с тем, что, например, цветы одного вида, выросшие в разных климатических условиях, будут несколько отличаться друг от друга? Таким образом, нужно учитывать биохимический критерий (особенности процессов, протекающих «внутри» представителей вида), экологический критерий (сходство условий окружающей среды, в которых развиваются разные представители вида), физиологический (схожие процессы жизнедеятельности) и, конечно, генетический критерий – определенный набор хромосом. Последний стали рассматривать относительно недавно, и разговор о хромосомах нам тоже еще предстоит. Пока просто отметим, что в природе существуют виды, практически неотличимые друг от друга внешне, но обладающие разными хромосомными наборами.

1.6. Огюстен Сажрэ. Огород и сад как лаборатория

Множество важных выводов в области наследственности и изменчивости у растений сделал французский садовод Огюстен Сажрэ (1763–1851 гг.). В первую очередь он занимался разведением фруктовых деревьев, но, заинтересовавшись вопросами гибридизации, поставил сотни опытов по скрещиванию различных цветов, тыквенных и бахчевых культур. Как мы помним, многие предшественники Сажрэ обращали внимание на то, что различные признаки родителей – окраска, размеры, форма цветов и плодов – в той или иной степени проявляются у гибридных растений, но не выявляли никаких строгих закономерностей. Встречались также утверждения, что гибрид всегда представляет собой «среднее арифметическое»: условно говоря, если мы скрестим гвоздику с красными цветками и гвоздику с белыми цветками, то получим растение с лепестками розового цвета.

Огюстен Сажрэ усомнился в принципе смешения. Сделать это ему помогли обыкновенные дыни разных сортов, которые садовод неутомимо скрещивал в самых разнообразных сочетаниях. Он первым обратил внимание на наследование отдельных признаков – таких как рисунок и расцветка кожуры, вкус (сладкий, кислый, с пряным оттенком), цвет мякоти, расположение и форма семян. «Например, – рассуждал Сажрэ, – мы скрещиваем два вида дыни – один с ярко-желтой коркой и белыми семенами, другой – с белой коркой, покрытой сеткообразным рисунком, и семенами коричневого оттенка. Если следовать логике сторонников смешения признаков, то гибридная дыня должна иметь светло-желтую корку с едва заметной сеткой, а семена ее будут светло-бежевыми. Если же взять два сорта – один с медово-сладкой мякотью, другой – с кислой, то в итоге должно получиться растение с кисло-сладкими плодами. То есть различные признаки двух сортов, смешавшись, породят нечто среднее». Но… полученные французским садоводом гибриды упорно не желали подтверждать эту теорию. Они наследовали признаки родителей в чистом виде, но в самых разных вариациях. Выходит, что в разведении растений не действует тот же принцип, что и в смешивании красок: смешав белое и ярко-желтое, мы не получим бледно-желтое – здесь действуют какие-то иные правила!

Свои выводы Огюстен Сажрэ представил в статье 1825 г. «Соображения об образовании гибридов, вариант и разновидностей», впоследствии несколько раз переизданной. «Варианта» в изложении французского исследователя означает некое незначительное отличие, которое возникает скорее благодаря внешнему воздействию – составу почвы, перепадам температуры, – нежели в ходе гибридизации.

У растений одного и того же вида, растущих в разных регионах, цвет листьев может несколько различаться из-за разной продолжительности светового дня и различных химических характеристик почвы.

Сажрэ не только обратил внимание на факт неизменности многих отдельных признаков и появление «вариант». В своих исследованиях он рассмотрел явление атавизма (от лат atavus – отдаленный предок): когда растение или животный организм наследует признаки не только родительских особей, но и имеет явное сходство с более отдаленными предками. По мнению Сажрэ, имевшего дело в первую очередь с культурными садовыми и огородными растениями, атавизм и «варианты» находятся в противодействии: по сути «одичание» культурных растений, которое происходит без надлежащего ухода, это и есть атавизм. Задача садовода – противодействовать этому процессу при помощи культивации почвы, внесения удобрений, обрезки растений и прочих необходимых операций. В случае продолжительного целенаправленного ухода культурные признаки будут закреплены, и положительные варианты станут наследоваться в новых поколениях.

А что же с наследованием гибридными растениями цвета плодов, формы листьев и прочего? Признав, что «перемешивание» не происходит, Сажрэ констатировал тот факт, что отдельные черты проявляются у гибридных дынь более ярко, чем все остальные. Он также обратил внимание на то, что некоторые заболевания могут передаваться от родительских растений их потомкам, причем иногда разные дефекты могут проявиться через несколько поколений. Но закономерность в наследовании признаков и их доминировании он все же не обнаружил. Поэтому Огюстена Сажрэ обычно называют одним из предшественников Грегора Менделя. Описав и подтвердив множество фактов, необходимых для понимания процессов наследственности и изменчивости, он, как и Иозеф Кёльрейтер и Томас Найт, остановился на полпути.

1.7. Шарль Ноден: за несколько шагов до революционных открытий

Дополнить и развить предположения Огюстена Сажрэ смог его соотечественник – Шарль Ноден (1815–1899 гг.).

Вообще в середине XIX в. развернулся новый виток дискуссии о том, каковы признаки и границы вида, рода и разновидности и каковы возможности скрещивания их представителей. Несмотря на то, что уже много лет прошло с того времени, когда вел свои изыскания Карл Линней, ясности в вопросах систематизации видов не было. Исследователи занимались выведением наиболее урожайных сортов фруктов и овощей, поэтому вполне закономерно, что их интересовал вопрос плодовитости гибридов. Представители Парижской академии наук в начале 1860-х гг. в основном сошлись во мнении, что плодовитыми могут быть только гибриды, полученные от родителей, принадлежащих к одному виду. Если же удавалось скрестить растения двух разных видов, то полученный в ходе эксперимента гибрид был бесплоден – получить потомство можно было только при помощи опыления обычной пыльцой, принадлежащей или родительскому растению, или негибридному представителю вида.

Под разновидностью в биологии принято понимать некую внутривидовую группу особей, которые, полностью соответствуя общим характеристикам вида, имеют некоторые незначительные особенности – окраску, форму, размер.

Шарль Ноден, наблюдения которого играли далеко не последнюю роль в развитии «протогенетики» XIX в., был сотрудником Музея естественной истории в Париже и много времени проводил в оранжереях Ботанического сада, ставя бесчисленное множество опытов. В своих ранних исследованиях Ноден обращал внимание на то, что при скрещивании растений гибриды первого поколения обнаруживают большее сходство либо с отцовским, либо с материнским растением. А в последующих поколениях уже проявляется значительное многообразие (о «расщеплении» и его закономерностях напишет позднее Грегор Мендель). Далее ботаник задает вопрос: от чего же зависит сходство гибридов первого поколения с изначальными образцами? В последующих опытах Ноден констатирует важнейший факт. Скрещивая разные виды дурмана, он замечает, что внешние признаки одного родителя преобладают в гибридах всегда, независимо от того, использовался этот вид как материнское или как отцовское растение. Такие виды Ноден именует «более деятельными» – как видим, до формулирования понятия «доминантный признак» оставалось совсем немного. (Используя понятие «признак» применительно к исследованиям «доменделевской» эпохи, мы имеем в виду отдельные характеристики исходного организма или гибрида. В то время еще не рассматривались такие термины, как «ген», «хромосома» и другие, неразрывно связанные с понятием «признака» в современной генетике.) Более того, исследователь ведет статистику скрещивания растений с разными внешними признаками – сохранились его записи, сделанные входе опытов по гибридизации примулы. Но… словно оборвав ход собственных размышлений, Шарль Ноден пишет, что, вероятнее всего, единого закона наследования тех или иных признаков не существует, а процесс варьируется, протекая у каждого вида растений по-своему. Следовательно, цифры и подсчеты особого смысла не имеют. Он допускает фактор случайности, признавая существование некоей «беспорядочной изменчивости» и предполагая, что у гибридов второго и последующих поколений происходит нечто вроде разрыва связей между различными признаками – следовательно, выводить правила и законы бесполезно.

Несмотря на некоторую незавершенность и большое количество допущений и предположений, работы Нодена были высоко оценены Академией наук и во второй половине XIX в. считались практически непререкаемым авторитетом.

1.8. Чарлз Дарвин. Гипотеза о «частицах наследственности»

Свой вклад в изучение механизмов наследственности внес автор теории эволюции Чарлз Дарвин (1809–1882 гг.).

Ключевым понятием в его разработках был «естественный отбор». Дарвин считал, что если при разведении культурных садовых растений и домашних животных на первое место ставится искусственный отбор (он же селекция), проводимый человеком, то в природных условиях роль селекционера играет отбор естественный, организованный самой природой. Выживают особи, наиболее приспособленные к природным условиям, обладающие наиболее совершенным набором признаков. Например, если у белой медведицы родились два медвежонка с густой пушистой шерстью и один – по какой-то причине обладающий редким и слабым шерстным покровом, то последний, скорее всего, не выживет в суровых условиях. А его более приспособленные братья передадут следующим поколениям признаки, необходимые для проживания в холодном климате. Причем если природные условия будут изменяться – в соответствии с ними будут меняться и характеристики растений и животных. Конечно, какое-то количество особей постоянно будет «отбраковываться». Ведь любые организмы производят на свет значительно больше детенышей (отпрысков, семян и т. д.), чем необходимо для поддержания природного равновесия. Поэтому между всеми организмами существует жесткая конкуренция, в ходе которой погибают особи, не обладающие полным набором необходимых характеристик.


Чарлз Дарвин (фото 1869 г.)


Какой вывод из этого следует? Организмы, наиболее приспособленные к жизни в окружающем мире, передают свои ценные признаки потомству – в то время как слабые в большинстве случаев не успевают этого сделать. Таким образом, благодаря внешним условиям с течением времени представители вида могут значительно измениться – как внешне, так и внутренне! Именно естественный отбор, по мнению Дарвина, является одной из главнейших причин эволюции. А эволюционный процесс складывается из адаптации организмов к внешнему миру, появления новых видов и угасания старых, а также – в итоге – изменения целых природных систем. Конечно, к числу причин эволюции относятся и другие факторы, например, мутации, но Дарвин этим термином еще не оперировал. Мы же к понятию «мутация» обязательно обратимся чуть позже.

Предположения Дарвина вызвали живой интерес в научном сообществе и породили ожесточенные споры, ведь в то время доминировала версия, что существующие виды созданы высшей силой и в основе своей неизменны.

В 1859 г. был опубликован труд Чарлза Дарвина «Происхождение видов» (полное название «Происхождение видов путем естественного отбора, или Сохранение благоприятных рас в борьбе за жизнь»). Представленные в ней данные отчасти основывались на результатах исследований, которые британский натуралист провел в ходе длительного путешествия на корабле «Бигль» к берегам Австралии и Южной Америки. Интересно, что собственно понятие «вид» Дарвин считал искусственным и по большому счету ничего не значащим, ведь он был уверен, что виды непрерывно изменяются, порождая все новые и новые варианты. С его точки зрения, процесс изменения вида в ходе эволюции приводит сначала к появлению разновидностей – натуралист назвал их зарождающимися видами.

Надо сказать, что во времена Чарлза Дарвина снова начали пересматривать и уточнять систему родов и видов, заложенную Карлом Линнеем, но не только дарвиновские труды послужили тому причиной. Развитие техники и транспорта сделало доступными для ученых отдаленные уголки земного шара. Были обнаружены новые виды и подвиды животных и растений. Соответственно, многое в системе знаний об окружающем мире подлежало пересмотру.

Вполне логично, что Дарвина интересовали проблемы появления гибридов и закономерности, которые можно выявить в этой области. Он тщательно изучил работы своих предшественников и современников (о большинстве из них мы говорили в предыдущих разделах), а также самостоятельно провел множество опытов, связанных со скрещиванием и селекцией. Тот факт, что гибриды начинают проявлять признаки, характерные для того или иного родителя или еще более отдаленного пращура, Дарвин объяснил так называемой реверсией – возвратом к предшествующим поколениям. В его глазах это было еще одним доказательством эволюционного процесса, в частности, вероятного происхождения разных видов от общего предка.

Но как передаются от поколения к поколению разнообразные признаки? По мнению Чарлза Дарвина, существуют некие «частицы наследственности», которые он называл геммулами. Дословно это понятие переводится с латыни как маленькая почка. Геммулы содержатся во всех без исключения тканях любых организмов, откуда при помощи кровотока переносятся в половые клетки, обеспечивая таким образом передачу будущим поколениям общей информации о признаках организма. Эта теория, представленная в книге «Изменение животных и растений в домашнем состоянии» (1 868 г.; книга также издавалась под названием «Прирученные животные и возделанные растения»), получила название пангенеза. Но дальше предположений о существовании геммул Дарвин не продвинулся, и точный механизм наследственности им так и не был рассмотрен. Интересно, что Чарлз Дарвин был современником «отца генетики» Грегора Менделя, но, судя по всему, был не в курсе его исследований и открытий – правда, как будет сказано далее, теория Менделя не была оценена при его жизни.

1.9. Август Вейсман и другие: «черновик» хромосомной теории наследственности

Дарвиновская теория была значительно доработана немецким зоологом Августом Вейсманом (1834–1914 гг.). Первоначально он был горячим сторонником дарвинизма и много сил положил на популяризацию и защиту этого учения; естественный отбор как основа эволюции не вызывал у Августа Вейсмана сомнений. Но с течением времени он стал обнаруживать в теории Чарлза Дарвина слабые места и занялся экспериментами, желая опытным путем либо подтвердить, либо опровергнуть то, что его смущало. Вначале Вейсман заинтересовался возможностью наследования приобретенных признаков. Опыт, поставленный им, вошел в учебники по генетике: немецкий ученый хирургическим путем удалял хвосты у мышей из нескольких поколений одной семьи и выяснил, что в любом случае у бесхвостых родителей всегда рождаются мышата с обычными длинными хвостами!

Получается, что в вопросах наследственности роль первой скрипки играет не окружающая среда, а некие внутренние процессы. Значит, делает вывод Вейсман, механические повреждения, даже повторяющиеся постоянно, на потомство никак не повлияют. Следовательно, половые клетки, которые впоследствии дадут жизнь зародышу, не получают информацию о том, что, например, та или иная конечность больше не используется или какая-либо мышца развивается более активно, чем все прочие. В результате Вейсман отверг рассуждения Дарвина о геммулах, которые являются связующим звеном между тканями и половыми клетками. Но как же тогда в организме человека, животного или в тканях растения происходит передача информации? Ведь опыты с мышами не отменяли факта существования наследственности!

Деятельность Вейсмана не ограничивалась опытами над грызунами. Для того чтобы рассмотреть и оценить его вклад в теорию наследственности, нам нужно ознакомиться с открытиями, которые были сделаны биологами к тому времени (самые значимые свои исследования немецкий ученый проводил в 1880-е – 1890-е гг).

Как говорилось ранее, клеточное строение растений и живых организмов уже давно ни для кого не было секретом. К 1838 г. немецкие ученые Маттиас Шлейден (1804–1881 гг.) и Теодор Шванн (1810–1882 гг.) сформулировали основы так называемой клеточной теории. Она не просто подтвердила клеточное строение животных и растений. Шлейден и Шванн констатировали: рост и развитие немыслимы без возникновения новых клеток, причем строение клеток растений, бактерий, животных весьма схоже. За несколько лет до этого британский ботаник Роберт Броун (1773–1858 гг.), рассматривая клетки орхидеи, углядел в каждой из них ядро в виде маленькой темной точки и предположил, что оно является постоянной частью любой растительной клетки.

На самом деле фамилия ученого – Браун, но в русском языке утвердилось именно такое написание. Он же – первооткрыватель броуновского движения.

Рудольф Вирхов (1821–1902 гг.), немецкий биолог, патологоанатом и физиолог, обратил внимание на связь клеток с патологическими болезненными состояниями организма и стал основателем нового направления – целлюлярной (клеточной] патологии. Согласно результатам исследований Вирхова, любой сбой в работе организма, любая болезненная патология объясняются нарушениями жизнедеятельности клеток. По сути клетка – это отдельный организм, имеющий все необходимое для своего жизнеобеспечения. Вирхова критиковали за чрезмерное выпячивание значимости отдельной клетки – мол, он низвел целый организм до простой совокупности «кирпичиков», не уделив внимания согласованности всех его систем. Но его заслуги перед наукой (он подробно описал физиологические основы нескольких десятков серьезных заболеваний) многократно перевесили критику.

Начиная с 1840-х гг. цитология (от греч. ????? – клетка; ????? – наука; учение о клетке) бурно развивалась и была выделена в отдельную отрасль биологии. Благодаря совершенствованию лабораторной техники стали возможны все более и более тонкие наблюдения, и постепенно клетка начала открывать исследователям свои тайны. Выяснилось, что новые клетки образуются путем деления уже имеющихся, а самыми главными их частями следует считать цитоплазму (содержимое клеточной оболочки) и ядро, а не оболочку, как предполагали многие ученые ранее. Именно цитоплазма объединяет в сложнейшую систему все элементы клетки и обеспечивает бесперебойное протекание всех биохимических процессов.

Что касается ядра, то результаты его исследований были поистине революционными. Немецкий ученый Вальтер Флемминг (1843–1905 гг.) в 1870-х гг. при помощи анилиновых красителей обнаружил, что в ядрах клеток имеется некая субстанция, способная интенсивно впитывать эти красители. Он дал ей название «хроматин». Объектом интереса Флемминга также был процесс клеточного деления, который он подробнейшим образом изучил и представил в своей работе «Клеточная материя, ядро и деление клетки». Исследователь обратил внимание, что в хроматине содержатся структуры, напоминающие короткие нити или низки бус – впоследствии их назовут хромосомами. Первоначально же их именовали сегментами, или хроматиновыми элементами. Кстати, многие историки науки оспаривают тот факт, что именно Флемминг был первооткрывателем хромосом. Дело в том, что практически одновременно эти элементы обнаружили и описали Эдуард Страсбургер, Отто Бючли и Иван Чистяков, а термин «хромосома» появился только в 1888 г. благодаря Генриху Вальдейеру.

В общем, к концу XIX в. биологи накопили внушительный научный багаж. Но вернемся к исследованиям Августа Вейсмана.

В 1892 г. вышел его «Очерк о наследственности и связанных с ней биологических вопросах». В этой работе ученый использует термин «зародышевая плазма» – так он обозначил субстанцию, которая, по его мнению, отвечает за хранение и передачу наследственной информации. Зародышевая плазма постоянна, неизменна и не подвержена никакому внешнему воздействию. Ее назначение – сохранять наследственные зачатки, из которых потом будет развиваться плазма телесная, которая составит все остальные части нового организма. Но где конкретно содержится зародышевая плазма? Вейсман предполагал, что в хроматине ядра, точнее в хромосомах. Так как еще Флемминг и Страсбургер достаточно подробно описали деление хромосом в процессе деления клетки, Август Вейсман сделал вывод, что, вероятнее всего, эти элементы играют ключевую роль в наследственности. Обратите внимание: Вейсман не писал ни о генах (это понятие тогда еще не существовало), ни об особых закономерностях проявления отдельных наследственных признаков. Он создал сложную и громоздкую структуру описания зародышевой плазмы, которая, по его мнению, состояла из биофор, детерминант, идант (их он отождествлял с хромосомами) и так далее. Но его умозрительные предположения предвосхитили хромосомную теорию наследственности, которую уже в XX в. будут разрабатывать Теодор Бовери, Уолтер Саттон, Томас Морган. Вейсман практически на блюдечке преподнес исследователям будущего «образ» некой единицы наследственности, которой впоследствии будет суждено именоваться геном.

Ну а как же, по теории Вейсмана, у представителей того или иного вида возникают новые признаки? Ведь опыт с мышиными хвостами вроде бы доказал малозначимость внешнего воздействия? Август Вейсман считал, что наследственность можно изменить, если воздействовать непосредственно на зародышевую плазму.

Часть II. Век генетики: становление и развитие науки

2.1. Начало генетики. Грегор Мендель: открытия великие, но незамеченные

Итак, к концу XIX в. ученые были как никогда близки к тому чтобы открыть все тайны наследственности: были выделены и описаны практически все элементы клетки, предположена связь хромосом с передачей признаков от родителей потомству Но закономерности в проявлении тех или иных признаков по-прежнему не просматривались. По крайней мере, официально. Интересный исторический казус: когда Август Вейсман, Вальтер Флемминг и Генрих Вальдейер проводили свои исследования и пытались найти ответы на вопросы, связанные с наследственностью, августинский монах Грегор Мендель в городе Брюнне (в то время Австрийская империя; в настоящее время – город Брно, Чехия) давно уже вывел главные правила наследования разнообразных признаков, применив для установления закономерностей математические методы. Но его открытия, ставшие мостиком от гипотез XIX в. к современной генетике, при жизни исследователя рассмотрены и оценены не были… Впрочем, обо всем по порядку.

Грегор Мендель родился в 1822 г. в Моравии, происходил из бедной крестьянской семьи и при крещении получил имя Иоганн. С раннего детства мальчик проявлял способности к обучению и интерес к наукам, но из-за тяжелого материального положения семейства не смог в юности завершить образование и в 1843 г. постригся в монахи Августинского монастыря святого Фомы, взяв монашеское имя Грегор. Здесь он получил возможность изучать биологию, которую страстно любил. Казалось бы, странное занятие для монаха. Ничего удивительного: августинцы уделяли особое внимание образованию и просвещению – в первую очередь, конечно, религиозному, но монастырь в Брюнне шел в ногу со временем. Там была великолепная библиотека, лаборатории, обширные коллекции научных приборов и главное – прекрасные сады и оранжереи, в которых Мендель проводил большую часть времени. Заинтересовавшись вопросами наследственности, он обратился к работам своих предшественников. Отдавая должное их трудам, Грегор Мендель справедливо замечал, что каких-либо закономерностей в скрещивании и проявлении у гибридов тех или иных признаков они так и не нашли.

Есть ли вообще какой-либо общий закон, устанавливающий, какими именно будут цветы у гибридных роз или душистого горошка? Можно ли спрогнозировать, какой масти будут котята от кота и кошки, различающихся по цвету и структуре шерсти? Наконец, можно ли математически просчитать, в каком поколении и с какой частотой проявится тот или иной признак?

Для опытов Грегор Мендель по примеру Томаса Эндрю Найта избрал самый обычный садовый, или посевной горох (Pisum sativum). Это самоопыляемое растение: в обычных условиях пыльца с тычинок цветка переносится на пестик того же цветка (в отличие от перекрестного опыления, при котором пыльца должна переноситься с одного растения на другое).

В генетике к самоопыляемым относят растения, у которых опыление происходит между разными цветками одного и того же экземпляра.

Исследователь счел, что такая особенность обеспечит чистоту опыта, ведь при самоопылении семена и плоды получают определенные признаки только от одного растения. Следовательно, опыляя горох искусственно, перенося пыльцу с одного экземпляра на другой, можно сократить число непредвиденных случайностей и целенаправленно использовать только те растения, которые интересуют нас как подопытные. Кроме того, горох обладает набором разнообразных и хорошо узнаваемых признаков: цвет семян, форма стручка, высота стебля. Взаимно опыляя горох с резко отличающимися признаками, Мендель намеревался, получив гибридные образцы, вывести закономерности наследования. Он начал с того, что распределил выбранные им растения по следующим признакам:

• по длине (высоте) стебля: высокие либо низкорослые;

• по расположению цветков: вдоль стебля или в основном на его верхушке;

• по цвету стручков (желтые или зеленые);

• по форме семян (гладкая либо морщинистая);

• по цвету семян (желтый или зеленый) и так далее.

Затем были восемь лет опытов, несколько десятков тысяч исходных растений и гибридов, сложные вычисления и статистические таблицы. Грегор Мендель скрещивал растения с резко различающимися признаками: например, выбирал родителей, у одного из которых семена были гладкие, а у другого – морщинистые.

В первую очередь он обратил внимание на то, что в первом поколении гибриды проявляли в той или иной своей части признаки только одного родителя. При скрещивании растения с желтыми семенами и растения с зелеными семенами у гибрида не было желто-зеленых либо пестрых семян – их цвет полностью наследовался от одного родителя. Таким образом, Мендель обогатил лексикон будущих генетиков важными терминами: признаки, которые проявлялись в первом гибридном поколении, он назвал доминантными; а те, которые отошли на второй план и не отразились в первом поколении гибридов, – рецессивными.


Грегор Мендель (фото 1884 г.)


Интересных результатов он добился при скрещивании высоких и низкорослых растений гороха. Потомство в первом поколении было сплошь высоким. Но когда эти растения самоопылялись и давали семена, следующее поколение уже делилось таким образом: одно низкое растение на три высоких. Внешний вид последующих поколений и соотношение высоких и низких экземпляров тоже можно было математически спрогнозировать. Такое же соотношение наблюдалось и в сочетаниях прочих признаков.

Большинство современных генетиков убеждены, что Грегор Мендель предвосхитил понятие гена. Лишь спустя много лет ген получит определение – участок ДНК, отвечающий за наследственность. Но не будем забегать наперед: разговор о ДНК нам еще предстоит. А Мендель не использовал понятие «ген», этот термин появится много позже. Он писал о «факторах», или «задатках», утверждая, что тот или иной признак (цвет, размер, форма) растения определяется двумя факторами, один из которых содержится в мужской, а другой – в женской половой клетке. Растения, появившиеся в результате слияния клеток, несущих в себе одинаковые «задатки», исследователь именовал константными (впоследствии их назовут гомозиготными).

Для упрощения работы Грегор Мендель обозначал доминантные признаки в паре растений прописными буквами (А, В, С), а рецессивные – строчными (а, b, с). Следовательно, при описании гибридов можно было составить простые формулы, наглядно демонстрирующие сочетания признаков и их «проявляемость». Менделю сослужило добрую службу то, что некоторое время он увлекался математикой и преподавал ее в школе. Склонность к систематизации и уверенное обращение с цифровыми и буквенными обозначениями помогли ему сделать то, что до него исследователям было недоступно: выявить и описать закономерности наследственности. Сейчас эти закономерности известны как законы Менделя. Давайте ознакомимся с ними подробнее.


Первое и второе гибридные поколения в опытах Менделя с низким и высокорослым горохом


1. Закон единообразия гибридов первого поколения (он же закон доминирования признаков) гласит, что при скрещении двух константных (или, как сказали бы сейчас, гомозиготных) растений все первое поколение гибридов будет полностью подобно одному из родителей – на первый план выйдут доминантные признаки. Правда, известны случаи неполного доминирования: когда доминантный признак не может полностью подавить более слабый, рецессивный. Помните, ранее мы описывали предположение ряда ученых XVIII–XIX вв., которые утверждали, что по логике вещей гибрид всегда должен представлять собой нечто среднее между родительскими экземплярами? В ряде случаев это возможно, например, у некоторых видов цветов при скрещивании растений с красными и белыми цветами в первом поколении гибридов цветы будут розовыми. То есть доминантный красный цвет лепестков не смог полностью подавить рецессивный белый. Могут быть и другие частные особенности в законе единообразия, но наша задача – дать читателю самые общие сведения о генетике и ее истории.

2. Закон расщепления признаков: если скрещивать между собой гибриды первого поколения, то во втором поколении признаки обеих родительских форм проявятся в определенном соотношении.

3. Закон независимого наследования признаков: если скрещиваются две особи, которые отличаются друг от друга двумя парами признаков, факторы и связанные с ними признаки будут наследоваться и комбинироваться независимо друг от друга. Так, Мендель скрестил горох с гладкими желтыми зернами и горох с морщинистыми зелеными зернами. При этом желтый цвет и гладкость зерен были доминантными признаками. Первое поколение гибридов было полностью представлено растениями с доминантными признаками – у гороха были желтые гладкие зерна. После самоопыления гибридов были получены новые растения: у девяти были желтые гладкие зерна, у трех – желтые морщинистые, у трех – зеленые гладкие и одно растение обладало зелеными морщинистыми зернами.

Конечно, впоследствии законы Менделя уточнялись в соответствии с новыми научными данными. Например, стало известно, что если за тот или иной признаку растения или организма отвечает не один ген, а несколько, то формы наследования будут более сложными и составными. Но все же Грегор Мендель был первопроходцем в области закономерностей наследования, и в его честь учение о наследственности позже было названо менделизмом.

Почему же его исследования при жизни не получили признания? Известно, что в 1865 г. Грегор Мендель выступил с докладом в Обществе естествоиспытателей и опубликовал статью «Опыты по гибридизации растений», не снискавшую особого успеха в научной среде. Скорее всего, открытия брюннского монаха не получили развития в первую очередь потому, что он сам вскоре разочаровался в их результатах. Мендель приступил к скрещиванию некоторых видов растений, изначально имевших особенности в способах размножения. Таким образом, закономерности, которые он вывел во время работы с горохом, не получили подтверждения – неприятный итог почти десятка лет напряженной работы! Вскоре Грегор Мендель стал аббатом, и новые обязанности заставили его полностью забросить биологические исследования. О его работах вспомнили только в начале XX в., когда несколько ученых «открыли» законы Менделя и подтвердили его разработки. Сам биолог-августинец скончался в 1884 г., задолго до триумфального возвращения его идей в научную среду…

2.2. Законы Менделя: второе рождение

На исходе XIX в. научный мир по-прежнему активно обсуждал проблемы наследственности, но «центром притяжения» были не открытия Грегора Менделя, а теории Дарвина и Вейсмана. Они находили как горячих сторонников, так и убежденных противников. Некоторые ученые предлагали воспринимать явления изменчивости и наследственности просто как данность, не пытаясь вывести какие-то общие правила. Например, дарвинист Климент Аркадьевич Тимирязев (1843–1920 гг.) считал, что рассмотрение законов наследственности вообще не имеет особого смысла, в первую очередь потому, что они связаны с условиями жизни организма, следовательно, предполагают слишком много допущений и исключений. Илья Ильич Мечников (1845–1916 гг.), очень интересовавшийся разработками Августа Вайсмана, с течением времени изменил свои взгляды. Начав с убеждения, что приобретенные признаки у растения или животного обязательно будут унаследованы последующими поколениями, позже Мечников писал, что простые и наглядные опыты немецкого зоолога (помните бесхвостых мышей?) убедили его в обратном.

Кстати, российские исследователи еще в 1880-е гг. обратили внимание на то, что в процессе эволюции организмы иногда подвергаются внезапным, на первый взгляд, совершенно непредсказуемым изменениям: слово «мутации» тогда еще не звучало, но явление как таковое было замечено и через несколько лет его рассмотрят и обоснуют подробнее. В целом биология, медицина, зоология в конце XIX в. развивались достаточно активно как в России, так и в Европе; и вскоре несколько исследователей независимо друг от друга «переоткрыли» законы Менделя и подтвердили их опытным путем; на этот раз «менделизм» вызвал серьезный резонанс.

Так, в 1890-е гг. нидерландский ботаник Хуго де Фриз (1848–1935 гг.; возможны разные написания его имени, например, Гуго де Фрис) изучал явления наследственности, скрещивая различные растения – как культурные, так и встречающиеся в дикой природе. Достоверно неизвестно, был ли он тогда в курсе работ Менделя. Согласно распространенной точке зрения, де Фриз лишь после нескольких лет опытов и подсчетов ознакомился с трудами брюннского аббата и нашел в них подтверждение собственных теорий. В 1900 г. он пишет статью для Немецкого ботанического общества, в которой подробно рассказывает о своих достижениях, ссылаясь на опыты Грегора Менделя лишь в качестве дополнительного аргумента в свою пользу.

В то же самое время в Германии публикует свою работу о наследственности у растений профессор Тюбингенского университета Карл Корренс (1864–1933 гг.). Спектр его научных интересов был очень широк: водоросли, семенные растения, грибы… Но на выводы относительно законов наследственности его натолкнули, прежде всего, опыты с кукурузой и горохом. Корренс выяснил, что отдельные постулаты Менделя – например, закон расщепления – могут иметь исключения, а также высказал предположение, что некоторые признаки могут быть связаны с полом, так как наследуются только по материнской или отцовской линии. Последний тезис тогда не получил особого развития – к нему вернутся позднее, когда сложится хромосомная теория наследственности.

Наконец, в Австрии ученый Эрих Чермак-Зейзенегг (1871–1962 гг.), занимавшийся гибридизацией гороха (поистине замечательное растение!), также обращает в 1899 г. внимание на закономерности, о которых более 30 лет назад писал Грегор Мендель, и год спустя публикует результаты своих изысканий.

После этого наступил подлинный ренессанс менделевской теории. Работы ученого-августинца переиздаются, переводятся на разные языки. Почему же это не произошло раньше? Многие исследователи считают, что Мендель слишком опередил свое время, что открытия, сделанные им, просто оказались не по зубам биологам той эпохи. Может быть, и так. Но ему постарались отдать должное ученые XX в.: памятники отцу генетики установлены не только в августинском монастыре города Брно, но и по всему миру, например, в российских Колтушах. А в 1970 г. его именем назвали лунный кратер.

«Генетика – это наука, а не шаманство»

(Н. Вавилов)

2.3. Мутационная теория. Параллельные разработки в России и Нидерландах

Наступил момент вернуться к теме уже упоминавшихся мутаций, тем более что значительные открытия в этой области были сделаны именно в рассматриваемое нами время.

Так же, как и в случае с повторным открытием законов Менделя, мутационная теория разрабатывалась параллельно в разных странах: в России, где о мутациях писал Сергей Иванович Коржинский (1861–1900 гг.), и в Нидерландах, где этим вопросом заинтересовался уже известный нам Хуго де Фриз.

Коржинский работал в Казанском и Томском университетах, с 1893 г. стал директором Ботанического музея Академии наук в Санкт-Петербурге. Много времени он проводил в поездках по России, изучая растительный мир разных регионов. Ученый неоднократно обращал внимание, что среди растений разных видов иногда появляются экземпляры, резко отличающиеся от своих сородичей – размерами, формой листьев или плодов. Причем это явно не было связано ни со скрещиванием, ни с внешними условиями. Он назвал такие изменения «гетерогенными вариациями» и попытался увязать их наличие с дарвиновской теорией.

С точки зрения Коржинского, эволюцию двигают вперед не постепенные изменения, направленные на приспособление растения или организма к условиям внешней среды, а скачкообразные «вариации». Так, считал он, и возникают новые виды – не путем постепенного превращения, как утверждал Дарвин, а при помощи резкого выделения «из себя» новых форм. Такой способ Сергей Иванович назвал гетерогенезисом (от греч. heteros – другой; genes – происхождение, возникновение). Понятие «мутация» он еще не использовал. В 1899 г. исследователь изложил свою теорию в работе «Гетерогенезис и эволюция. К теории происхождения видов». Он не пришел к однозначному выводу относительно того, чем вызываются эти скачкообразные изменения, предположил только, что дело в каком-то воздействии на «яйцевую клетку». Ученый намеревался продолжить исследования, и, возможно, ему удалось бы значительно прояснить явление гетерогенезиса. Но сделать это ему помешала безвременная смерть – Коржинский умер в 1900 г., не дожив до 40 лет. Надо сказать, что в среде коллег его труд вызвал весьма неоднозначную реакцию. Многие прямо писали о том, что Сергей Иванович пытается представить «уродов» творцами эволюции и что далеко не всегда экземпляры, по неизвестной причине получившие какие-то новые признаки, оказываются идеально приспособленными к условиям окружающей среды!

Дискуссия продолжилась, когда свои разработки в вопросе внезапных изменений в 1901–1903 гг. представил Хуго де Фриз.

В числе его «подопытных» были экземпляры энотеры Ламарка (Oenothera lamarckiana), или проще – ослинника. Де Фриз заметил, что среди обычных растений иногда попадались довольно странные – чрезвычайно ветвистые, слишком большие или, наоборот, слишком маленькие, с чрезмерно большим количеством листьев или цветков. Вряд ли дело было в необходимости приспособиться, ведь подобные экземпляры произрастали рядом с обычными. Биолог предположил, что если бы изменение внешнего вида было результатом дарвиновской эволюции, то, во-первых, оно происходило бы постепенно и не столь явно, а во-вторых, затрагивало бы большее количество особей. Значит, причина в чем-то другом. Но самое интересное, что такие видоизмененные экземпляры, как выяснилось, могли передавать свои особенности потомкам! Именно Хуго де Фриз предложил термин «мутация» (от лат. mutatio – изменение). И по сей день мы называем так резкое изменение во внешнем виде организма или в его внутреннем строении, которое может наследоваться потомками «мутанта».

Как исследователи начала XX в. сформулировали «мутационную теорию»? Основные положения были следующими.

• Мутации происходят внезапно.

• Они проявляются весьма разнообразно; мутации могут быть как полезными, так и вредными.

• Появившиеся новые формы достаточно устойчивы.

• Мутации не представляют собой каких-то средних переходных форм, в отличие от наследственных эволюционных изменений. Они проявляются резко и радикально.

Во времена де Фриза механизм возникновения таких изменений не был подробно рассмотрен и изучен. Почему мутация возникает? Почему и, главное, как она передается? Можно ли вызвать мутацию искусственно? В самом начале XX в. на эти вопросы не было ответов… Как вы помните, к тому времени были лишь предположения относительно того, что наследственность (а значит, и мутации, скорее всего, тоже) связана с хроматином и хромосомами в клеточном ядре. Но предполагать мало, надо еще обосновать и доказать!

2.4. Где находятся гены? Хромосомная теория наследственности

Параллельно с исследованиями Хуго де Фриза велись новые разработки в области исследования клеточного ядра и хромосом. Прежде чем рассказывать о том, как была окончательно сформулирована хромосомная теория наследственности, давайте посмотрим, что вообще на тот момент было известно о делении клетки и участии ее частей в этом процессе.

Весь путь развития организма – от оплодотворения до конца жизни – принято называть онтогенезом (от греч. ?????, ontos – сущий и ???????, genesis – зарождение). Термин был предложен Эрнстом Геккелем (1834–1919 гг.) еще в 1867 г. Как мы уже говорили, согласно клеточной теории, рост и развитие организмов – животных и растительных – основан на процессе деления клеток. Во второй половине XIX в. изучением этого удивительного явления занимался упоминавшийся нами Вальтер Флемминг. Именно он предложил термин «митоз» для обозначения клеточного деления, в процессе которого одна клетка делится на две с параллельным распределением хромосом поровну между дочерними клетками. Давайте посмотрим, какие основные стадии (фазы) митоза принято выделять.

• Профаза. В ходе этого подготовительного этапа образуется так называемое веретено деления клетки, условно говоря, клетка планирует, как она будет разделяться. Начинается процесс, который ученые называют конденсацией хромосом: они становятся видны под микроскопом. Как еще говорят, хромосомы уплотняются. Так происходит, потому что идут изменения на уровне ДНК (впрочем, во времена Флеминга об участии ДНК в процессе митоза, а тем более в формировании наследственности, еще никто не знал). Мы тоже обратимся к теме ДНК чуть позднее! Иногда говорят еще о препрофазе, но этот процесс «подготовки к подготовке» выделяют не всегда. Дело в том, что у клеток разных организмов и разных растений могут наблюдаться незначительные расхождения в протекании фаз митоза, но для нас они особого значения не имеют.

• Метафаза. Веретено деления полностью сформировалось, «внутренности» клетки начинают разделяться, как будто их притягивает к противоположным полюсам. Самое интересное, что хромосомы тоже подготавливаются к расщеплению. Если на ранней стадии митоза они под микроскопом напоминали пучки травинок или клочки тополиного пуха, то теперь они приобрели более четкую форму и стали похожи на буквы «X». «Пояски» в центре этих условных букв именуются центромерами.

• Анафаза. Хромосомы-буковки разделяются на уровне центромер и направляются к противоположным полюсам материнской клетки. Таким образом, в ней образуется два идентичных набора хромосом.

• Телофаза. Хромосомы становятся почти незаметны, или, как говорят биологи, деконденсируются. Вокруг каждого комплекта хромосом формируется новое клеточное ядро. Материнская клетка окончательно делится (этот процесс именуют еще цитокинезом), и на месте одной клетки образуется две. Каждая из двух дочерних клеток получает полный набор элементов, характерных для первоначальной клетки. Все!

В среднем все стадии митоза проходят за один-два часа. Конечно, мы описали этот сложнейший процесс в упрощенном виде, но для понимания происходящего пока достаточно. Митоз не следует путать с мейозом, который происходит в половых клетках и в процессе которого число хромосом уменьшается в два раза (ведь иначе при оплодотворении число хромосом увеличивалось бы вдвое, а с хромосомами шутки плохи!) Существует также понятие «амитоз» – в ходе этого процесса веретено деления клетки не образуется, она разделяется случайным образом и такое деление характерно в основном для патологических процессов, например, возникновения опухолей.

Итак, к концу XIX в. процесс деления клеток и распределения хромосом при этом уже не представлял особого секрета. Более того, многие ученые заявляли, что именно в хромосомах надо искать разгадку всех тайн наследственности. Но как?

Американский ученый Уолтер Саттон (1877–1916 гг.) в 1902 г. сопоставил «переоткрытые» законы Менделя с тем, что было ему известно о фазах митоза и мейоза. В работах брюннского монаха-исследователя он обратил внимание на строгие математические закономерности проявления разных признаков у дочерних организмов по отношению к родительским. Также Саттон удостоверился, что в ходе мейоза, при формировании половых клеток (их еще именуют гаметами) пары хромосом расщепляются, но их общее количество не увеличивается. Получается, что в составе половой клетки остается только 1/2 хромосомного набора, и когда сперматозоид сольется с яйцеклеткой, новый организм получит от каждого родителя по половине хромосом. Но ведь это вполне стыкуется с разработками Грегора Менделя! Значит, – делает вывод Саттон, – именно в хромосомах содержатся «факторы», о которых писал Мендель. Правда, ученый не разобрался окончательно, как именно связаны хромосомы и отдельные признаки: одна хромосома отвечает за что-то конкретное (например, за форму листьев у растения или цвет глаз у человека) или здесь работают какие-то иные закономерности? Саттон предполагал, что правило «один признак – одна хромосома» было бы слишком наивно, ведь каждый вид, а тем более каждый отдельный организм, – это сложнейшая совокупность разнообразных признаков. Исследователь считал, что одна хромосома должна содержать несколько так называемых аллеломорфов – это понятие равноценно понятию «ген», но, как мы помним, о генах тогда еще не говорили. В то время еще не выяснили достоверно, каким именно количеством хромосом обладают те или иные организмы и насколько это количество стабильно. До окончательного ответа на этот вопрос оставалось еще несколько десятилетий, например, дискуссии о количестве хромосом у человека продолжались вплоть до 1950-х гг. Но было очевидно, что число их ограничено. Одним из первых идею о постоянном количестве хромосом выдвинул немецкий ученый Теодор Бовери (1862–1915 гг.), и он же параллельно с Уолтером Саттоном заявил об их приоритетной роли в вопросах наследственности.


Фазы митоза


В 1904–1905 гг. было сделано еще одно важное открытие – так называемые половые хромосомы. Американские исследователи Кларенс Мак-Кланг (1870–1947 гг.), Эдмунд Уилсон (1856–1939 гг.) и Нетти Стивене (1867–1912 гг.) практически одновременно обнаружили у самцов отдельных видов насекомых «добавочные» хромосомы, в процессе митоза отвечающие за формирование половых признаков.

Вот мы и возвращаемся к тому, с чего начинали наше небольшое исследование: в 1906 г. английский биолог Уильям Бэтсон предложил использовать термин «генетика»: новая наука постепенно получала внешнее оформление…

Вскоре, в 1909 г., датчанин Вильгельм Иогансен (1857–1927 гг.) в своей работе «Элементы точного учения об изменчивости и наследственности» впервые использовал термин «ген». Как он определял его? В представлении Иогансена ген – это некий наследственный фактор, который располагается в половой клетке, по сути, аналог менделевского «фактора». Но что такое ген? Особого вида клетка, какой-то химический элемент, некая волшебная палочка, которая заставляет проявляться наследственность? Сам ученый писал о том, что он использует понятие гена скорее для удобства, обозначая им элементы, отвечающие за наследственность. А как, собственно, выглядит ген – достоверно неизвестно. Для удобства читателя поясним, что и в наше время особого единства в использовании этого термина нет. Кто-то понимает ген как условную единицу информации, кто-то – как двигатель естественного отбора. Большинство современных ученых отождествляют ген с участком ДНК, несущим информацию, определяющую признаки будущих организмов.

Иогансен также ввел понятие генотипа, обозначив таким образом совокупность генов, характерную для данного конкретного организма.

Окончательно хромосомная теория наследственности сформировалась благодаря американскому ученому Томасу Моргану (1866–1945 гг.) и его последователям.

Для своих опытов Морган избрал плодовую мушку Drosophila melanogaster. Это существо обладало рядом привлекательных для генетика свойств: обходилось дешево, занимало мало места, не требовало сложного ухода и, главное, размножалось с невероятной скоростью.

В один прекрасный день в 1910 г. Морган обратил внимание, что среди множества лабораторных мушек один самец обладал не ярко-красными, как у всех остальных особей, а белыми глазами. Морган отсадил красавца в отдельную емкость и начал скрещивать его с красноглазыми самками. У первого поколения потомков этих скрещиваний глаза тоже были красными. Значит, – сделал вывод исследователь, – «белоглазость» является рецессивным признаком. А вот в последующих поколениях уже встречались белоглазые особи, причем все они были самцами! Это позволило Томасу Моргану прийти к выводу, что некоторые признаки связаны с полом. Ведь уже несколько лет как были открыты половые хромосомы и можно было проследить связь наследования определенных признаков с особенностями митоза и распределения хромосом, отвечающих за половую принадлежность особи. Таким образом было получено весомое доказательство того, что факторы – гены – на самом деле «находятся на хромосоме». В дальнейшем Морган продолжил опыты и обнаружил еще несколько мутаций, сцепленных с полом. Его ученики и последователи – Кэлвин Бриджес (1889–1938 гг.), Альфред Стёртевант (1891–1970 гг.), Герман Мёллер (1890–1967 гг.) – продолжили исследования в области передачи различных признаков. Школа Моргана не только убедительно доказала, что ген (а значит, наследственность) неотделим от хромосомы, но и заявила, что гены расположены на хромосоме в определенной последовательности, причем разные хромосомы могут содержать разное число генов.

Основные положения хромосомной теории наследственности были опубликованы в 1915 г. в книге The mechanism of mendelian heredity («Механизм менделевской наследственности»). В 1933 г. Томас Хант Морган получил Нобелевскую премию в области физиологии и медицины. Но всех секретов хромосом Морган и его сотрудники не открыли – хотя бы потому, что в то время еще не была изучена роль ДНК…

2.5. Мутации можно вызывать искусственно!

Ученики Моргана внесли свой вклад и в изучение мутаций. Мы уже говорили о том, что такие скачкообразные изменения в признаках у растений и животных были известны давно. Правда, относительно причин их возникновения оставалось много вопросов. Ученых также интересовало, можно ли влиять на мутагенез (возникновение мутаций) искусственно?

Герман Мёллер в 1927 г. попробовал воздействовать на плодовых мушек-дрозофил рентгеновскими лучами и обнаружил, что это вызывает многочисленные мутации у потомства, в частности, отмечался сильный тератогенный эффект.

Тератогенное действие (от греч. ????? – чудовище, урод) – влияние химических препаратов, лекарств, излучений на эмбриональное развитие. Итогом становится возникновение уродств и других аномалий.

Эти опыты убедили исследователя в том, что оказать внешнее влияние на гены и наследственность – возможно. Опыты Мёллера (в 1920-х – 1950-х гг. он работал в Америке, Германии, СССР) произвели ошеломляющее впечатление на научный мир. Исследователи задались вопросом: какие перспективы перед человечеством открывает возможность искусственно вызывать мутации? И несмотря на то, что в 1946 г. Мёллер получил Нобелевскую премию «за открытие появления мутаций под влиянием рентгеновского облучения», много сил он потратил на пропаганду исключительно мирного использования любых видов излучения и атомной энергии… После двух страшных мировых войн и появления атомного оружия было очевидно, что в случае бездумного использования мутагенов результаты могут быть чудовищными.

Еще за два года до начала опытов Мёллера с дрозофилами Георгий Адамович Надсон (1867–1939 гг.) в Советском Союзе описал мутагенное воздействие рентгеновских лучей на микроскопические грибы, а в 1928–1932 гг. были проведены успешные опыты по выявлению химического мутагенеза. В те годы ученые могли уже сказать однозначно, что мутация происходит потому, что вредное воздействие каким-то образом влияет на хромосому, ведь именно там заложены «двигатели» наследственности. Впоследствии было выяснено, что разные виды мутагенов «предпочитают» действовать в разные моменты: во время деления клетки, в момент покоя… Но как конкретно это происходит, было сложно судить, пока генетика не сделала очередной шаг вперед.

Кстати, а существует ли в наши дни какая-либо классификация мутаций? Их несколько: можно исходить из причин возникновения мутации, способа влияния мутагена на хромосому или ее часть, результатов изменений… Остановимся только на самых показательных моментах.

В зависимости от причин возникновения, мутации можно разделить на спонтанные и индуцированные. Во втором случае резкое скачкообразное изменение возникает в ходе намеренного воздействия мутагенами, например, опыты Мёллера с дрозофилами – яркий пример индуцированной мутации.

Метаболизм (от греч. ???????? – превращение, изменение) – совокупность происходящих в организме химических реакций.

В случае со спонтанными – никакого целенаправленного воздействия нет, причиной изменения могут стать, например, какие-то метаболические перестройки в организме, приводящие к повреждению генов и хромосом (именно эти повреждения становятся непосредственной причиной мутации). По характеру изменения мутации можно разделить на геномные (когда изменяется число хромосом), хромосомные (когда изменения происходят в структуре хромосомы, например, утрачивается ее часть), генные (когда изменениям подвергается структура ДНК в гене). Впрочем, о ДНК мы пока не говорили и к теме мутаций ненадолго вернемся в соответствующем разделе.

Еще два интересных вопроса – насколько спонтанные мутации случайны и можно ли разделить мутации на положительные и отрицательные? Большинство ученых утверждают, что не следует ставить знак равенства между понятиями «спонтанная» и «беспричинная», так как тот или иной сдвиг в любом случае чем-то обусловлен: например, внезапным изменением климата или химического состава пищи. А вот вопрос «положительности и отрицательности» до сих пор один из самых дискуссионных в генетике. Бесспорно, многие мутации приводят к уродствам или даже летальному исходу. Ряд хромосомных изменений приводит к тяжелым заболеваниям – например, лишняя хромосома становится причиной проявления синдрома Дауна. Но иногда мутация ведет к появлению каких-то новых признаков, которые помогут организму выжить в окружающей среде. Такие мутации принято называть адаптационными – с точки зрения многих ученых, мутации являются материалом для естественного отбора. Нужно учитывать также, что мутация – это не внезапно появившаяся способность летать или вызывать шаровую молнию, как мы привыкли видеть в фантастическом кино. В большинстве случаев мутации практически незаметны.

2.6. Закон Харди-Вайнберга, дрейфующие гены и прочие интересные вещи

Давайте посмотрим, какие еще интересные исследования происходили параллельно с разработкой мутационных теорий. А заодно познакомимся с еще несколькими определяющими понятиями генетики.

Недавно мы упоминали слово «аллеломорфы» (от греч. allelon – взаимно и morphe – вид). Во времена Саттона оно было тождественно появившемуся позднее понятию «гены». В. Иогансен, автор термина «ген», также предложил в 1909 г. понятие «аллель», который сейчас понимается чуть уже, чем ген. Аллелями принято называть две формы гена, отвечающего за один и тот же признак, который может проявляться по-разному. Например, за цвет глаз отвечает определенный ген. Но разные аллели гена могут отвечать за голубой или карий цвет глаз. Если родительские аллели одинаковы, то потомство будет гомозиготным (от греч. ?????? – подобный, похожий, равный и ??????? – спаренный, соединенный). Если же аллели разные, то оно будет гетерозиготным (от греч. he?teros – иной, другой) и в первом поколении проявится доминантный признак, а в последующих произойдет расщепление. Что это такое – вы уже знаете по законам Менделя.

С понятием «ген» непосредственно связаны «генотип» и «фенотип» (также авторства Иогансена). Генотипом мы сейчас называем всю совокупность генов конкретного организма, а фенотип (от греч. ?????) – являю, обнаруживаю и ????? – образец) – это набор внешних и внутренних признаков организма, которые были им получены в процессе развития и основаны на генотипе. Как говорят, генотип – это наследственность, а фенотип – то, как она реализовалась. Например, вы приобрели несколько клубней элитного картофеля, взятых с одного куста. У них генетически заложен крупный размер клубней, ровная окраска и высокая урожайность. Но половину клубней вы посадили в плодородный чернозем, удобряли, поливали, окучивали. А другую половину просто сунули в необработанную землю и забыли о них. В результате картофель, получавший достойный уход, отблагодарил вас высоким урожаем и в полной мере проявил все свои элитарные задатки. А те кусты, которые росли как попало, конечно, сохранили часть своих замечательных качеств, но клубни на них уродились мелкими и корявыми (и, скорее всего, менее вкусными), нежели на тех кустах, за которыми тщательно ухаживали. Таким образом, фенотип формируется на основе генотипа, внешней среды и возможных мутаций.

В первой трети XX в. генетики уделяли большое внимание изменчивости – одному из ключевых понятий науки. Под изменчивостью мы понимаем способность организма приобретать какие-либо отличия от остальных представителей своего вида. Причем принято выделять два типа изменчивости – прерывистую (дискретную] и непрерывную. В первом случае особи одного вида можно разделить на несколько групп, хорошо отличимых друг от друга, по ряду признаков. Например, вспомним опыты Менделя: у разных сортов гороха зерна были либо желтые и гладкие, либо зеленые и морщинистые. Это дискретная изменчивость, так как различия между разными сортами одного вида видны невооруженным глазом, группы резко отличаются друг от друга. Белая или ярко-малиновая окраска цветов флокса – тоже образец дискретной изменчивости. Если же мы возьмем такой признак, как, скажем, количество икринок в кладках нескольких самок озерной лягушки, то оно будет весьма разнообразным, четких градаций тут нет. Хороший пример – человеческий рост: например, в группе из 50 человек самый высокий и самый маленький будут отличаться друг от друга очень резко. А если поставить всех по росту, то два человека, стоящих рядом, будут отличаться совсем незначительно. Таким образом, непрерывная изменчивость проявляется в среде представителей одного вида размыто и имеет очень много промежуточных форм.

Существуют разные классификации изменчивости по ее происхождению, в основном выделяют следующие.

• Мутационная изменчивость (изменения происходят на генном уровне, влияет на наследственность). С мутациями вы уже знакомы.

• Комбинативная (возникает, когда смешиваются генотипы. Например, рождение детей у пары с резко отличающимся друг от друга цветом глаз, волос, кожи).

• Модификационная (самая нестойкая, возникает под влиянием окружающей среды: например, бледные листья у растения, лишенного солнца).

Но какова значимость разных видов изменчивости в ходе эволюционного процесса? Как мы помним, Хуго де Фриз на первое место в эволюции поставил мутации. Но всегда ли резкое изменение в одном организме (или даже в нескольких) приведет к появлению новых устойчивых признаков в масштабах вида? С таких вопросов начинался особый раздел генетики – генетика популяционная, изучающая распределение аллелей и возможности их изменения. Основой для нее стал закон Харди – Вайнберга, сформулированный около 1908 г.

Для начала разберемся, что такое популяция. Так принято называть группу организмов одного вида, которые проживают на определенной территории и относительно обособлены от других подобных групп (например, географически, располагаются на острове или в долине, окруженной горами. У человека популяции могут быть ограничены религиозными запретами или социальными традициями). Между собой они могут скрещиваться свободно. У популяции общий генофонд (еще одно новое слово, которое означает совокупность всех возможных аллелей данной популяции).

И вот в 1908 г. английский математик Годфри Харди (1877–1947 гг.) и немецкий врач Вильгельм Вайнберг (1862–1937 гг.) независимо друг от друга вывели интересную закономерность: в ряду поколений одной популяции соотношение частот генотипов будет сохраняться, если не повлияют какие-то факторы извне. Причем эта закономерность может быть выражена математически.

Предположим, в некоей популяции представлены два аллеля: доминантный (А) и рецессивный (а). Обозначим частоту встречаемости первого аллеля буквой р, второго – q, все экземпляры популяции – 1. Соответственно, р + q = 1.

В условиях свободного скрещивания справедливо равенство: р2 + 2pq + q2 = 1.

Но нужны еще несколько условий:

• отсутствие мутаций;

• отсутствие отбора;

• большие размеры популяции;

• отсутствие миграции (прибытия в популяцию новых членов и ухода из популяции старых).

Конечно, далеко не в каждой популяции все эти условия соблюдаются полностью. Но в целом закон Харди – Вайнберга надежен. И применяется он в генетике достаточно широко, например, в животноводстве позволяет просчитать вероятность формирования нужных качеств, а в медицине – спрогнозировать возможность проявления наследственных заболеваний. Ситуацию, описанную в законе Харди – Вайнберга, когда на протяжении многих поколений распределение разных аллелей в популяции остается неизменным, называют генетическим равновесием.

Если на распределение генов повлияли какие-то случайные события, происходит явление, которое принято называть дрейфом генов.

Например, в популяции диких лошадей, для которых в целом характерна ровная гнедая окраска, было несколько пятнистых особей, то есть они несли в себе особый вариант гена, отвечающего за масть. В результате нападения хищников все пятнистые лошади погибли – следовательно, они перестали влиять на популяцию, и частота распределения генов изменилась. Гены «дрейфуют». Собственно термин «дрейф генов» был введен американским ученым Сьюэлом Райтом (1889–1988 гг.) около 1931 г., но соответствующие исследования велись задолго до того.

Большой вклад в изучение генетики популяций внес российский ученый Сергей Сергеевич Четвериков (1880–1959 гг.). В своих работах (например в статье «О некоторых моментах эволюционного процесса с точки зрения современной генетики», 1926 г.) он убедительно увязывает современные ему данные генетики и эволюционной теории, между которыми долгое время существовали разногласия. Так, Четвериков доказывает, что рассуждения Дарвина о постепенном нарастании изменений и мутационная теория в целом не противоречат друг другу. В крупных популяциях (особое внимание ученый уделял насекомым, в частности, бабочкам) мутации накапливаются постепенно и дают возможность для естественного отбора и изменчивости. Причем они могут проявиться не сразу, а некоторое время «выжидать» благоприятных условий. Учитывая все это, нет смысла изучать мутации отдельных организмов, нужно делать срез в масштабах популяции, заниматься рассмотрением как можно большего числа представителей того или иного вида – вот основы популяционной генетики.

2.7. Закон академика Вавилова о близких видах

В России и позднее в Советском Союзе многие фундаментальные исследования в области генетики 1910–1930-х гг. были связаны с именем Николая Ивановича Вавилова. О его заслугах и разработках можно рассказывать долго: президент Всесоюзной Академии сельскохозяйственных наук имени Ленина (ВАСХНИЛ), основатель Всесоюзного института растениеводства, создатель крупнейшей в мире коллекции семян культурных растений, организатор научных экспедиций в самые отдаленные уголки мира.

Вавилов активно разрабатывал теорию о центрах происхождения культурных растений. Опираясь на идеи Чарлза Дарвина и на собственные исследования, он выделил на земном шаре семь основных центров происхождения культурных растений, например, южноазиатский и восточноазиатский. С точки зрения Николая Ивановича, именно в этих центрах за несколько тысячелетий до новой эры началось одомашнивание и примитивная селекция диких растений, которые представляли интерес для человека – в первую очередь как еда. Впоследствии, с развитием сухопутных и морских торговых путей, потомки этих растений распространялись по свету и уже в новых местах пребывания формировались новые сорта и подвиды. Ведь, например, даже огурцы или помидоры, которые ныне едят во всем мире, изначально не были распространены повсеместно.

Теория о центрах происхождения культурных растений была логически связана с еще более ранним исследованием Вавилова – законом гомологических рядов в наследственной изменчивости. С докладом на эту тему Николай Иванович выступил в 1920 г. в Саратове на III Всероссийском съезде по селекции и семеноводству. Результат был ошеломляющим – значимость материалов, представленных в докладе, современники сравнили с открытием периодической системы элементов Менделеева. В чем же суть закона?

Вавилов занимался в первую очередь растениями, которым посвящена большая часть его работ. Но впоследствии было выяснено, что закон гомологических рядов действует и применительно к животным и микроорганизмам.

Вавилов, изучив огромное количество собранных им материалов и обобщив статистические данные, пришел к выводу, что у генетически близких видов и родов вариации наследственной изменчивости весьма схожи. «Виды и роды, генетически близкие между собой, характеризуются тождественными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм для одного вида, можно предвидеть нахождение тождественных форм у других видов и родов». Изучив ряд форм у одного вида, можно достаточно точно спрогнозировать, какие формы может представить родственный ему вид. Это дает растениеводам возможность планировать, к примеру, какие качества можно получить, одомашнив плохо изученное пока растение, родственник которого уже давно прописался на наших огородах.

В принципе, подобные предположения – о сходстве в изменчивости родственных видов – высказывались биологами давно, в частности, такую точку зрения высказывал Дарвин. Но только Вавилов обосновал эти предположения экспериментально и статистически. Кроме того, выявленная закономерность позволяла прогнозировать появление мутаций, которые, как мы уже выяснили, возникают спонтанно: у схожих видов схожими будут и мутации. Конечно, в открытом Вавиловым законе гомологических рядов возможны исключения. Ведь, как мы знаем, уже в эпоху древнего мира виды растений, ранее локально произраставшие в небольших регионах, начали распространяться по свету, следовательно, нельзя сбрасывать со счетов воздействие климата, разный состав почвы и многое другое. Но уже много раз этот закон помогал селекционерам планировать возможные варианты создания новых сортов или направить их по верному пути в поисках еще неизвестных форм.

2.8. Эра ДНК. Хранилища генетической информации

Новый прорыв в изучении наследственности был совершен в 1930-е – 1950-е гг. Ученым удалось проникнуть еще глубже в клетку и хромосому и описать вещество, которое непосредственно отвечает за генетическую информацию. Казалось бы, что еще можно изучать? Роль хромосом в наследственности уже ни для кого не была секретом. Но здесь можно привести такой образный пример. Человек может научиться водить машину, особо не вникая в работу ее механизмов. Если автомобиль заглохнет – такой водитель разберется в причинах, только если они будут, как говорится, лежать на поверхности. В случае сложной поломки владелец машины не сможет решить проблему. Генетики первой трети XX в. отчасти напоминали таких автомобилистов. Они решили многие вопросы наследственности, но отдельные моменты передачи признаков, наследования заболеваний и механизма работы генов по-прежнему были неочевидны. Новая страница в истории генетики была открыта, когда на первый план вышла аббревиатура, известная сегодня каждому школьнику – ДНК. Дезоксирибонуклеиновая кислота. Известная, но понятная ли?

Самое удивительное, что ДНК как химическое вещество была получена еще в 1869 г., но тогда открытию не придали особого значения. Дело было так. Однажды швейцарский физиолог и химик Иоганн Фридрих Мишер (1844–1895 гг.), исследуя клетки гноя, оставшиеся на старых бинтах, обнаружил в составе их ядер странную небелковую субстанцию (в то время считалось, что основой животной клетки является белок). Ученый назвал ее нуклеином (от лат. nucleus – ядро). (На самом деле Иоганн Фридрих Мишер открыл два схожих вещества – ДНК и РНК – рибонуклеиновую кислоту, но в то время разница между ними не была досконально изучена). После того как выяснилось, что у вещества есть свойства кислоты, его стали именовать нуклеиновой кислотой. Но функции данной кислоты долгое время оставались невыясненными. Постепенно установили, что она содержит азот, кислород и в значительном количестве фосфор. Наиболее популярное объяснение гласило, что нуклеиновая кислота – это просто хранилище фосфора, который, видимо, зачем-то необходим клеткам. Увязать это вещество с вопросами наследственности ученые не могли на протяжении нескольких десятилетий, хотя довольно быстро было установлено, что состав нуклеина и уже знакомого вам хроматина в составе хромосом весьма схожи. Многие исследователи считали, что нуклеиновая кислота «слишком проста», чтобы содержать сложнейшую генетическую информацию, и уделяли внимание в основном белковым соединениям: именно белки считали ответственными за наследственность.

Исследования, которые окончательно доказали «руководящую» роль ДНК в вопросах генетики, провел в 1944 г. сотрудник Рокфеллеровского университета в Нью-Йорке Освальд Эвери (1877–1955 гг.). Он отталкивался от опытов англичанина Фредерика Гриффита (1879–1941 гг.), связанных с изучением пневмококков – бактерий, вызывающих пневмонию. Гриффит обратил внимание на интересный факт: безопасные, невирулентные формы пневмококков (их еще называли шероховатыми из-за того, как они выглядели под микроскопом) в ряде случаев могли трансформироваться в опасные вирулентные, или гладкие, штаммы. Выяснилось это так: лабораторным мышам ввели одновременно живые невирулентные пневмококки и убитые нагреванием вирулентные. Через некоторое время большая часть мышей погибла, а в их крови были обнаружены живые вирулентные пневмококки. Гриффит предполагал, что опасные вирулентные бактерии каким-то образом трансформировали безопасные, значит, должен быть некий фактор, который за это отвечает.

Эвери со своими коллегами решил выяснить, что же это за фактор. Они подвергли бактерии – как безопасные, так и вирулентные – разнообразным воздействиям. Напомним, в то время считалось, что основную генетическую информацию несут белки, следовательно, разрушение белка должно полностью обезопасить вирулентный пневмококк. Но дезактивация белка не дала результатов. Разрушение клеточных стенок тоже ни к чему не привело. Во время новых опытов по образцу проведенных Гриффитом мыши продолжали погибать. Так, практически методом исключения, Освальд Эвери выяснил, что только одно вещество может являться причиной трансформации безопасных бактерий в опасные – это ДНК, дезоксирибонуклеиновая кислота. Разнообразные способы воздействия на бактерию разрушали разные ее элементы, но ДНК оставалась невредимой. В ходе эксперимента невирулентные пневмококки захватывали ее, получали новые свойства и в итоге убивали мышей.

Через несколько лет, в 1952 г., выводы Эвери были подтверждены опытами американских генетиков Алфреда Херши (1908–1997 гг.) и Марты Чейз (1927–2003 гг.). Интересно, что заслуги Херши в 1969 г. были отмечены Нобелевской премией. А Освальд Эвери таковой не получил…

Если ДНК несет в себе и передает столь важную информацию, то каким образом она это делает?

Следующей ступенью исследовательской работы должно было стать описание молекулярной структуры дезоксирибонуклеиновой кислоты. Исследования шли параллельно в США и Великобритании, но самые серьезные достижения были сделаны группой ученых, которой руководил в Королевском колледже Лондона Морис Уилкинс (1916–2004 гг.): в начале 1950-х гг. они получили рентгеновские снимки структуры ДНК. Вероятно, наибольший вклад в работу группы внесла Розалинд Франклин (1920–1958 гг.). Именно ей принадлежала идея использовать рентгеновские лучи в изучении сложных биологических молекул. Но, к сожалению, впоследствии она не нашла общего языка с остальными членами группы и отошла от исследований. А дружба-соперничество Мориса Уилкинса с работавшими в Кембридже Джеймсом Уотсоном (1928 г. р.) и Френсисом Криком (1916–2004 гг.) привела к тому, что между двумя университетами развернулось форменное соревнование. Опубликованные в 1953 г. результаты исследований структуры ДНК были подписаны именами Крика и Уотсона.

Как можно вкратце изложить их?

Любая ДНК – это очень, очень длинная молекула. Она состоит из так называемых нуклеотидов – эти вещества являются источниками энергии, способствуют активации разнообразных процессов в клетке, играют связующую роль. Всего нуклеотидов четыре вида: аденин (А), тимин (Т), гуанин (Г), цитозин (Ц). Они в строгом порядке выстраиваются в цепочку, причем в каждой молекуле ДНК таких цепочек две. Они спирально закручиваются вокруг друг друга. Цепочки не разваливаются и не перепутываются, так как составляющие их нуклеотиды комплементарны друг другу: их химические свойства обеспечивают прочную связь. Чтобы нить ДНК стала еще более компактной, она не только закручивается по спирали, но и может сматываться, почти как нитка, в клубок.

Теперь вернемся к неоднократно встречавшемуся понятию «ген». Каждый ген, например, отвечающий за группу крови, цвет глаз и другие характеристики организма, представляет собой определенный участок ДНК, состоящий из жестко закрепленной комбинации-последовательности нуклеотидов. Количество их в гене неизменно.

Все гены того или иного организма обозначаются общим понятием «геном». Впервые термин был предложен еще в 1920 г. биологом Гансом Винклером (1877–1945 гг.), но, как видите, для более четкого понимания потребовалось несколько десятилетий. Каждый геном делится на определенное количество молекул ДНК, а одна пара молекул ДНК составляет хромосому. У каждого организма строго определенное число хромосом: у человека – 46 (23 пары), у шимпанзе – 48 (24 пары), у шакала – 78 (39 пар), у кукурузы – 20 (10 пар). Причем ген, ответственный за тот или иной признак, всегда локализован в определенном месте определенной хромосомы! Соответственно, с развитием генетики все хромосомы в том или ином организме было решено пронумеровать.

В процессе деления клетки молекулы ДНК копируются в хромосомах. ДНК любят сравнивать с закодированной матрицей, поскольку закрепленную на ней информацию надо расшифровать и перенести к другим частям клетки. В роли переносчика выступает РНК – рибонуклеиновая кислота, благодаря некоторым особенностям своего химического состава обладающая способностью (в отличие от ДНК) проникать из ядра в цитоплазму клетки. Приблизительно процесс можно представить так: особый фермент копирует активные гены ДНК, нанизывая их на основу, в итоге появляется РНК. Она покидает ядро клетки, после чего в цитоплазме особые структуры – рибосомы – считывают информацию и в ходе сложных химических реакций формируют белок, который будет выполнять дальнейшую строительную работу. Можно сказать, что ген, как компьютерная программа, планирует дальнейшую работу белков и воспроизведение признаков и свойств организма. У всех организмов на Земле – от самых простых до сложнейших – наследственность закодирована в жестких последовательностях нуклеотидов, в ДНК.

Возвращаясь к ученым, которые занимались расшифровкой структуры ДНК, скажем, что в 1962 г. Джеймс Уотсон, Морис Уилкинс и Фрэнсис Крик получили Нобелевскую премию по физиологии и медицине «за открытия, касающиеся молекулярной структуры нуклеиновых кислот и их значения для передачи информации в живых системах». Розалинд Франклин, чей вклад в работу над структурой ДНК сложно переоценить, скончалась в 1958 г. Нобелевским лауреатом она не стала – посмертно премия не присуждается.

В последующие годы было сделано много важных открытий. Возвращаясь к теме мутаций (которая в большинстве случаев вызывается каким-либо повреждением цепочки ДНК), скажем, что исследования выявили очень узкую направленность ряда мутагенов. Большинство из них воздействуют только на определенные нуклеотиды (аденин, гуанин и так далее). Это дает возможность целенаправленно воздействовать на определенные участки ДНК, чтобы получить тот или иной результат. Впрочем, как мы помним, тема индуцированных мутаций – одна из самых сложных с моральной точки зрения. И в последние годы дискуссии по поводу этичности тех или иных исследований, связанных с вмешательством в структуру ДНК, происходят все чаще. Правда, развитие и совершенствование лабораторной техники позволяет проводить генетические исследования на микроорганизмах, что несколько успокаивает блюстителей морали.

2.9. Ученые разгадывают ребус: расшифровка генетического кода

После первых успехов в изучении структуры ДНК ученые не собирались почивать на лаврах. Да, им удалось доказать, что именно ДНК несет основную генетическую информацию и дает «команду» белкам начинать работу. В 1958 г. Фрэнсис Крик сформулировал центральную догму молекулярной биологии: информация передается от нуклеиновых кислот к белку, но не в обратном направлении. ДНК можно сравнить с матрицей, неким банком данных, который должен доставить информацию к запасам строительного материала – белкам. РНК играет роль носителя информации, природной флешки, которая копирует часть ДНК и несет информацию дальше. И только после вмешательства РНК белок приступает к творчеству. Как будто бы простая схема. Но как конкретно происходит передача информации? Ведь, как мы говорили, ДНК состоит из четырех видов нуклеотидов. Белки, к которым передается информация, построены из 20 видов аминокислот. Так каким же образом на основании обработки нуклеотидов получаются белковые композиции? Каким образом разнородные элементы «понимают» друг друга? Как белки узнают, что они должны начать действовать определенным образом? Видимо, существует некий генетический код?

Собственно, что такое код, или шифр? Это способ заменить одну систему знаков другой. Например, узники в соседних камерах могли перестукиваться друг с другом, заменяя каждую букву алфавита особым сочетанием «стуков». В приключенческих романах герои, закопавшие в землю сокровища, записывали информацию о местонахождении клада при помощи шифра, чтобы жадные до чужого добра люди не смогли до него добраться. В случае с ДНК код необходим потому, что информация передается между двумя разнородными элементами. Нужно считать ее с нуклеинов и передать белкам. Соответственно, генетический код – это особая система записи информации, которая позволяет на основе нуклеиновых кислот выстроить последовательность аминокислот в белке. Другими словами, генетический код – это соответствие между составляющими частями ДНК и последовательностью аминокислотных остатков в белке.

Сразу после прочтения структуры ДНК исследователи начали работу над расшифровкой генетического кода. То есть, ЧТО происходит – им было более-менее ясно. Оставалось выяснить – КАК.

Впервые проблема генетического кода (и один из вариантов ее разрешения) была сформулирована физиком Джорджем (Георгием) Гамовым (1904–1968 гг.), нашим бывшим соотечественником, в 1930-е гг. эмигрировавшим в США. Исходя из того, что ДНК состоит из 4 видов нуклеотидов, а белки построены из 20 аминокислот, он вполне логично заявил: одному нуклеотиду должны соответствовать несколько аминокислот. Но сколько? Если две, то из четырех букв, обозначающих нуклеотиды, мы можем составить только 8 двухбуквенных комбинаций: AA, AG, AC, AT, GG, GC, GT, CC, CT, ТТ. Получается опять же несоответствие: на 20 аминокислот 8 комбинаций нуклеотидов. И только трехбуквенные комбинации обеспечили равновесие. Правда, если комбинировать нуклеотиды по 3, то получится целых 64 варианта (триплета). Такие трехбуквенные обозначения сочетаний нуклеотидов назвали кодонами. Именно три нуклеотида составляют код, означающий ту или иную аминокислоту белка.

Возможно, у вас возник вопрос: каким образом 64 возможных комбинации кодируют 20 аминокислот? Не создается ли неразбериха, не получается ли так, что одна аминокислота получит разом несколько несочетающихся команд? Нет, не получается. Несколько разных кодонов могут подавать одинаковые сигналы одной и той же аминокислоте. Здесь можно провести такую аналогию: передавая партнерам по работе какую-то важную информацию, вы для надежности отправляете не одно письмо, а несколько! Некоторые кодоны вообще не предназначены для передачи команд белкам – они играют роль красных флажков, сообщая в нужный момент, что передача информации завершена.

Выдвинув теорию о триплетном кодировании, Гамов предложил схему передачи информации, считая, что, возможно, сборка белка начинается непосредственно на спирали ДНК. Впоследствии эта версия была признана ошибочной.

В 1961 г. была экспериментально доказана теория триплетного кодирования. Сделал это уже известный вам Фрэнсис Крик и его сотрудники. В том же году были проведены исследования, результатом которых стала расшифровка генетического кода. Для этого ученые Маршалл Ниренберг (1927–2010 гг.) и Дж. Генрих Маттеи (1929 г. р.), пошли в буквальном смысле «от противного». Дело в том, что в 1960-е гг. читать последовательности белков биологи уже научились, но считывать информацию с цепочек ДНК и РНК еще не умели. Велись только опыты по созданию искусственных РНК. Поэтому Ниренберг и Маттеи придумали такой ход: они решили предложить клетке готовую последовательность нуклеотидов с тем, чтобы она сама распознала ее и передала сигнал белку. Таким образом будут активизированы определенные аминокислоты. А так как работа с белками и их составляющими уже не представляла особой сложности, то можно было определить, какие нуклеотиды (вернее, кодоны) соответствуют определенным белкам. Вскоре были получены первые результаты, которые Ниренберг и Маттеи в августе 1961 г. представили в работе «Зависимость бесклеточного синтеза белка в Е. Coli от происхождения природного или синтетического полирибонуклеотидов».

После этого они продолжили опыты по установлению связей между белками и кодонами. Большой вклад в эту работу внесли Роберт Холли (1922–1993 гг.) и Хар Гобинд Корана (1922–2011 гг.). Последний в 1965 г. представил результаты своих опытов по синтезу фрагментов РНК – сейчас результаты его разработок широко используются в микробиологии. К 1967 г. работа по расшифровке генетического кода была завершена. Вся эта грандиозная работа теперь представлена в виде небольшой таблицы соответствий кодонов и аминокислот.

В чем значимость этого открытия? Дело в том, что генетический код един для всех организмов, населяющих землю. Если внедрить ДНК одного существа в клетку другого, она будет понята, прочитана и включится в работу! Но ведь на планете живут тысячи, миллионы видов и подвидов живых существ! Почему же у них обнаруживается сходство на микроскопическом уровне? Согласно популярной версии, в ходе эволюции все они произошли от общего предка – этим и объясняется столь удивительный факт.

Исследования по расшифровке генетического кода были высоко оценены: в 1968 г. Маршалл Ниренберг, Роберт Холли и Хар Гобинд Корана получили Нобелевскую премию «за расшифровку генетического кода и его роли в синтезе белков».

2.10. Генетическая инженерия и клонирование: природа подвластна человеку

Наверное, излишне говорить о том, какие перспективы рисовали перед человечеством открытие структуры ДНК, расшифровка генетического кода, возможность синтезировать РНК и так далее. Начиная с 1960-х гг. писатели-фантасты (да и сами ученые) изощрялись в прогнозах: создание фантастических существ, обезвреживание вирусов, программирование урожайности и внешнего вида растений по желанию селекционера! Но чем глубже исследователи внедрялись в секреты генетики, тем громче звучали голоса противников чрезмерного вмешательства в тайны природы. Многие из них объясняли свой протест религиозными мотивами: мол, негоже человеку корректировать божественный замысел.

Но и среди убежденных атеистов немало тех, кто призывает крайне осторожно относиться к открывающимся перед учеными возможностям. Где граница, отделяющая желание помочь человечеству от стремления удовлетворить любопытство исследователя, подчас принимающее опасные формы? Например, много копий было сломано в XX в. вокруг вопросов евгеники – учения о селекции человека. Если первые евгенические общества еще в 1920-е гг. просто призывали содействовать воспроизводству людей с высоким интеллектом и прочими положительными задатками, то в дальнейшем, как нам известно, желание улучшить породу человека и избавиться от «неполноценных» экземпляров принимало на редкость уродливые формы. А возможность по своему усмотрению влиять на пол и внешность будущих детей, создавать новые виды животных, комбинировать клетки, как ребенок складывает кубики? Не приведет ли это к непредсказуемым последствиям? «Едва ли можно разделить энтузиазм тех, кто ищет на пути генетического контроля способ решения социальных и человеческих проблем… Сегодня гуманизм ученого, лишенный конкретно-исторической и социально-этической перспективы, оказывается либо чем-то эфемерным, чисто словесным, либо даже – именно вследствие его абстрактности – чреватым своей противоположностью, антигуманизмом», – писал И. Т. Фролов («Философия и история генетики. Поиски и дискуссии»). Впрочем, мы не собираемся пугать читателя – моральный выбор в любом случае каждый делает самостоятельно. О проблемах этики применительно к науке мы заговорили лишь затем, чтобы напомнить – дискуссия продолжается. А так как вторая половина XX в. знаменуется все новыми и новыми прорывами в науке, к единому мнению философы и ученые, наверное, придут еще очень нескоро…

Но давайте вернемся собственно к генетике и всему, что с ней связано.

Уже много лет вполне привычными для нас стали слова и словосочетания «трансген», «генетическая инженерия». Успехи генетиков позволяют не ограничиваться скрещиванием в попытках вывести высокорослый сорт пшеницы или морозоустойчивую клубнику. Для этого используется методика перенесения в геном растения или организма чужого гена, который должен придать ему новые качества. Хозяину вводят определенную последовательность ДНК, взятую у носителя, качества которого желают передать трансгенному организму. В итоге клетки трансгенного организма будут, как и положено, производить белок и использовать его как строительный материал. Но он получит новые свойства. Разумеется, все это выглядит просто лишь на бумаге, на самом деле это тончайший сложный процесс. Понятие «трансгенный организм» часто путают с «генетически модифицированным организмом», но последнее на самом деле несколько шире. Оно включает в себя не только трансгены, то есть организмы, в которые был внедрен чужой ген, но и те, в которых в принципе было осуществлено какое-либо вмешательство в геном.

С чего же началась эра генетической инженерии (именно так принято называть всевозможные манипуляции с выделением, копированием, переносом генов)?

В 1973 г. американцы Герберт Бойер (1936 г. р.) и Стэнли Норман Коэн (1935 г. р.) перенесли в бактерию ген вируса, предварительно «вырезав» нужный кусочек ДНК. Молекулы ДНК, которые в результате манипуляций ученых приобрели фрагменты разного происхождения, стали именовать рекомбинантными. Интересно, что вскоре после успешного завершения своих экспериментов ученые сами обратились в Национальную академию наук США с предложением создать специальный международный комитет для оценки вероятных угроз в результате создания рекомбинантных ДНК. В случае признания потенциальной опасности Бойер и Коэн были согласны на мораторий в области подобных экспериментов. Результатом стало создание в 1974 г. Консультативного комитета по рекомбинантным ДНК (Recombinant DNA Advisory Committee, или RAC). Исследования продолжились.

Сейчас при помощи методов генной инженерии в области сельского хозяйства создают сорта растений, устойчивые к вредителям и пестицидам, не боящиеся морозов; в мире созданы и успешно применяются несколько десятков генно-инженерных лекарственных препаратов. В 1990 г. методы генной инженерии были применены для лечения девочки по имени Ашанти де Сильва, страдавшей от тяжелого иммунодефицита. В клетки крови Ашанти были встроены гены, способствовавшие синтезу недостающих элементов. Правда, в настоящее время подобные исследования приостановлены – выяснилось, что в ряде случаев генная терапия человека способствует образованию раковых клеток. Сейчас ведутся работы по снижению онкогенного эффекта.

Также 1970-е гг. ознаменовались еще несколькими важными открытиями. Фредерик Сенгер (1918–2013 гг.) еще в начале 1950-х гг. занимался изучением структуры белков и нуклеиновых кислот. Ему принадлежат фундаментальные исследования инсулина – гормона, без которого в буквальном смысле невозможна жизнь миллионов людей, страдающих диабетом. (В 1958 г. за работы в этой области Сенгер получил свою первую Нобелевскую премию.) Затем ученый заинтересовался определением последовательностей в цепях ДНК. Как уже говорилось, любая ДНК отличается невероятной длиной, и даже простое описание ее структуры представляет собой тяжелый кропотливый труд. Еще за несколько лет до опытов с ДНК Сенгер предложил помечать элементы ДНК и РНК, предназначенные для исследования, радиоактивными изотопами. Это позволило сократить количество экспериментальных материалов. Что же касается его метода чтения последовательностей ДНК, то он был основан на разделении цепей на фрагменты и последующем установлении закономерностей в этих фрагментах. Определение нуклеотидной последовательности ДНК получило название секвенирования. Фредерик Сенгер и его коллеги в 1977 г. наглядно продемонстрировали достоинства своего метода, описав последовательность ДНК вируса Эпштейна-Барр. Она состояла из 5375 оснований! В 1980 г. Сенгер получил вторую Нобелевскую премию по химии вместе с Уолтером Гилбертом (1932 г. р.) и Полом Бергом (1926 г. р.), став единственным в истории британцем, удостоившимся этой премии дважды.

Еще одна важная отрасль науки, связанная с генетикой, – клонирование. Так же, как и генные модификации, воспроизводство клонов бурно обсуждается и становится основой для смелых теорий и фантастичских фильмов.

Что такое клон с точки зрения биологии? Это организм, полностью подобный исходному, с таким же набором генов, полученный путем бесполого размножения. Как ни странно это звучит, но большинство из нас неоднократно занимались воспроизводством клонов, даже не задумываясь об этом. Как? Вспомните, наверняка вам доводилось, например, взять листочек от понравившейся вам фиалки или другого растения, укоренить его и через некоторое время любоваться новым цветком. А ведь это и есть примитивный пример клонирования! Сам термин «клонирование» происходит от греческого «побег», «отпрыск» – подобный способ размножения растений был известен людям с глубокой древности. Но как можно клонировать животное или человека? Да и возможно ли? В XX в. оказалось, что возможно. После открытия структуры ДНК, хромосом, структуры ядра клеток были начаты исследования в этой области.

Еще до Второй мировой войны проводились исследования по пересадке ядра из одной клетки в другую. В 1962 г. профессор Оксфордского университета Джон Гёрдон (1933 г. р.) пересадил ядро клетки лягушки в неоплодотворенное яйцо второй лягушки и дождался появления головастика. На следующий год слово «клон» вошло в научную практику, и опыты продолжились. В частности, было доказано, что можно клонировать целый организм, используя изолированные клетки: попытка вырастить целую морковь из клеток корневища увенчалась успехом.

Вскоре начались опыты с млекопитающими. В 1979 г. Карл Илменси (1939 г. р.) заявил об успешном клонировании мыши. В 1996 г. появилась на свет овечка Долли – первое в мире животное, клонированное из клетки взрослой особи.

Следует сказать, что, по мнению многих исследователей, клонирование до сих пор остается интересным, но невыгодным и в научном, и в финансовом плане направлением: очень высок процент неудачных попыток (в случае с Долли их потребовалось более 270!), кроме того, клоны животных часто страдают серьезными патологиями. Но многих сейчас соблазняет перспектива путем клонирования воссоздать вымерших животных – например, мамонта.

А что же с клонированием человека? Конечно, интерес к нему возник после первых же удачных опытов 1960-х гг. У перспективы получения «человеческих клонов» сразу появились и яростные противники, и убежденные сторонники. В настоящее время все вопросы, связанные с клонированием человека, в большинстве стран регулируются законодательно, и многие государства запрещают работы в этом направлении. В большинстве случаев речь пока идет о терапевтическом клонировании – воспроизведении отдельных тканей или формировании клона до ранней эмбриональной стадии: в пределах нескольких десятков клеток. Впоследствии взятые из этого эмбриона так называемые стволовые клетки используются для лечения самого донора: их главное достоинство в том, что они не будут отторгаться его иммунной системой.

Полное воспроизведение организма, идентичного исходному, называется репродуктивным клонированием. Терапевтическое клонирование можно применять в том случае, если, например, необходима пересадка в результате тяжелой болезни или травмы. Ведутся споры о том, можно ли считать терапевтическим формирование эмбриона и насколько этичны такие способы получения материала.

«я верю, что мы занимаемся наукой в первую очередь не для того, чтобы достичь богатства или даже славы, но только потому, что мы заинтересованы в нашей работе, наслаждаясь процессом, и точно знаем, что это того стоит»

(Фредерик Сенгер)

Часть III. Генетика в нашей жизни

3.1. Открытия, препятствия, проблемы и решения: истории о генетике и ученых-генетиках

Учитель без диплома

Интересно, что Грегор Мендель, один из образованнейших людей своего времени, преподававший математику, биологию, физику, латинский и греческий языки, – дважды проваливал экзамены на звание учителя. Причем экзамены именно по биологии! Что было причиной? Рассеянность, увлеченность лишь интересными ему вопросами науки либо что-то еще? Но так или иначе, его весьма ценили как преподавателя и закрывали глаза на отсутствие аттестата.

Чего не сделаешь ради науки!

Когда Томас Морган начинал серию опытов с плодовыми мушками-дрозофилами, он, согласно легенде, обратился к владельцам расположенных поблизости продуктовых лавок с просьбой разрешить ему ловить там мушек. В помещении это было легче делать, чем на улице. Торговцы, конечно, с недоумением смотрели на ученого чудака, но не препятствовали ему в «мушиной охоте»: в конце концов, избавиться от назойливых насекомых они были согласны любым способом. Злые языки утверждали также, что Морган, которому вечно не хватало емкостей для разведения мушек, вместе со своими студентами умыкал молочные бутылки, которые местные жители выставляли по утрам за дверь.

Дела научные и политические

Казалось бы, наука должна быть вне политики. Но, увы, на практике такое возможно далеко не всегда. Яркий пример – развернувшееся в СССР в 1930-е гг. противостояние «классических» генетиков во главе с Николаем Ивановичем Вавиловым и единомышленников агронома Трофима Денисовича Лысенко. Последний утверждал, что укрепившиеся в науке постулаты, заложенные еще Грегором Менделем, ложны. По мнению Лысенко, приобретенные признаки могли наследоваться, а необходимых изменений можно добиться путем «воспитания». Классическая генетика объявлялась буржуазной лженаукой, а ее сторонники приобретали презрительное клеймо «вейсманистов-морганистов». Почему же советское руководство поддержало одиозного агронома? Не последнюю роль сыграло то, что лысенковцы обещали небывалое повышение урожайности сельскохозяйственных культур, а в этом советское государство нуждалось чрезвычайно. Возможно, именно докладная записка на имя Молотова, написанная в 1939 г. от имени ближайшего соратника Трофима Денисовича – Исаака Презента и завизированная Лысенко, стала главной причиной ареста Вавилова, его обвинения в «продвижении заведомо враждебных теорий» и последующей гибели в саратовской тюрьме… После Великой Отечественной войны борьба сторонников Лысенко со школой Вавилова достигла таких масштабов, что большинство генетиков были попросту уволены из научных институтов и лишены возможности проводить исследования.

Помогла находчивость

Не зря говорят, что для истинного ученого важны не только знания, но и способность к нестандартным взглядам и решениям. Легенда гласит, что, когда генетики Альфред Херши и Марта Чейз проводили опыты, в ходе которых было необходимо отделить оболочку вируса от его «содержимого», им потребовалась специальная центрифуга, которой исследователи не располагали. И тогда для этой цели они приспособили обычный кулинарный блендер.

Не хочу быть рыцарем

Фредерик Сенгер, дважды лауреат Нобелевской премии, своим абсолютным равнодушием к чинам и титулам не раз ставил в тупик не только своих сотрудников, но и государственных деятелей. Так, он отказался от пожалования ему рыцарского звания, заявив, что это сделает его особенным – а он не желает таковым быть. Относительно своих религиозных убеждений Сенгер, выросший в семье квакеров, говорил, что не является верующим, так как не нашел доказательств существования Бога.

Анонимность – прежде всего?

В ходе работы над проектом «Геном человека» материал для исследования брали у множества доноров, но впоследствии отобрали лишь несколько образцов. Ни сами поставщики ДНК, ни сотрудники лабораторий в целях чистоты эксперимента и с точки зрения научной этики не должны были знать, чьи клетки будут исследоваться. Но в кругах ученых и на страницах специализированных журналов муссируется информация, что большая часть материалов в итоге была взята от одного донора – некоего «мужчины из Буффало». Что же касается упоминавшейся компании Celera Genomics, принимавшей участие в расшифровке генома человека, то в 2007 г. была опубликована последовательность генома ее главы – Крейга Вентера.

Еще одно важное открытие

В 1984 г. британский генетик Алек Джеффрис (1950 г. р.) впервые обратил внимание на то, что цепочки ДНК, выделенные из клеток разных людей, имеют некоторые отличия в последовательности цепочек нуклеотидов. Это открытие позволило разработать метод генетической дактилоскопии, или анализа ДНК, широко применяющийся в самых разных областях – от криминалистики до генеалогии. Возможно, читатели уже запутались: как может получиться такое, что генетический код у всех одинаков, проект «геном человека» занимался описанием также некоего среднестатистического набора генов, а особенности ДНК, оказывается, у всех разные? На самом деле ничего удивительного в этом нет Генетический код – это не набор генов, а способ, которым осуществляется перенос информации в клетке. Этот способ действительно одинаков у всех организмов. Геном человека – это вся совокупность наследственного материала – хромосом и ДНК, которым он располагает. Описав человеческий геном, ученые как бы провели ревизию всего того, что есть в наших клетках. А вот особенности этого материала действительно у каждого свои!

3.2. От документалистики об ученых до фантастики о мутантах и клонах: генетика в кино

В наше время выбор научно-популярных фильмов и фантастических лент на окологенетические темы огромен. Главное – сделать выбор, что вам интереснее: разобраться в научных терминах, ознакомиться с биографиями известных ученых или окунуться в фантастический вымышленный мир – интересный, но подчас недружелюбный и пугающий?

Тех, кто интересуется ранним этапом развития генетики, возможно, привлечет снятый относительно недавно в Италии фильм о Грегоре Менделе – «Божий садовник». Это фильм не столько о научных достижениях ученого августинца, сколько о его духовном служении, взаимоотношениях с прихожанами и об эпохе в целом.

Конечно, немало было снято кинолент о Чарлзе Дарвине, несмотря на то что его вклад в генетику как таковую относительно невелик. Так, в 2009 г. ВВС был снят фильм к 200-летию ученого «Чарлз Дарвин и древо жизни». Эта научно-популярная лента будет интересна не только тем, кто уже давно занимается историей науки, но и тем, кто только начинает разбираться в вопросах эволюции, а также всем любителям научно-исторических фильмов. Если же вы предпочитаете фильмы художественные, посмотрите биографическую драму того же года «Происхождение».

В конце 1980-х – начале 1990-х гг., когда в нашей стране наступила эпоха «переоценки ценностей», было снято несколько фильмов, авторы которых желали воздать должное ученым недавнего прошлого. Например, совместно с ФРГ был создан шестисерийный биографический фильм «Николай Вавилов»: довольно мрачная, но качественно снятая драматическая картина – не только о жизни советского генетика, но и о трагедии неординарной личности в условиях тоталитарного государства.

В 1992 г. на киностудии «Беларусьфильм» режиссером Леонидом Белозоровичем был снят фильм «Белые одежды» по одноименному роману Владимира Дудинцева. Его действие происходит после печально известной сессии ВАСХНИЛ 1948 г., на которой сторонники теорий Лысенко практически разгромили классическую генетику. Перед большинством ученых стал выбор: подчиниться линии партии и предать науку или уйти в подполье, рискуя не только карьерой, но и жизнью? Фильм не столько о науке, сколько о моральном выборе между истиной и ложью, честью и предательством.

В 2000-е гг. самые разные студии подарили нам множество научно-популярных фильмов на генетическую тему: не последнюю роль в этом сыграл интерес, который пробудили у обывателей проекты, подобные «Геному человека». В 2004 г. канал Discovery в серии «100 великих открытий» выпустил фильм «Генетика», вкратце представивший зрителю основные вопросы, решенные наукой к тому времени: создание трансгенов, описание генома человека, перспективы, которые открываются перед человечеством благодаря генетике…

В 2008 г. в России был выпущен семисерийный фильм «Код жизни». В доступной и увлекательной форме он рассказывает не только об истории генетики, но и об ученых, совершивших наиболее значимые открытия, о проблемах и «подводных камнях» генетики XX–XXI вв.

Конечно же, настоящий расцвет в 1990-е – 2000-е гг. наступил в области фантастического, художественного кино, посвященного генной инженерии, клонам, проблемам евгеники и научным прогнозам на будущее. Общую идею большинства подобных фильмов можно описать фразой «А что будет, если.?..» Что будет, если воскресить давно вымерших динозавров? Что будет, если победить все болезни, но позволить обзаводиться потомством только тем людям, которые не страдают никакими врожденными дефектами, даже самыми незначительными? Что произойдет, если ученые будут руководствоваться лишь любопытством, забыв о возможных последствиях своих опытов? Что случится, если внезапные мутации подарят людям сверхспособности? Чем чревато разрешение на производство клонов в промышленных масштабах – пусть даже просто с целью получения запасов тканей? Большинство этих фильмов – от «Парка юрского периода» до «Шестого дня», от «Химеры» до «людей X» – построены по принципу «Сказка ложь, да в ней намек». Но как воспринимать этот намек – как предупреждение или как руководство к действию? Наверное, ответ не будет сюрпризом: все зависит от степени осознания ученым ответственности за свои открытия.

3.3. Что почитать? Научные и популярные книги о генетике

Любители научно-популярной литературы хорошо знают, что в этой области существует серьезная проблема: довольно сложно найти такие издания, которые, с одной стороны, были бы научно достоверны, а с другой – были бы написаны простым языком, доступным неспециалисту. Кроме того, в море околонаучной литературы нередки книги, не имеющие никакого отношения к серьезным исследованиям, но зато наполненные всевозможными домыслами и конспирологическими теориями.

Что можно порекомендовать?

Во-первых, постарайтесь прочесть книги, написанные учеными, которые принимали участие во всевозможных определяющих исследованиях в области генетики: они дадут вам информацию, как говорится, из первых рук. Яркий пример – несколько раз издававшаяся книга Джеймса Уотсона «Двойная спираль», увлекательно рассказывающая о пути к грандиозному открытию, сделанному автором и его коллегами.

На западе уже несколько десятилетий пользуются большим успехом книги британского профессора и популяризатора науки Ричарда Докинза: «Эгоистичный ген», «Расширенный фенотип»… Докинз известен как сторонник геоцентрического взгляда на эволюцию, убежденный атеист и борец с псевдонаукой. Его категоричность и язвительный стиль изложения разделили читателей его книг на два лагеря: убежденных противников и горячих поклонников. Последних привлекает доступный язык, юмор, твердая позиция автора по ключевым вопросам науки и научной этики.

В конце 1990-х гг. впервые вышла в свет на английском языке книга английского биолога и журналиста Мэтта Ридли «Геном: автобиография вида в 23 главах». В ней кратко, наглядно и, что немаловажно, доступно была представлена вся история генетики: от первых теорий до грандиозных прорывов XX в. С тех пор книга Ридли переиздавалась неоднократно, в том числе на русском языке. К популярным изданиям можно отнести книгу Питера Эткинза «Десять великих идей науки». Правда, разработкам в области ДНК там посвящена всего одна глава, но специфика издания, собравшего под одной обложкой ключевые понятия астрономии, физики, генетики, возможно, позволит читателю прояснить и уточнить собственную картину мира.

Если вам интересны фундаментальные издания по истории генетики, в которых можно почерпнуть не только научные сведения, но и узнать о связи науки с политикой, экономикой, познакомиться сучеными не только как с лабораторными сотрудниками, но и как с личностями – обратитесь к исследованиям советского генетика и историка науки А. Е. Гайсиновича, в частности, к его книге «Зарождение и развитие генетики», правда, она охватывает только 1960-е – 1970-е гг.

Если же вы уже обладаете определенными познаниями в области химии и биологии и вас не пугает перспектива разбираться в сложных формулах, терминах и схемах, можете посвятить свой досуг литературе, предназначенной для студентов высших учебных заведений. Так, уже зарекомендовали себя с положительной стороны книги В. А. Пухальского «Введение в генетику», «Основы генетики» авторства А. Ю. Асанова, Н. С. Демиковой и В. Е. Голимбет, а также одноименный труд «Основы генетики» У. Клага и М. Каммингса. Еще в 1990-е гг. издавалось двухтомное издание для студентов университетов, посвященное молекулярной биологии, «Гены и геномы». Над ним работали М. Сингер и П. Берг.

Множество публикаций, посвященных общим вопросам генетики и отдельным проблемам – прочтению структуры ДНК, клонированию, изучению человеческого генома, можно найти в подшивках и электронных версиях журналов, таких как Popular Science, выходящий более чем в 40 странах, Scientific American, российских «В мире науки», «Наука и жизнь» и многих других.

Конечно, философы и писатели-беллетристы всегда чутко реагировали на происходящее в области генетики и смежных с ней наук. Достаточно вспомнить хотя бы «О дивный новый мир» Олдоса Хаксли, «Левая рука тьмы» и «Девять жизней» Урсулы ле Гуин, «Не отпускай меня» Кадзуо Исигуро…

Как видите, выбор огромен. Главное – определиться со сферой своих интересов и начать поиск литературы, отвечающей вашим пожеланиям и чаяниям!


Оглавление

  • Часть I. Теории и дискуссии о законах наследственности: от античности до XIX века
  •   1.1. Античные авторы о наследственности: первые попытки объяснить и обосновать
  •   1.2. Интуитивная генетика. Селекция растений и животных человеком
  •   1.3. Зародыш – готовый организм или сгусток тканей? Борьба гипотез в XVII–XVIII веках
  •   1.4. Йозеф Кёльрейтер: успехи искусственного скрещивания
  •   1.5. Эксперименты с горохом
  •   1.6. Огюстен Сажрэ. Огород и сад как лаборатория
  •   1.7. Шарль Ноден: за несколько шагов до революционных открытий
  •   1.8. Чарлз Дарвин. Гипотеза о «частицах наследственности»
  •   1.9. Август Вейсман и другие: «черновик» хромосомной теории наследственности
  • Часть II. Век генетики: становление и развитие науки
  •   2.1. Начало генетики. Грегор Мендель: открытия великие, но незамеченные
  •   2.2. Законы Менделя: второе рождение
  •   2.3. Мутационная теория. Параллельные разработки в России и Нидерландах
  •   2.4. Где находятся гены? Хромосомная теория наследственности
  •   2.5. Мутации можно вызывать искусственно!
  •   2.6. Закон Харди-Вайнберга, дрейфующие гены и прочие интересные вещи
  •   2.7. Закон академика Вавилова о близких видах
  •   2.8. Эра ДНК. Хранилища генетической информации
  •   2.9. Ученые разгадывают ребус: расшифровка генетического кода
  •   2.10. Генетическая инженерия и клонирование: природа подвластна человеку
  • Часть III. Генетика в нашей жизни
  •   3.1. Открытия, препятствия, проблемы и решения: истории о генетике и ученых-генетиках
  •     Учитель без диплома
  •     Чего не сделаешь ради науки!
  •     Дела научные и политические
  •     Помогла находчивость
  •     Не хочу быть рыцарем
  •     Анонимность – прежде всего?
  •     Еще одно важное открытие
  •   3.2. От документалистики об ученых до фантастики о мутантах и клонах: генетика в кино
  •   3.3. Что почитать? Научные и популярные книги о генетике

  • Наш сайт является помещением библиотеки. На основании Федерального закона Российской федерации "Об авторском и смежных правах" (в ред. Федеральных законов от 19.07.1995 N 110-ФЗ, от 20.07.2004 N 72-ФЗ) копирование, сохранение на жестком диске или иной способ сохранения произведений размещенных на данной библиотеке категорически запрешен. Все материалы представлены исключительно в ознакомительных целях.

    Copyright © читать книги бесплатно